

Murach’s Beginning Java 2

 page 1

Table of Contents

 Murach’s Beginning Java 2 (Includes Version 1.3 & 1.4) - 2
 Introduction - 3
 Section I The essence of Java programming
 Chapter 1 - How to get started with Java - 6
 Chapter 2 - Java language essentials (part 1) - 27
 Chapter 3 - Java language essentials (part 2) - 60
 Chapter 4 - How to write object-oriented programs - 80
 Chapter 5 - How to work with inheritance and interfaces - 108
 Chapter 6 - How to design and test object-oriented programs - 141
 Section II More Java essentials
 Chapter 7 - How to work with operators and dates - 165
 Chapter 8 - How to code control statements - 182
 Chapter 9 - How to work with arrays, strings, and vectors - 196
 Chapter 10 - How to handle exceptions and debug code - 227
 Section III Java for graphical user interfaces
 Chapter 11 - How to code a graphical user interface (part 1) - 244
 Chapter 12 - How to code a graphical user interface (part 2) - 271
 Chapter 13 - How to work with menus - 317
 Chapter 14 - How to work with fonts, colors, images, and shapes - 333
 Chapter 15 - How to develop applets - 359
 Section IV Java for file input and output
 Chapter 16 - An introduction to file input and output - 381
 Chapter 17 - How to work with text files - 392
 Chapter 18 - How to work with binary files - 405
 Section V Advanced Java skills
 Chapter 19 - How to use JDBC to work with databases - 438
 Chapter 20 - How to work with threads - 470

sourcecode/Application summary.doc
A summary of the downloadable applications

Folder
Subfolder
Description

Chapter 01

The BookOrderApp class simply prints data to the console.

Chapter 02

The InvoiceApp class uses only Java classes to perform a simple calculation.

The NameApp class uses dialog boxes to get input and display output.

Chapter 03

The BookOrderApp class uses dialog boxes, number formatting, and control statements to simulate a book order transaction.

The EnhancedInvoiceApp class uses dialog boxes, number formatting, and data validation to perform a simple calculation.

The FutureValueApp class uses dialog boxes, number formatting, and data validation to perform a future value calculation.

Chapter 04
BookApp
The BookApp class uses the Book class to match a user entry to a book title.

BookOrderApp
The BookOrderApp class uses the Book and BookOrder class to simulate a book order transaction. This application uses exception handling and data validation.

FutureValueApp
The FutureValueApp class uses a static method from the FinancialCalculations class to perform the future value calculation.

Chapter 05
Frame
The BookOrderFrame class creates a GUI frame that can be closed. This class shows how to implement an interface.

OverrideTest
The OverrideTest class uses the DiscountBookOrder class to create an object that represents a discounted book order. This application shows how to work with inheritance since the DiscountBookOrder class inherits the BookOrder class.

Polymorphism
The PolyTest class uses either the DiscountBookOrder class or the BookOrder class to create an object that represents a book order. This application demonstrates polymorphism since this decision is determined at run time.

Chapter 06
UserEmail
The UserEmailApp class uses the UserFrame, UserPanel, UserIO, and User class to create an application that accepts an email from a user in a graphical user interface and then saves that data in a file. This application shows how object-oriented applications are designed.

Chapter 07
BookOrderApp
The BookOrderApp class uses the Book and BookOrder classes to simulate a book order transaction. In this application, the BookOrder class accounts for the date and time of the order.

MonthlyPaymentApp
The MonthlyPaymentApp class uses a complex mathematical formula to compute the monthly payment of a loan. The FinancialCalculations class contains the static method that performs this calculation.

Chapter 09
ArraySort
The CompareTestApp class creates three objects from the BookOrder class, places them into an array, and sorts them accordingly.

InvoiceApp
The InvoiceApp class creates objects of the Invoice class and places them into a vector. This application also uses the BookOrder and Book classes.

Chapter 11
LoanCalculator
The LoanCalculatorFrame class creates a Swing GUI that accepts user input, performs a monthly payment calculation, and displays the result in the GUI. This application uses text fields, labels, and buttons.

Chapter 12
BookMaintenance
The BookFrame class creates a Swing GUI that displays information on books stored in the binary file named books.dat. This application lets the user cycle through the records held in this file and also permits the user to add, update, or delete records.

ComboBookOrder
The BookOrderFrame class creates a Swing GUI that displays a list of book titles in a combo box. The user then selects a title and the application searches the books.dat file for the price of that book. It then displays the price, calculates the order total, and displays the total.

ListBookOrder
The BookOrderFrame class creates a Swing GUI that displays a list of book titles in a bordered list box that contains a scroll bar. The user selects a title and the application searches for the books.dat file for the price of that book. It then displays the price, calculates the order total, and displays the total.

LoanCalculator
The LoanCalculatorFrame class creates a Swing GUI that contains two radio buttons that allow the user to decide to calculate either the monthly payment for a loan or the loan amount based on a monthly payment. This application uses two methods from the FinancialCalculations class.

TextAreaApp
The BookOrderFrame class creates a Swing GUI that includes a text area with a scroll bar. This application allows the user to select a title and quantity for a book order. In addition, the user can choose to enter in comments in the text area.

Chapter 13
BookMaintenance
The BookFrame class creates a Swing GUI with menus that displays information on books stored in the binary file named books.dat. This application lets the user cycle through the records held in this file and also permits the user to add, update, or delete records. This application includes menus that perform the same tasks as the buttons on the user interface.

Chapter 14
FontsApp
The FontsFrame class creates a Swing GUI that lets the user choose a font, color, and size of a displayed string through a series of combo boxes. This application also shows the painting process of Swing components.

ShapesApp
The ShapesFrame class creates a Swing GUI that lets the user choose to draw or fill a specific colored shape. This application uses the Java2D API to draw and fill shapes.

Chapter 15
AWTLoanCalculator
The LoanCalculatorApplet class creates an applet that accepts user input, performs a monthly payment calculation, and displays the result in the GUI. To run this applet, you can open the LoanCalculator.html file in any Java enabled browser. Since this is an AWT applet, it should work with most browsers.

SwingLoanCalculator
The LoanCalculatorApplet class creates a Swing applet that accepts user input, performs a monthly payment calculation, and displays the result in the GUI. To run this applet, you must install the Java Plug-in. Then, you can open the LoanCalculator.html file in your browser to view this applet.

Chapter 17
TextReader
The TextReaderApp class opens the example.txt file, reads the data in it, and displays it to the console.

TextWriter
The TextWriterApp class creates the example.txt file by writing data to it.

Chapter 18
BinaryReader
The BinaryReaderApp class opens the example.dat file, reads the data in it, and displays it to the console.

BinaryWriter
The BinaryWriterApp class creates the example.dat file by writing data to it.

BookMaintenance
The BookFrame class creates a Swing GUI that displays information on books stored in the binary file named books.dat. This application lets the user cycle through the records held in this file and also permits the user to add, update, or delete records.

RandomAccessReader
The RandomAccessReaderApp class opens the books.dat file, reads the third record, and displays the data to the console.

RandomAccessWriter
The RandomAccessWriterApp class creates the books.dat file by writing data to it.

StringHelper
The StringHelper class contains two static methods that read and write fixed length strings. This class can be useful when working with random access files.

Chapter 19
BookMaintenance
The BookFrame class creates a Swing GUI that displays information on books stored in a database named MurachBooks. This application lets the user cycle through the records held in this database and also permits the user to add, update, or delete records. To run this application, you must set up an ODBC data source for the MurachBooks database located in the database folder.

database
This folder contains the MurachBooks database for Access 2000 and Access 97.

Chapter 20
AlarmUtil
The Alarm class uses the Timer and TimerTask classes from the util package to create a thread that tracks the current time. Once the time specified in the Alarm class is reached, a dialog box pops up on the user’s screen.

Banner
The MovingBannerApplet class creates an applet that contains text that moves across the screen. To view this applet, you can open the BannerApplet.html file in a Java enabled browser.

CountRunnable
The CountDownApp class creates and executes threads of the CountDownOdd and CountDownEven classes. In this application, the CountDownOdd and CountDownEven classes both implement the Runnable interface.

CountThread
The CountDownApp class creates and executes threads of the CountDownOdd and CountDownEven classes. In this application, the CountDownOdd and CountDownEven classes both extend the Thread class.

DrawImage
The DrawImage class creates an applet that performs a time consuming task of drawing an image. Since this task is placed in its own thread, the application can still handle any input to the GUI. For instance, if the user presses the Interrupt button, the application will stop the draw image thread. To view this applet, you can open the DrawImageApplet.html file in a Java enabled browser.

LoanCalculator
The LoanCalculatorFrame class creates a Swing GUI that accepts user input, performs a monthly payment calculation, and displays the result in the GUI. This application also displays a clock in the upper right hand corner of the frame. This application uses the Timer class of the Swing package to show how to execute threads in Swing GUIs.

OrderMonitor
The OrderMonitorTest class creates and starts threads of the Buyer and Seller classes. This application shows how to work with synchronized threads and how to use the wait and notifyAll methods to control thread execution.

Application summary.doc
07/26/01
Page 4

sourcecode/Application summary.rtf
Application summary.doc	07/26/01	Page 4

A summary of the downloadable applications

Folder	Subfolder	Description

Chapter 01		The BookOrderApp class simply prints data to the console.

Chapter 02		The InvoiceApp class uses only Java classes to perform a simple calculation.

		The NameApp class uses dialog boxes to get input and display output.

Chapter 03		The BookOrderApp class uses dialog boxes, number formatting, and control statements to simulate a book order transaction.

		The EnhancedInvoiceApp class uses dialog boxes, number formatting, and data validation to perform a simple calculation.

		The FutureValueApp class uses dialog boxes, number formatting, and data validation to perform a future value calculation.

Chapter 04	BookApp	The BookApp class uses the Book class to match a user entry to a book title.

	BookOrderApp	The BookOrderApp class uses the Book and BookOrder class to simulate a book order transaction. This application uses exception handling and data validation.

	FutureValueApp	The FutureValueApp class uses a static method from the FinancialCalculations class to perform the future value calculation.

Chapter 05	Frame	The BookOrderFrame class creates a GUI frame that can be closed. This class shows how to implement an interface.

	OverrideTest	The OverrideTest class uses the DiscountBookOrder class to create an object that represents a discounted book order. This application shows how to work with inheritance since the DiscountBookOrder class inherits the BookOrder class.

	Polymorphism	The PolyTest class uses either the DiscountBookOrder class or the BookOrder class to create an object that represents a book order. This application demonstrates polymorphism since this decision is determined at run time.

Chapter 06	UserEmail	The UserEmailApp class uses the UserFrame, UserPanel, UserIO, and User class to create an application that accepts an email from a user in a graphical user interface and then saves that data in a file. This application shows how object-oriented applications are designed.

Chapter 07	BookOrderApp	The BookOrderApp class uses the Book and BookOrder classes to simulate a book order transaction. In this application, the BookOrder class accounts for the date and time of the order.

	MonthlyPaymentApp	The MonthlyPaymentApp class uses a complex mathematical formula to compute the monthly payment of a loan. The FinancialCalculations class contains the static method that performs this calculation.

Chapter 09	ArraySort	The CompareTestApp class creates three objects from the BookOrder class, places them into an array, and sorts them accordingly.

	InvoiceApp	The InvoiceApp class creates objects of the Invoice class and places them into a vector. This application also uses the BookOrder and Book classes.

Chapter 11	LoanCalculator	The LoanCalculatorFrame class creates a Swing GUI that accepts user input, performs a monthly payment calculation, and displays the result in the GUI. This application uses text fields, labels, and buttons.

Chapter 12	BookMaintenance	The BookFrame class creates a Swing GUI that displays information on books stored in the binary file named books.dat. This application lets the user cycle through the records held in this file and also permits the user to add, update, or delete records.

	ComboBookOrder	The BookOrderFrame class creates a Swing GUI that displays a list of book titles in a combo box. The user then selects a title and the application searches the books.dat file for the price of that book. It then displays the price, calculates the order total, and displays the total.

	ListBookOrder	The BookOrderFrame class creates a Swing GUI that displays a list of book titles in a bordered list box that contains a scroll bar. The user selects a title and the application searches for the books.dat file for the price of that book. It then displays the price, calculates the order total, and displays the total.

 	LoanCalculator	The LoanCalculatorFrame class creates a Swing GUI that contains two radio buttons that allow the user to decide to calculate either the monthly payment for a loan or the loan amount based on a monthly payment. This application uses two methods from the FinancialCalculations class.

	TextAreaApp	The BookOrderFrame class creates a Swing GUI that includes a text area with a scroll bar. This application allows the user to select a title and quantity for a book order. In addition, the user can choose to enter in comments in the text area.

Chapter 13	BookMaintenance	The BookFrame class creates a Swing GUI with menus that displays information on books stored in the binary file named books.dat. This application lets the user cycle through the records held in this file and also permits the user to add, update, or delete records. This application includes menus that perform the same tasks as the buttons on the user interface.

Chapter 14	FontsApp	The FontsFrame class creates a Swing GUI that lets the user choose a font, color, and size of a displayed string through a series of combo boxes. This application also shows the painting process of Swing components.

	ShapesApp	The ShapesFrame class creates a Swing GUI that lets the user choose to draw or fill a specific colored shape. This application uses the Java2D API to draw and fill shapes.

Chapter 15	AWTLoanCalculator	The LoanCalculatorApplet class creates an applet that accepts user input, performs a monthly payment calculation, and displays the result in the GUI. To run this applet, you can open the LoanCalculator.html file in any Java enabled browser. Since this is an AWT applet, it should work with most browsers.

	SwingLoanCalculator	The LoanCalculatorApplet class creates a Swing applet that accepts user input, performs a monthly payment calculation, and displays the result in the GUI. To run this applet, you must install the Java Plug-in. Then, you can open the LoanCalculator.html file in your browser to view this applet.

Chapter 17	TextReader	The TextReaderApp class opens the example.txt file, reads the data in it, and displays it to the console.

	TextWriter	The TextWriterApp class creates the example.txt file by writing data to it.

Chapter 18	BinaryReader	The BinaryReaderApp class opens the example.dat file, reads the data in it, and displays it to the console.

	BinaryWriter	The BinaryWriterApp class creates the example.dat file by writing data to it.

	BookMaintenance	The BookFrame class creates a Swing GUI that displays information on books stored in the binary file named books.dat. This application lets the user cycle through the records held in this file and also permits the user to add, update, or delete records.

	RandomAccessReader	The RandomAccessReaderApp class opens the books.dat file, reads the third record, and displays the data to the console.

	RandomAccessWriter	The RandomAccessWriterApp class creates the books.dat file by writing data to it.

	StringHelper	The StringHelper class contains two static methods that read and write fixed length strings. This class can be useful when working with random access files.

Chapter 19	BookMaintenance	The BookFrame class creates a Swing GUI that displays information on books stored in a database named MurachBooks. This application lets the user cycle through the records held in this database and also permits the user to add, update, or delete records. To run this application, you must set up an ODBC data source for the MurachBooks database located in the database folder.

	database	This folder contains the MurachBooks database for Access 2000 and Access 97.

Chapter 20	AlarmUtil	The Alarm class uses the Timer and TimerTask classes from the util package to create a thread that tracks the current time. Once the time specified in the Alarm class is reached, a dialog box pops up on the user’s screen.

	Banner	The MovingBannerApplet class creates an applet that contains text that moves across the screen. To view this applet, you can open the BannerApplet.html file in a Java enabled browser.

	CountRunnable	The CountDownApp class creates and executes threads of the CountDownOdd and CountDownEven classes. In this application, the CountDownOdd and CountDownEven classes both implement the Runnable interface.

	CountThread	The CountDownApp class creates and executes threads of the CountDownOdd and CountDownEven classes. In this application, the CountDownOdd and CountDownEven classes both extend the Thread class.

	DrawImage	The DrawImage class creates an applet that performs a time consuming task of drawing an image. Since this task is placed in its own thread, the application can still handle any input to the GUI. For instance, if the user presses the Interrupt button, the application will stop the draw image thread. To view this applet, you can open the DrawImageApplet.html file in a Java enabled browser.

	LoanCalculator	The LoanCalculatorFrame class creates a Swing GUI that accepts user input, performs a monthly payment calculation, and displays the result in the GUI. This application also displays a clock in the upper right hand corner of the frame. This application uses the Timer class of the Swing package to show how to execute threads in Swing GUIs.

	OrderMonitor	The OrderMonitorTest class creates and starts threads of the Buyer and Seller classes. This application shows how to work with synchronized threads and how to use the wait and notifyAll methods to control thread execution.

sourcecode/ch01/BookOrderApp.class
public synchronized class BookOrderApp {
 public void BookOrderApp();
 public static void main(String[]);
}

sourcecode/ch01/BookOrderApp.java

sourcecode/ch01/BookOrderApp.java
public class BookOrderApp{

 public static void main(String[] args){

 System.out.println("Title: War and Peace");

 }

}

sourcecode/ch02/InvoiceApp.java

sourcecode/ch02/InvoiceApp.java
import javax.swing.*;

public class InvoiceApp{

 public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){ // begin while loop

 String inputString = JOptionPane.showInputDialog(

 "Enter order total: ");

 double orderTotal = Double.parseDouble(inputString);

 double discountAmount = 0;

 if (orderTotal >= 100)

 discountAmount = orderTotal * .2;

 else

 discountAmount = orderTotal * .1;

 double invoiceTotal = orderTotal - discountAmount;

 String message = "Order total: " + orderTotal + "\n"

 + "Discount amount: " + discountAmount + "\n"

 + "Invoice total: " + invoiceTotal + "\n\n"

 + "To continue, press Enter.\n"

 + "To exit, enter 'x': ";

 choice = JOptionPane.showInputDialog(message);

 } // end while loop

 System.exit(0);

 }

}

sourcecode/ch02/NameApp.java

sourcecode/ch02/NameApp.java
import javax.swing.JOptionPane;

public class NameApp{

 public static void main(String[] args){

 String inputString = JOptionPane.showInputDialog(

 "Enter your first name: ");

 String message = "First name: " + inputString + "\n\n"

 + "Press enter to exit.";

 JOptionPane.showInputDialog(message);

 System.exit(0);

 }

}

sourcecode/ch03/BookOrderApp.java

sourcecode/ch03/BookOrderApp.java
import javax.swing.JOptionPane;

import java.text.NumberFormat;

public class BookOrderApp{

 public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){

 String code = JOptionPane.showInputDialog(

 "Enter book code: ");

 String title = "";

 double price = 0;

 if (code.equalsIgnoreCase("WARP")){

 title = "War and Peace";

 price = 14.95;

 }

 else if (code.equalsIgnoreCase("MBDK")){

 title = "Moby Dick";

 price = 12.95;

 }

 else{

 title = "Not Found";

 price = 0.0;

 }

 String inputQuantity = JOptionPane.showInputDialog(

 "Enter quantity: ");

 int quantity = Integer.parseInt(inputQuantity);

 double total = quantity * price;

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String message = "Code: " + code + "\n"

 + "Title: " + title + "\n"

 + "Price: " + currency.format(price) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n\n"

 + "Press Enter to continue or enter 'x' to exit.";

 choice = JOptionPane.showInputDialog(null,

 message, "Book Order", JOptionPane.PLAIN_MESSAGE);

 } // end while

 System.exit(0);

 }

}

sourcecode/ch03/EnhancedInvoiceApp.java

sourcecode/ch03/EnhancedInvoiceApp.java
import javax.swing.JOptionPane;

import java.text.*;

public class EnhancedInvoiceApp{

 public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){

 String inputString = JOptionPane.showInputDialog(null,

 "Enter order total: ", "Invoice", JOptionPane.PLAIN_MESSAGE);

 double orderTotal = parseTotal(inputString);

 double discountAmount = 0;

 if (orderTotal >= 100)

 discountAmount = orderTotal * .2;

 else

 discountAmount = orderTotal * .1;

 double invoiceTotal = orderTotal - discountAmount;

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String message = "Order total: " + currency.format(orderTotal) + "\n"

 + "Discount amount: " + currency.format(discountAmount) + "\n"

 + "Invoice total: " + currency.format(invoiceTotal) + "\n\n"

 + "To continue, press Enter.\n"

 + "To exit, enter 'x': ";

 choice = JOptionPane.showInputDialog(null,

 message, "Invoice", JOptionPane.PLAIN_MESSAGE);

 }

 System.exit(0);

 }

 private static double parseTotal(String totalString){

 double orderTotal = 0;

 boolean tryAgain = true;

 while(tryAgain){

 try{

 orderTotal = Double.parseDouble(totalString);

 while (orderTotal <= 0){

 totalString = JOptionPane.showInputDialog(null,

 "Invalid order total. \n"

 + "Please enter a positive number: ",

 "Invoice", JOptionPane.ERROR_MESSAGE);

 orderTotal = Double.parseDouble(totalString);

 }

 tryAgain = false;

 }

 catch(NumberFormatException e){

 totalString = JOptionPane.showInputDialog(null,

 "Invalid order total. \n"

 + "Please enter a number: ",

 "Invoice", JOptionPane.ERROR_MESSAGE);

 }

 }

 return orderTotal;

 }

}

sourcecode/ch03/FutureValueApp.java

sourcecode/ch03/FutureValueApp.java
import javax.swing.*;

import java.text.*;

public class FutureValueApp{

 public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){

 String paymentString = JOptionPane.showInputDialog(

 "Enter monthly payment: ");

 double monthlyPayment = Double.parseDouble(paymentString);

 String rateString = JOptionPane.showInputDialog(

 "Enter yearly interest rate: ");

 double interestRate = Double.parseDouble(rateString);

 double monthlyInterestRate = interestRate/12/100;

 String yearsString = JOptionPane.showInputDialog(

 "Enter number of years: ");

 int years = Integer.parseInt(yearsString);

 int months = years * 12;

 double futureValue = calculateFutureValue(monthlyPayment,

 months, monthlyInterestRate);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 NumberFormat percent = NumberFormat.getPercentInstance();

 percent.setMinimumFractionDigits(2);

 String message =

 "Monthly payment: " + currency.format(monthlyPayment) + "\n"

 + "Yearly interest rate: " + percent.format(interestRate/100) + "\n"

 + "Number of years: " + years + "\n"

 + "Future value: " + currency.format(futureValue) + "\n\n"

 + "To continue, press Enter.\n"

 + "To exit, enter 'x': ";

 choice = JOptionPane.showInputDialog(null,

 message, "Future Value", JOptionPane.PLAIN_MESSAGE);

 }

 System.exit(0);

 }

 private static double calculateFutureValue(double monthlyPayment,

 int months, double interestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + interestRate);

 i++;

 }

 return futureValue;

 }

}

sourcecode/ch04/BookApp/Book.java

sourcecode/ch04/BookApp/Book.java
public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode){

 code = bookCode;

 setTitle(bookCode);

 setPrice(bookCode);

 }

 public void setTitle(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (bookCode.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

 else

 title = "Not Found";

 }

 public void setPrice(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 price = 14.95;

 else if (bookCode.equalsIgnoreCase("MBDK"))

 price = 12.95;

 else

 price = 0.0;

 }

 public String getCode(){

 return code;

 }

 public String getTitle(){

 return title;

 }

 public double getPrice(){

 return price;

 }

}

sourcecode/ch04/BookApp/BookApp.java

sourcecode/ch04/BookApp/BookApp.java
import javax.swing.JOptionPane;

public class BookApp{

 public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){

 String code = JOptionPane.showInputDialog(

 "Enter a book code:");

 Book book = new Book(code);

 String message = "You have selected:\n"

 + " Title: " + book.getTitle() + "\n"

 + " Price: " + book.getPrice() + "\n\n"

 + "Press Enter to continue or enter 'x' to exit:";

 choice = JOptionPane.showInputDialog(null,

 message, "Book", JOptionPane.PLAIN_MESSAGE);

 }//end while

 System.exit(0);

 }

}

sourcecode/ch04/BookOrderApp/Book.java

sourcecode/ch04/BookOrderApp/Book.java
public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode){

 code = bookCode;

 setTitle(bookCode);

 setPrice(bookCode);

 }

 public void setTitle(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (bookCode.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

 else

 title = "Not Found";

 }

 public void setPrice(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 price = 14.95;

 else if (bookCode.equalsIgnoreCase("MBDK"))

 price = 12.95;

 else

 price = 0.0;

 }

 public String getCode(){

 return code;

 }

 public String getTitle(){

 return title;

 }

 public double getPrice(){

 return price;

 }

}

sourcecode/ch04/BookOrderApp/BookOrder.java

sourcecode/ch04/BookOrderApp/BookOrder.java
import java.text.*;

public class BookOrder{

 private Book book;

 private int quantity;

 private double total;

 public BookOrder(String bookCode, int bookQuantity){

 book = new Book(bookCode);

 quantity = bookQuantity;

 setTotal();

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public Book getBook(){

 return book;

 }

 public int getQuantity(){

 return quantity;

 }

 public double getTotal(){

 return total;

 }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

}

sourcecode/ch04/BookOrderApp/BookOrderApp.java

sourcecode/ch04/BookOrderApp/BookOrderApp.java
import javax.swing.JOptionPane;

public class BookOrderApp{

 public static void main(String[] args){

 String choice = "";

 try{

 while (!(choice.equalsIgnoreCase("x"))){

 String title = JOptionPane.showInputDialog(

 "Enter a book code:");

 String inputQuantity = JOptionPane.showInputDialog(

 "Enter a quantity:");

 int quantity = parseQuantity(inputQuantity);

 BookOrder bookOrder = new BookOrder(title, quantity);

 String message = bookOrder.toString() + "\n"

 + "Press Enter to continue or enter 'x' to exit:";

 choice = JOptionPane.showInputDialog(null,

 message, "Book Order", JOptionPane.PLAIN_MESSAGE);

 }//end while

 }

 catch(NullPointerException e){

 System.exit(0);

 }

 System.exit(0);

 }

 public static int parseQuantity(String quantityString){

 int quantity = 0;

 boolean tryAgain = true;

 while(tryAgain){

 try{

 quantity = Integer.parseInt(quantityString);

 tryAgain = false;

 }

 catch(NumberFormatException e){

 quantityString = JOptionPane.showInputDialog(null,

 "Invalid quantity. \n"

 + "Please enter an integer.");

 }

 }

 return quantity;

 }

}

sourcecode/ch04/FutureValueApp/FinancialCalculations.java

sourcecode/ch04/FutureValueApp/FinancialCalculations.java
public class FinancialCalculations{

 public static double calculateFutureValue(double monthlyPayment,

 int months, double monthlyInterestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

 i++;

 }

 return futureValue;

 }

}

sourcecode/ch04/FutureValueApp/FutureValueApp.java

sourcecode/ch04/FutureValueApp/FutureValueApp.java
import javax.swing.*;

import java.text.*;

public class FutureValueApp{

 public static void main(String[] args){

 String choice = "";

 try{

 while (!(choice.equalsIgnoreCase("x"))){ // begin while loop

 String paymentString = JOptionPane.showInputDialog(

 "Enter monthly payment: ");

 double monthlyPayment = Double.parseDouble(paymentString);

 String rateString = JOptionPane.showInputDialog(

 "Enter yearly interest rate: ");

 double interestRate = Double.parseDouble(rateString);

 double monthlyInterestRate = interestRate/12/100;

 String yearsString = JOptionPane.showInputDialog(

 "Enter number of years: ");

 int years = Integer.parseInt(yearsString);

 int months = years * 12;

 double futureValue = FinancialCalculations.calculateFutureValue(

 monthlyPayment, months, monthlyInterestRate);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 NumberFormat percent = NumberFormat.getPercentInstance();

 String message =

 "Monthly payment: " + currency.format(monthlyPayment) + "\n"

 + "Yearly interest rate: " + percent.format(interestRate/100) + "\n"

 + "Number of years: " + years + "\n"

 + "Future value: " + currency.format(futureValue) + "\n\n"

 + "To continue, press Enter.\n"

 + "To exit, enter 'x': ";

 choice = JOptionPane.showInputDialog(null,

 message, "Future Value", JOptionPane.PLAIN_MESSAGE);

 } // end while loop

 }

 catch(NullPointerException e){

 System.exit(0);

 }

 System.exit(0);

 }

}

sourcecode/ch05/Frame/BookOrderFrame.java

sourcecode/ch05/Frame/BookOrderFrame.java
import java.awt.event.*;

import javax.swing.*;

public class BookOrderFrame extends JFrame implements WindowListener{

 public BookOrderFrame(){

 setTitle("Book Order");

 setBounds(267, 200, 267, 200);

 addWindowListener(this);

 }

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 public void windowClosed(WindowEvent e){}

 public void windowActivated(WindowEvent e){}

 public void windowDeactivated(WindowEvent e){}

 public void windowDeiconified(WindowEvent e){}

 public void windowIconified(WindowEvent e){}

 public void windowOpened(WindowEvent e){}

 public static void main(String[] args){

 JFrame frame = new BookOrderFrame();

 frame.show();

 }

}

sourcecode/ch05/OverrideTest/Book.java

sourcecode/ch05/OverrideTest/Book.java
public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode){

 code = bookCode;

 setTitle(bookCode);

 setPrice(bookCode);

 }

 public void setTitle(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (bookCode.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

 else if (bookCode.equalsIgnoreCase("CITR"))

 title = "Catcher in the Rye";

 else

 title = "Not Found";

 }

 public void setPrice(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 price = 14.95;

 else if (bookCode.equalsIgnoreCase("MBDK"))

 price = 12.95;

 else if (bookCode.equalsIgnoreCase("CITR"))

 price = 9.95;

 else

 price = 0.0;

 }

 public String getCode(){

 return code;

 }

 public String getTitle(){

 return title;

 }

 public double getPrice(){

 return price;

 }

}

sourcecode/ch05/OverrideTest/BookOrder.java

sourcecode/ch05/OverrideTest/BookOrder.java
import java.text.*;

public class BookOrder{

 private Book book;

 private int quantity;

 private double total;

 private static int orderObjectCount = 0;

 public BookOrder(String bookCode, int bookQuantity){

 book = new Book(bookCode);

 quantity = bookQuantity;

 setTotal();

 orderObjectCount++;

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public double getTotal(){ return total; }

 public Book getBook(){ return book; }

 public int getQuantity(){ return quantity; }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

 public static int getOrderObjectCount(){

 return orderObjectCount;

 }

}

sourcecode/ch05/OverrideTest/DiscountBookOrder.java

sourcecode/ch05/OverrideTest/DiscountBookOrder.java
import java.text.*;

public class DiscountBookOrder extends BookOrder{

 private String discountCode;

 private double subtotal, percentOff, total;

 public DiscountBookOrder(String bookCode, int bookQuantity, String keyCode){

 super(bookCode, bookQuantity);

 discountCode = keyCode;

 setPercentOff();

 setTotal();

 }

 public void setPercentOff(){

 if (discountCode.equalsIgnoreCase("a10"))

 percentOff = 0.1;

 else

 percentOff = 0.0;

 }

 public void setTotal(){

 subtotal = super.getQuantity() * super.getBook().getPrice();

 total = subtotal - (subtotal * percentOff);

 }

 public double getSubtotal(){ return subtotal; }

 public double getPercentOff(){ return percentOff; }

 public double getTotal(){ return total; }

}

sourcecode/ch05/OverrideTest/OverrideTest.java

sourcecode/ch05/OverrideTest/OverrideTest.java
import javax.swing.JOptionPane;

import java.text.*;

public class OverrideTest{

 public static void main(String[] args){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 NumberFormat percent = NumberFormat.getPercentInstance();

 DiscountBookOrder order = new DiscountBookOrder("WARP", 2, "a10");

 String test = "Title: " + order.getBook().getTitle() + "\n"

 + "Price: " + currency.format(order.getBook().getPrice()) + "\n"

 + "Quantity: " + order.getQuantity() + "\n"

 + "Subtotal: " + currency.format(order.getSubtotal()) + "\n"

 + "PercentOff: " + percent.format(order.getPercentOff()) + "\n"

 + "Total: " + currency.format(order.getTotal());

 JOptionPane.showMessageDialog(null, test);

 System.exit(0);

 }

 }

sourcecode/ch05/Polymorphism/Book.java

sourcecode/ch05/Polymorphism/Book.java
public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode){

 code = bookCode;

 setTitle(bookCode);

 setPrice(bookCode);

 }

 public void setTitle(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (bookCode.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

 else if (bookCode.equalsIgnoreCase("CITR"))

 title = "Catcher in the Rye";

 else

 title = "Not Found";

 }

 public void setPrice(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 price = 14.95;

 else if (bookCode.equalsIgnoreCase("MBDK"))

 price = 12.95;

 else if (bookCode.equalsIgnoreCase("CITR"))

 price = 9.95;

 else

 price = 0.0;

 }

 public String getCode(){

 return code;

 }

 public String getTitle(){

 return title;

 }

 public double getPrice(){

 return price;

 }

}

sourcecode/ch05/Polymorphism/BookOrder.java

sourcecode/ch05/Polymorphism/BookOrder.java
import java.text.*;

public class BookOrder{

 private Book book;

 private int quantity;

 private double total;

 private static int orderObjectCount = 0;

 public BookOrder(String bookCode, int bookQuantity){

 book = new Book(bookCode);

 quantity = bookQuantity;

 setTotal();

 orderObjectCount++;

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public double getTotal(){ return total; }

 public Book getBook(){ return book; }

 public int getQuantity() { return quantity; }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

 public static int getOrderObjectCount(){

 return orderObjectCount;

 }

}

sourcecode/ch05/Polymorphism/DiscountBookOrder.java

sourcecode/ch05/Polymorphism/DiscountBookOrder.java
import java.text.*;

public class DiscountBookOrder extends BookOrder{

 private String discountCode;

 private double subtotal, percentOff, total;

 public DiscountBookOrder(String bookCode, int bookQuantity, String keyCode){

 super(bookCode, bookQuantity);

 discountCode = keyCode;

 setPercentOff();

 setTotal();

 }

 public void setPercentOff(){

 if (discountCode.equalsIgnoreCase("a10"))

 percentOff = 0.1;

 else

 percentOff = 0.0;

 }

 public void setTotal(){

 super.setTotal();

 subtotal = super.getTotal();

 total = subtotal - (subtotal * percentOff);

 }

 public double getSubtotal(){ return subtotal; }

 public double getPercentOff(){ return percentOff; }

 public double getTotal(){ return total; }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 NumberFormat percent = NumberFormat.getPercentInstance();

 String message = "Title: " + getBook().getTitle() + "\n"

 + "Price: " + currency.format(getBook().getPrice()) + "\n"

 + "Quantity: " + getQuantity() + "\n"

 + "Subtotal" + currency.format(subtotal) + "\n"

 + "PercentOff: " + percent.format(percentOff) + "\n"

 + "Discount Amount: " + currency.format(subtotal - total) +"\n"

 + "Total: " + currency.format(total) + "\n";

 return message;

 }

}

sourcecode/ch05/Polymorphism/PolyTest.java

sourcecode/ch05/Polymorphism/PolyTest.java
import javax.swing.JOptionPane;

public class PolyTest{

 public static void main(String[] args){

 boolean keyCodeExists = false;

 String keyCode = JOptionPane.showInputDialog("Keycode exists, Y or N");

 if (keyCode.equals("Y")) keyCodeExists = true;

 BookOrder bookOrder = null;

 if (keyCodeExists)

 bookOrder = new DiscountBookOrder("WARP", 2, "a10");

 else

 bookOrder = new BookOrder("WARP", 2);

 bookOrder.setTotal(); //calls the setTotal method in the appropriate class.

 System.out.println(bookOrder.getTotal());

 }

}

sourcecode/ch06/UserEmail/User.java

sourcecode/ch06/UserEmail/User.java
import java.io.*;

public class User{

 private String firstName;

 private String lastName;

 private String emailAddress;

 public User(String first, String last, String email){

 firstName = first;

 lastName = last;

 emailAddress = email;

 }

 public String getFirstName(){ return firstName; }

 public String getLastName(){ return lastName; }

 public String getEmailAddress(){ return emailAddress; }

}

sourcecode/ch06/UserEmail/UserEmailApp.java

sourcecode/ch06/UserEmail/UserEmailApp.java
import javax.swing.*;

public class UserEmailApp{

 public static void main(String[] args){

 UserEmailFrame frame = new UserEmailFrame();

 frame.show();

 }

}

sourcecode/ch06/UserEmail/UserEmailFrame.java

sourcecode/ch06/UserEmail/UserEmailFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class UserEmailFrame extends JFrame{

 public UserEmailFrame(){

 setTitle("User Email");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 300;

 int height = 170;

 setBounds((d.width - width)/2, (d.height-height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 JPanel panel = new UserEmailPanel();

 contentPane.add(panel);

 }

}

sourcecode/ch06/UserEmail/UserEmailPanel.java

sourcecode/ch06/UserEmail/UserEmailPanel.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

public class UserEmailPanel extends JPanel implements ActionListener{

 private JLabel firstNameLabel, lastNameLabel, emailLabel;

 private JTextField firstNameTextField, lastNameTextField, emailTextField;

 private JButton addButton, exitButton;

 public UserEmailPanel(){

 JPanel textFieldPanel = new JPanel();

 textFieldPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 firstNameLabel = new JLabel("First name:");

 firstNameTextField = new JTextField(15);

 lastNameLabel = new JLabel("Last name:");

 lastNameTextField = new JTextField(15);

 emailLabel = new JLabel("Email address:");

 emailTextField = new JTextField(15);

 textFieldPanel.add(firstNameLabel);

 textFieldPanel.add(firstNameTextField);

 textFieldPanel.add(lastNameLabel);

 textFieldPanel.add(lastNameTextField);

 textFieldPanel.add(emailLabel);

 textFieldPanel.add(emailTextField);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 addButton = new JButton("Add");

 addButton.addActionListener(this);

 exitButton = new JButton("Exit");

 exitButton.addActionListener(this);

 buttonPanel.add(addButton);

 buttonPanel.add(exitButton);

 setLayout(new BorderLayout());

 add(textFieldPanel, BorderLayout.CENTER);

 add(buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source == exitButton)

 System.exit(0);

 else if (source == addButton){

 User addUser = new User(

 firstNameTextField.getText(),

 lastNameTextField.getText(),

 emailTextField.getText());

 UserIO.addRecord(addUser);

 JOptionPane.showMessageDialog(this,

 "Your email address has been added to the file.");

 firstNameTextField.setText("");

 lastNameTextField.setText("");

 emailTextField.setText("");

 }

 }

 catch(IOException ioe){

 JOptionPane.showMessageDialog(this, ioe);

 }

 }

}

sourcecode/ch06/UserEmail/UserIO.java

sourcecode/ch06/UserEmail/UserIO.java
import java.io.*;

public class UserIO{

 public static void addRecord(User user) throws IOException{

 PrintWriter out = new PrintWriter(

 new FileWriter("UserEmail.txt", true));

 out.println(user.getEmailAddress()+ " ("

 + user.getFirstName() + " "

 + user.getLastName() + ")");

 out.close();

 }

}

sourcecode/ch07/BookOrderApp/Book.java

sourcecode/ch07/BookOrderApp/Book.java
public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode){

 code = bookCode;

 setTitle(bookCode);

 setPrice(bookCode);

 }

 public void setTitle(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (bookCode.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

 else if (bookCode.equalsIgnoreCase("CITR"))

 title = "Catcher in the Rye";

 else

 title = "Not Found";

 }

 public void setPrice(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 price = 14.95;

 else if (bookCode.equalsIgnoreCase("MBDK"))

 price = 12.95;

 else if (bookCode.equalsIgnoreCase("CITR"))

 price = 9.95;

 else

 price = 0.0;

 }

 public String getCode(){

 return code;

 }

 public String getTitle(){

 return title;

 }

 public double getPrice(){

 return price;

 }

}

sourcecode/ch07/BookOrderApp/BookOrder.java

sourcecode/ch07/BookOrderApp/BookOrder.java
import java.util.*;

import java.text.*;

public class BookOrder{

 private Book book;

 private int quantity;

 private double total;

 private String date;

 public BookOrder(String bookCode, int bookQuantity){

 book = new Book(bookCode);

 quantity = bookQuantity;

 setTotal();

 setDate();

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public void setDate(){

 GregorianCalendar gregNow = new GregorianCalendar();

 Date now = gregNow.getTime();

 DateFormat shortDate = DateFormat.getDateInstance(DateFormat.SHORT);

 date = shortDate.format(now);

 }

 public String getDate(){

 return date;

 }

 public Book getBook(){

 return book;

 }

 public int getQuantity(){

 return quantity;

 }

 public double getTotal(){

 return total;

 }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Date: " + date + "\n\n"

 + "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

}

sourcecode/ch07/BookOrderApp/BookOrderApp.java

sourcecode/ch07/BookOrderApp/BookOrderApp.java
import javax.swing.JOptionPane;

public class BookOrderApp{

 public static void main(String[] args){

 String choice = "";

 try{

 while (!(choice.equalsIgnoreCase("x"))){

 String title = JOptionPane.showInputDialog(

 "Enter a book code:");

 String inputQuantity = JOptionPane.showInputDialog(

 "Enter a quantity:");

 int quantity = parseQuantity(inputQuantity);

 BookOrder bookOrder = new BookOrder(title, quantity);

 String message = bookOrder.toString() + "\n"

 + "Press Enter to continue or enter 'x' to exit:";

 choice = JOptionPane.showInputDialog(null,

 message, "Book Order", JOptionPane.PLAIN_MESSAGE);

 }//end while

 }

 catch(NullPointerException e){

 System.exit(0);

 }

 System.exit(0);

 }

 public static int parseQuantity(String quantityString){

 int quantity = 0;

 boolean tryAgain = true;

 while(tryAgain){

 try{

 quantity = Integer.parseInt(quantityString);

 tryAgain = false;

 }

 catch(NumberFormatException e){

 quantityString = JOptionPane.showInputDialog(null,

 "Invalid quantity. \n"

 + "Please enter an integer.");

 }

 }

 return quantity;

 }

}

sourcecode/ch07/MonthlyPaymentApp/FinancialCalculations.java

sourcecode/ch07/MonthlyPaymentApp/FinancialCalculations.java
public class FinancialCalculations{

 public static double calculateFutureValue(double monthlyPayment,

 int months, double interestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + interestRate);

 i++;

 }

 return futureValue;

 }

 public static double calculateMonthlyPayment(double loanAmount,

 int months, double monthlyInterestRate){

 double monthlyPayment = loanAmount * monthlyInterestRate/

 (1 - 1/Math.pow(1+monthlyInterestRate, months));

 return monthlyPayment;

 }

}

sourcecode/ch07/MonthlyPaymentApp/MonthlyPaymentApp.java

sourcecode/ch07/MonthlyPaymentApp/MonthlyPaymentApp.java
import javax.swing.*;

import java.text.*;

public class MonthlyPaymentApp{

 public static void main(String[] args){

 String choice = "";

 try{

 while (!(choice.equalsIgnoreCase("x"))){

 String paymentString = JOptionPane.showInputDialog(null, "Enter loan amount: ",

 "Loan Amount", JOptionPane.PLAIN_MESSAGE);

 double loanAmount = parseMonthlyPayment(paymentString);

 String rateString = JOptionPane.showInputDialog(null,

 "Enter yearly interest rate: ", "Monthly Payment", JOptionPane.PLAIN_MESSAGE);

 double interestRate = parseRate(rateString);

 double monthlyInterestRate = interestRate/12/100;

 String yearsString = JOptionPane.showInputDialog(null,

 "Enter number of years: ", "Monthly Payment", JOptionPane.PLAIN_MESSAGE);

 int years = parseYears(yearsString);

 int months = years * 12;

 double monthlyPayment = FinancialCalculations.calculateMonthlyPayment(loanAmount,

 months, monthlyInterestRate);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 NumberFormat percent = NumberFormat.getPercentInstance();

 percent.setMinimumFractionDigits(2);

 String message =

 "Loan amount: " + currency.format(loanAmount) + "\n"

 + "Yearly interest rate: " + percent.format(interestRate/100) + "\n"

 + "Number of years: " + years + "\n"

 + "Monthly Payment: " + currency.format(monthlyPayment) + "\n\n"

 + "To continue, press Enter.\n"

 + "To exit, enter 'x': ";

 choice = JOptionPane.showInputDialog(null,

 message, "Monthly Payment", JOptionPane.PLAIN_MESSAGE);

 }

 }

 catch(NullPointerException e){

 System.exit(0);

 }

 System.exit(0);

 }

 private static double parseMonthlyPayment(String payString){

 double monthlyPayment = 0.0;

 boolean tryAgain = true;

 while (tryAgain){

 try{

 monthlyPayment = Double.parseDouble(payString);

 while (monthlyPayment <= 0){

 payString = JOptionPane.showInputDialog("Invalid monthly payment. \n"

 + "Please enter a positive number: ");

 monthlyPayment = Double.parseDouble(payString);

 }

 tryAgain = false;

 }

 catch(NumberFormatException e){

 payString = JOptionPane.showInputDialog("Invalid monthly payment. \n"

 + "Please enter a positive number: ");

 }

 }

 return monthlyPayment;

 }

 private static int parseYears(String yearString){

 int years = 0;

 boolean tryAgain = true;

 while (tryAgain){

 try{

 years = Integer.parseInt(yearString);

 while (years <= 0){

 yearString = JOptionPane.showInputDialog("Invalid number of years. \n"

 + "Please enter a positive number: ");

 years = Integer.parseInt(yearString);

 }

 tryAgain = false;

 }

 catch(NumberFormatException e){

 yearString = JOptionPane.showInputDialog("Invalid number of years. \n"

 + "Please enter a positive number: ");

 }

 }

 return years;

 }

 private static double parseRate(String rateString){

 double interestRate = 0.0;

 boolean tryAgain = true;

 while (tryAgain){

 try{

 interestRate = Double.parseDouble(rateString);

 while (interestRate <= 0){

 rateString = JOptionPane.showInputDialog("Invalid interest rate. \n"

 + "Please enter a positive number: ");

 interestRate = Double.parseDouble(rateString);

 }

 tryAgain = false;

 }

 catch(NumberFormatException e){

 rateString = JOptionPane.showInputDialog("Invalid interest rate. \n"

 + "Please enter a positive number: ");

 }

 }

 return interestRate;

 }

}

sourcecode/ch09/ArraySort/Book.java

sourcecode/ch09/ArraySort/Book.java
public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode){

 code = bookCode;

 setTitle(bookCode);

 setPrice(bookCode);

 }

 public void setTitle(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (bookCode.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

 else if (bookCode.equalsIgnoreCase("CITR"))

 title = "Catcher in the Rye";

 else

 title = "Not Found";

 }

 public void setPrice(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 price = 14.95;

 else if (bookCode.equalsIgnoreCase("MBDK"))

 price = 12.95;

 else if (bookCode.equalsIgnoreCase("CITR"))

 price = 9.95;

 else

 price = 0.0;

 }

 public String getCode(){

 return code;

 }

 public String getTitle(){

 return title;

 }

 public double getPrice(){

 return price;

 }

}

sourcecode/ch09/ArraySort/BookOrder.java

sourcecode/ch09/ArraySort/BookOrder.java
import java.text.*;

public class BookOrder implements Comparable{

 private Book book;

 private int quantity;

 private double total;

 private static int orderObjectCount = 0;

 public BookOrder(String bookCode, int bookQuantity){

 book = new Book(bookCode);

 quantity = bookQuantity;

 setTotal();

 orderObjectCount++;

 }

 public int compareTo(Object o){

 BookOrder bookOrder2 = (BookOrder) o;

 double total1 = this.getTotal();

 double total2 = bookOrder2.getTotal();

 if (total1 < total2)

 return -1;

 if (total1 > total2)

 return 1;

 return 0;

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public Book getBook(){

 return book;

 }

 public int getQuantity(){

 return quantity;

 }

 public double getTotal(){

 return total;

 }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

 public static int getOrderObjectCount(){

 return orderObjectCount;

 }

}

sourcecode/ch09/ArraySort/CompareTestApp.java

sourcecode/ch09/ArraySort/CompareTestApp.java
import java.util.*;

public class CompareTestApp{

 public static void main(String args[]){

 BookOrder[] bookOrder = new BookOrder[3];

 bookOrder[0] = new BookOrder("warp", 2);

 bookOrder[1] = new BookOrder("mbdk", 3);

 bookOrder[2] = new BookOrder("warp", 1);

 Arrays.sort(bookOrder);

 for (int i = 0; i < bookOrder.length; i++){

 System.out.println(bookOrder[i]);

 }

 }

}

sourcecode/ch09/InvoiceApp/Book.java

sourcecode/ch09/InvoiceApp/Book.java
public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode){

 code = bookCode;

 setTitle(bookCode);

 setPrice(bookCode);

 }

 public void setTitle(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (bookCode.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

 else if (bookCode.equalsIgnoreCase("CITR"))

 title = "Catcher in the Rye";

 else

 title = "Not Found";

 }

 public void setPrice(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 price = 14.95;

 else if (bookCode.equalsIgnoreCase("MBDK"))

 price = 12.95;

 else if (bookCode.equalsIgnoreCase("CITR"))

 price = 9.95;

 else

 price = 0.0;

 }

 public String getCode(){

 return code;

 }

 public String getTitle(){

 return title;

 }

 public double getPrice(){

 return price;

 }

}

sourcecode/ch09/InvoiceApp/BookOrder.java

sourcecode/ch09/InvoiceApp/BookOrder.java
import java.text.*;

public class BookOrder implements Comparable{

 private Book book;

 private int quantity;

 private double total;

 private static int orderObjectCount = 0;

 public BookOrder(String bookCode, int bookQuantity){

 book = new Book(bookCode);

 quantity = bookQuantity;

 setTotal();

 orderObjectCount++;

 }

 public int compareTo(Object o){

 BookOrder bookOrder2 = (BookOrder) o;

 double total1 = this.getTotal();

 double total2 = bookOrder2.getTotal();

 if (total1 < total2)

 return -1;

 if (total1 > total2)

 return 1;

 return 0;

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public Book getBook(){

 return book;

 }

 public int getQuantity(){

 return quantity;

 }

 public double getTotal(){

 return total;

 }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

 public static int getOrderObjectCount(){

 return orderObjectCount;

 }

}

sourcecode/ch09/InvoiceApp/Invoice.java

sourcecode/ch09/InvoiceApp/Invoice.java
import java.text.*;

import java.util.*;

public class Invoice{

 private String number;

 private Date date;

 private Vector bookOrders;

 private double total;

 public Invoice(String invoiceNumber, Vector orders){

 number = invoiceNumber;

 date = new Date();

 bookOrders = new Vector(orders);

 calculateTotal();

 }

 public double calculateTotal(){

 total = 0;

 for(int i = 0; i < bookOrders.size(); i++){

 BookOrder bookOrder = (BookOrder) bookOrders.get(i);

 total += bookOrder.getTotal();

 }

 return total;

 }

 public String toString(){

 DateFormat shortDate = DateFormat.getDateInstance(DateFormat.SHORT);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String invoiceString = "Invoice number: " + number + "\n"

 + "Invoice date: " + shortDate.format(date) + "\n"

 + "Invoice total: " + currency.format(total) + "\n\n"

 + "Book Orders: \n";

 for(int i = 0; i < bookOrders.size(); i++){

 BookOrder bookOrder = (BookOrder) bookOrders.get(i);

 invoiceString += " " + bookOrder.getBook().getCode() + " "

 + currency.format(bookOrder.getBook().getPrice()) + " "

 + bookOrder.getQuantity() + " "

 + currency.format(bookOrder.getTotal()) + "\n";

 }

 return invoiceString;

 }

}

sourcecode/ch09/InvoiceApp/InvoiceApp.java

sourcecode/ch09/InvoiceApp/InvoiceApp.java
import javax.swing.*;

import java.util.*;

public class InvoiceApp{

 public static void main(String args[]){

 String invoiceNumber = JOptionPane.showInputDialog(

 "Enter an invoice number:");

 Vector bookOrders = new Vector();

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){

 String code = JOptionPane.showInputDialog(

 "Enter a book code:");

 String inputQuantity = JOptionPane.showInputDialog(

 "Enter a quantity:");

 int quantity = Integer.parseInt(inputQuantity);

 BookOrder bookOrder = new BookOrder(code, quantity);

 bookOrders.add(bookOrder);

 choice = JOptionPane.showInputDialog(

 "Press Enter to continue or enter 'x' to exit:");

 }//end while

 Invoice invoice = new Invoice(invoiceNumber, bookOrders);

 JOptionPane.showMessageDialog(null,

 invoice.toString(), "Invoice", JOptionPane.PLAIN_MESSAGE);

 System.exit(0);

 }

}

sourcecode/ch11/LoanCalculator/FinancialCalculations.java

sourcecode/ch11/LoanCalculator/FinancialCalculations.java
public class FinancialCalculations{

 public static double calculateMonthlyPayment(double loanAmount,

 int months, double monthlyInterestRate){

 double monthlyPayment = loanAmount * monthlyInterestRate/

 (1 - 1/Math.pow(1+monthlyInterestRate, months));

 return monthlyPayment;

 }

 public static double calculateFutureValue(double monthlyPayment,

 int months, double monthlyInterestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

 i++;

 }

 return futureValue;

 }

}

sourcecode/ch11/LoanCalculator/LoanCalculatorFrame.java

sourcecode/ch11/LoanCalculator/LoanCalculatorFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.*;

public class LoanCalculatorFrame extends JFrame{

 public LoanCalculatorFrame(){

 setTitle("Loan Calculator");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int height = 200;

 int width = 267;

 setBounds((d.width-width)/2, (d.height-height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 JPanel panel = new LoanCalculatorPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 JFrame frame = new LoanCalculatorFrame();

 frame.show();

 }

}

class LoanCalculatorPanel extends JPanel implements ActionListener{

 private JTextField amountTextField, rateTextField, yearsTextField,

 paymentTextField;

 private JLabel amountLabel, rateLabel, yearsLabel, paymentLabel;

 private JButton calculateButton, exitButton;

 public LoanCalculatorPanel(){

 JPanel displayPanel = new JPanel();

 displayPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 amountLabel = new JLabel("Loan Amount:");

 rateLabel = new JLabel("Yearly Interest Rate:");

 yearsLabel = new JLabel("Number of Years:");

 paymentLabel = new JLabel("Monthly Payment:");

 amountTextField = new JTextField(10);

 rateTextField = new JTextField(10);

 yearsTextField = new JTextField(10);

 paymentTextField = new JTextField(10);

 paymentTextField.setEditable(false);

 displayPanel.add(amountLabel);

 displayPanel.add(amountTextField);

 displayPanel.add(rateLabel);

 displayPanel.add(rateTextField);

 displayPanel.add(yearsLabel);

 displayPanel.add(yearsTextField);

 displayPanel.add(paymentLabel);

 displayPanel.add(paymentTextField);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 calculateButton = new JButton("Calculate");

 exitButton = new JButton("Exit");

 buttonPanel.add(calculateButton);

 buttonPanel.add(exitButton);

 calculateButton.addActionListener(this);

 exitButton.addActionListener(this);

 yearsTextField.setNextFocusableComponent(calculateButton);

 setLayout(new BorderLayout());

 add(displayPanel, BorderLayout.CENTER);

 add(buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source == exitButton)

 System.exit(0);

 else if (source == calculateButton){

 double amount = Double.parseDouble(amountTextField.getText());

 double rate = Double.parseDouble(rateTextField.getText());

 int years = Integer.parseInt(yearsTextField.getText());

 double monthlyInterest = rate/12/100;

 int months = years * 12;

 double payment = FinancialCalculations.calculateMonthlyPayment(

 amount, months, monthlyInterest);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 paymentTextField.setText(currency.format(payment));

 }

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, "Invalid data entered.\n"

 + "Please check all numbers and try again.");

 }

 }

}

sourcecode/ch12/BookMaintenance/Book.java

sourcecode/ch12/BookMaintenance/Book.java
import java.io.*;

public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode, String bookTitle, double bookPrice){

 code = bookCode;

 title = bookTitle;

 price = bookPrice;

 }

 public Book(String bookCode) throws IOException{

 code = bookCode;

 Book tempBook = BookIO.readRecord(bookCode);

 title = tempBook.getTitle();

 price = tempBook.getPrice();

 }

 public String getCode(){ return code; }

 public String getTitle(){ return title; }

 public double getPrice(){ return price; }

}

sourcecode/ch12/BookMaintenance/BookFrame.java

sourcecode/ch12/BookMaintenance/BookFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

import java.text.*;

import java.io.*;

public class BookFrame extends JFrame{

 public BookFrame(){

 setTitle("Book Maintenance");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 400, height = 200;

 setBounds((d.width - width)/2, (d.height - height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 BookIO.close();

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 BookPanel panel = new BookPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 JFrame frame = new BookFrame();

 frame.show();

 }

}

class BookPanel extends JPanel implements ActionListener,

 DocumentListener, KeyListener{

 private JButton addButton, updateButton, deleteButton, exitButton,

 firstButton, prevButton, nextButton, lastButton;

 private JLabel codeLabel, titleLabel, priceLabel;

 private JTextField codeField, titleField, priceField;

 private boolean addFlag = false;

 private NumberFormat currency = NumberFormat.getCurrencyInstance();

 private Book currentBook = null;

 public BookPanel(){

 codeLabel = new JLabel("Code: ");

 codeField = new JTextField("", 7);

 titleLabel = new JLabel("Title: ");

 titleField = new JTextField("", 26);

 priceLabel = new JLabel("Price: ");

 priceField = new JTextField("", 7);

 JPanel updatePanel = new JPanel();

 addButton = new JButton("Add");

 updateButton = new JButton("Update");

 deleteButton = new JButton("Delete");

 exitButton = new JButton("Exit");

 updatePanel.add(addButton);

 updatePanel.add(updateButton);

 updatePanel.add(deleteButton);

 updatePanel.add(exitButton);

 JPanel navigationPanel = new JPanel();

 firstButton = new JButton("First");

 prevButton = new JButton("Prev");

 nextButton = new JButton("Next");

 lastButton = new JButton("Last");

 navigationPanel.add(firstButton);

 navigationPanel.add(prevButton);

 navigationPanel.add(nextButton);

 navigationPanel.add(lastButton);

 addButton.addActionListener(this);

 updateButton.addActionListener(this);

 deleteButton.addActionListener(this);

 exitButton.addActionListener(this);

 firstButton.addActionListener(this);

 prevButton.addActionListener(this);

 nextButton.addActionListener(this);

 lastButton.addActionListener(this);

 codeField.addKeyListener(this);

 titleField.addKeyListener(this);

 priceField.addKeyListener(this);

 titleField.getDocument().addDocumentListener(this);

 priceField.getDocument().addDocumentListener(this);

 setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = 100;

 c.weighty = 100;

 c.ipadx = 5;

 c.anchor = GridBagConstraints.EAST;

 c = getConstraints(c, 1, 1, 1, 1);

 add(codeLabel, c);

 c = getConstraints(c, 1, 2, 1, 1);

 add(titleLabel, c);

 c = getConstraints(c, 1, 3, 1, 1);

 add(priceLabel, c);

 c.anchor = GridBagConstraints.WEST;

 c = getConstraints(c, 2, 1, 3, 1);

 add(codeField, c);

 c = getConstraints(c, 2, 2, 3, 1);

 add(titleField, c);

 c = getConstraints(c, 2, 3, 3, 1);

 add(priceField, c);

 c.anchor = GridBagConstraints.CENTER;

 c = getConstraints(c, 1, 4, 4, 1);

 add(updatePanel, c);

 c = getConstraints(c, 1, 5, 4, 1);

 add(navigationPanel, c);

 try{

 BookIO.open();

 currentBook = BookIO.moveFirst();

 }

 catch (FileNotFoundException e){

 JOptionPane.showMessageDialog(null, "FileNotFoundException");

 System.exit(1);

 }

 catch (IOException e){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 performBookDisplay();

 enableButtons(true);

 }

 private GridBagConstraints getConstraints(GridBagConstraints c,

 int x, int y, int width, int height){

 c.gridx = x;

 c.gridy = y;

 c.gridwidth = width;

 c.gridheight = height;

 return c;

 }

 private void performBookDisplay(){

 codeField.setText(currentBook.getCode());

 titleField.setText(currentBook.getTitle());

 priceField.setText(currency.format(currentBook.getPrice()));

 }

 private void enableButtons(boolean flag1){

 boolean flag2 = false;

 if (flag1 == false) flag2 = true;

 updateButton.setEnabled(flag2);

 addButton.setEnabled(flag1);

 deleteButton.setEnabled(flag1);

 firstButton.setEnabled(flag1);

 nextButton.setEnabled(flag1);

 prevButton.setEnabled(flag1);

 lastButton.setEnabled(flag1);

 }

 public void actionPerformed(ActionEvent e){

 try{

 Object source = e.getSource();

 if (source == exitButton){

 BookIO.close();

 System.exit(0);

 }

 else if (source == firstButton){

 currentBook = BookIO.moveFirst();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == prevButton){

 currentBook = BookIO.movePrevious();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == nextButton){

 currentBook = BookIO.moveNext();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == lastButton){

 currentBook = BookIO.moveLast();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == addButton){

 codeField.requestFocus();

 enableButtons(false);

 codeField.setText("");

 titleField.setText("");

 priceField.setText("");

 addFlag = true;

 }

 else if (source == updateButton){

 String priceString = priceField.getText();

 if (priceString.charAt(0) == '$')

 priceString = priceString.substring(1);

 double price = Double.parseDouble(priceString);

 Book book = new Book(codeField.getText(),

 titleField.getText(), price);

 if (addFlag == false){

 BookIO.updateRecord(book);

 }

 if (addFlag == true){

 BookIO.addRecord(book);

 addFlag = false;

 }

 currentBook = book;

 performBookDisplay();

 enableButtons(true);

 }

 else if(source == deleteButton){

 BookIO.deleteRecord(currentBook.getCode());

 nextButton.requestFocus();

 nextButton.doClick();

 }

 }

 catch (FileNotFoundException fnfe){

 JOptionPane.showMessageDialog(this, "FileNotFoundException");

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, "NumberFormatException");

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(this, "IOException");

 }

 }

 public void keyPressed(KeyEvent e){

 int keyCode = e.getKeyCode();

 if (keyCode == KeyEvent.VK_ESCAPE){

 codeField.requestFocus();

 performBookDisplay();

 enableButtons(true);

 }

 }

 public void keyReleased(KeyEvent e){}

 public void keyTyped(KeyEvent e){}

 public void insertUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void removeUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void changedUpdate(DocumentEvent e){}

}

sourcecode/ch12/BookMaintenance/BookIO.java

sourcecode/ch12/BookMaintenance/BookIO.java
import java.io.*;

import java.util.*;

public class BookIO{

 private static Book book = null;

 private static String[] codes = null;

 private static RandomAccessFile randomFile = null;

 private static final File BOOK_FILE = new File("books.dat");

 private static final int CODE_SIZE = 4;

 private static final int TITLE_SIZE = 20;

 private static final int RECORD_SIZE = CODE_SIZE*2 + TITLE_SIZE*2 + 8;

 public static void open() throws IOException{

 randomFile = new RandomAccessFile(BOOK_FILE, "rw");

 codes = readCodes();

 }

 public static void close(){

 try{

 randomFile.close();

 }

 catch(IOException e){

 System.out.println("I/OException thrown when closing file.");

 }

 }

 public static int getRecordCount() throws IOException{

 long length = BOOK_FILE.length();

 int recordCount = (int) (length / RECORD_SIZE);

 return recordCount;

 }

 public static String readString(DataInput in, int length)

 throws IOException{

 String s = "";

 int i = 0;

 while (i < length){

 char c = in.readChar();

 if (c!=0)

 s += c;

 i++;

 }

 return s;

 }

 public static Book readRecord(int recordNumber) throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 String code = readString(randomFile, CODE_SIZE);

 String title = readString(randomFile, TITLE_SIZE);

 double price = randomFile.readDouble();

 book = new Book(code, title, price);

 return book;

 }

 public static Book readRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 book = readRecord(recordNumber);

 return book;

 }

 public static int getRecordNumber(String bookCode) throws IOException{

 int match = -1;

 int i = 0;

 boolean flag = true;

 while ((i < getRecordCount()) && (flag==true)){

 if (bookCode.equals(codes[i])){

 match = i+1;

 flag = false;

 }

 i++;

 }

 return match;

 }

 public static String[] readCodes() throws IOException{

 codes = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE);

 codes[i] = readString(randomFile, CODE_SIZE);

 }

 return codes;

 }

 public static String[] readTitles() throws IOException{

 String[] titles = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE + 8);

 titles[i] = readString(randomFile, TITLE_SIZE);

 }

 return titles;

 }

 public static void writeString(DataOutput out, String s, int length)

 throws IOException{

 for (int i = 0; i < length; i++){

 if (i < s.length())

 out.writeChar(s.charAt(i));

 else

 out.writeChar(0);

 }

 }

 public static void writeRecord(Book book, int recordNumber)

 throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 writeString(randomFile, book.getCode(), CODE_SIZE);

 writeString(randomFile, book.getTitle(), TITLE_SIZE);

 randomFile.writeDouble(book.getPrice());

 }

 public static Book moveFirst() throws IOException{

 book = readRecord(1);

 return book;

 }

 public static Book movePrevious() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != 1)

 book = readRecord(recordNumber - 1);

 return book;

 }

 public static Book moveNext() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != getRecordCount())

 book = readRecord(recordNumber + 1);

 return book;

 }

 public static Book moveLast() throws IOException{

 int lastRecordNumber = getRecordCount();

 book = readRecord(lastRecordNumber);

 return book;

 }

 public static void addRecord(Book addBook) throws IOException{

 writeRecord(addBook, getRecordCount() + 1);

 close();

 open();

 }

 public static void updateRecord(Book book) throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 writeRecord(book, recordNumber);

 }

 public static void deleteRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 Vector books = new Vector();

 for (int i = 0; i< getRecordCount(); i++){

 books.add(readRecord(i+1));

 }

 books.remove(recordNumber-1);

 randomFile.setLength(RECORD_SIZE *(getRecordCount() -1));

 for (int i = 0; i<books.size(); i++){

 writeRecord((Book)books.elementAt(i),i+1);

 }

 if (recordNumber < getRecordCount())

 book = readRecord(recordNumber);

 else

 book = readRecord(getRecordCount()-1);

 close();

 open();

 }

}

sourcecode/ch12/BookMaintenance/books.dat

sourcecode/ch12/ComboBookOrder/Book.java

sourcecode/ch12/ComboBookOrder/Book.java
import java.io.*;

public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode, String bookTitle, double bookPrice){

 code = bookCode;

 title = bookTitle;

 price = bookPrice;

 }

 public Book(String bookCode) throws IOException{

 code = bookCode;

 Book tempBook = BookIO.readRecord(bookCode);

 title = tempBook.getTitle();

 price = tempBook.getPrice();

 }

 public String getCode(){ return code; }

 public String getTitle(){ return title; }

 public double getPrice(){ return price; }

}

sourcecode/ch12/ComboBookOrder/BookIO.java

sourcecode/ch12/ComboBookOrder/BookIO.java
import java.io.*;

import java.util.*;

public class BookIO{

 private static Book book = null;

 private static String[] codes = null;

 private static RandomAccessFile randomFile = null;

 private static final File BOOK_FILE = new File("books.dat");

 private static final int CODE_SIZE = 4;

 private static final int TITLE_SIZE = 20;

 private static final int RECORD_SIZE = CODE_SIZE*2 + TITLE_SIZE*2 + 8;

 public static void open() throws IOException{

 randomFile = new RandomAccessFile(BOOK_FILE, "rw");

 codes = readCodes();

 }

 public static void close(){

 try{

 randomFile.close();

 }

 catch(IOException e){

 System.out.println("I/OException thrown when closing file.");

 }

 }

 public static int getRecordCount() throws IOException{

 long length = BOOK_FILE.length();

 int recordCount = (int) (length / RECORD_SIZE);

 return recordCount;

 }

 public static String readString(DataInput in, int length)

 throws IOException{

 String s = "";

 int i = 0;

 while (i < length){

 char c = in.readChar();

 if (c!=0)

 s += c;

 i++;

 }

 return s;

 }

 public static Book readRecord(int recordNumber) throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 String code = readString(randomFile, CODE_SIZE);

 String title = readString(randomFile, TITLE_SIZE);

 double price = randomFile.readDouble();

 book = new Book(code, title, price);

 return book;

 }

 public static Book readRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 book = readRecord(recordNumber);

 return book;

 }

 public static int getRecordNumber(String bookCode) throws IOException{

 int match = -1;

 int i = 0;

 boolean flag = true;

 while ((i < getRecordCount()) && (flag==true)){

 if (bookCode.equals(codes[i])){

 match = i+1;

 flag = false;

 }

 i++;

 }

 return match;

 }

 public static String[] readCodes() throws IOException{

 codes = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE);

 codes[i] = readString(randomFile, CODE_SIZE);

 }

 return codes;

 }

 public static String[] readTitles() throws IOException{

 String[] titles = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE + 8);

 titles[i] = readString(randomFile, TITLE_SIZE);

 }

 return titles;

 }

 public static void writeString(DataOutput out, String s, int length)

 throws IOException{

 for (int i = 0; i < length; i++){

 if (i < s.length())

 out.writeChar(s.charAt(i));

 else

 out.writeChar(0);

 }

 }

 public static void writeRecord(Book book, int recordNumber)

 throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 writeString(randomFile, book.getCode(), CODE_SIZE);

 writeString(randomFile, book.getTitle(), TITLE_SIZE);

 randomFile.writeDouble(book.getPrice());

 }

 public static Book moveFirst() throws IOException{

 book = readRecord(1);

 return book;

 }

 public static Book movePrevious() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != 1)

 book = readRecord(recordNumber - 1);

 return book;

 }

 public static Book moveNext() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != getRecordCount())

 book = readRecord(recordNumber + 1);

 return book;

 }

 public static Book moveLast() throws IOException{

 int lastRecordNumber = getRecordCount();

 book = readRecord(lastRecordNumber);

 return book;

 }

 public static void addRecord(Book addBook) throws IOException{

 writeRecord(addBook, getRecordCount() + 1);

 close();

 open();

 }

 public static void updateRecord(Book book) throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 writeRecord(book, recordNumber);

 }

 public static void deleteRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 Vector books = new Vector();

 for (int i = 0; i< getRecordCount(); i++){

 books.add(readRecord(i+1));

 }

 books.remove(recordNumber-1);

 randomFile.setLength(RECORD_SIZE *(getRecordCount() -1));

 for (int i = 0; i<books.size(); i++){

 writeRecord((Book)books.elementAt(i),i+1);

 }

 if (recordNumber < getRecordCount())

 book = readRecord(recordNumber);

 else

 book = readRecord(getRecordCount()-1);

 close();

 open();

 }

}

sourcecode/ch12/ComboBookOrder/BookOrder.java

sourcecode/ch12/ComboBookOrder/BookOrder.java
import java.text.*;

import java.io.*;

public class BookOrder{

 private Book book;

 private int quantity;

 private double total;

 public BookOrder(String bookCode, int bookQuantity) throws IOException{

 book = new Book(bookCode);

 quantity = bookQuantity;

 setTotal();

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public String getTitle(){

 String title = book.getTitle();

 return title;

 }

 public double getPrice(){

 double price = book.getPrice();

 return price;

 }

 public int getQuantity(){

 return quantity;

 }

 public double getTotal(){

 setTotal();

 return total;

 }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

}

sourcecode/ch12/ComboBookOrder/BookOrderFrame.java

sourcecode/ch12/ComboBookOrder/BookOrderFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.*;

import java.io.*;

public class BookOrderFrame extends JFrame{

 public BookOrderFrame(){

 setTitle("Book Order");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 210;

 int height = 175;

 setBounds((d.width - width)/2, (d.height - height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 BookIO.close();

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 JPanel panel = new BookOrderPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 JFrame frame = new BookOrderFrame();

 frame.show();

 }

}

class BookOrderPanel extends JPanel implements ItemListener, ActionListener{

 private JLabel titleLabel, priceLabel, quantityLabel, totalLabel;

 private JTextField priceTextField, quantityTextField,

 totalTextField;

 private JComboBox titleComboBox;

 private JButton calculateButton, closeButton;

 private NumberFormat currency = NumberFormat.getCurrencyInstance();

 public BookOrderPanel(){

 JPanel displayPanel = new JPanel();

 displayPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 titleLabel = new JLabel("Title:");

 displayPanel.add(titleLabel);

 String[] titles = null;

 try{

 BookIO.open();

 titles = BookIO.readTitles();

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 titleComboBox = new JComboBox(titles);

 titleComboBox.addItemListener(this);

 displayPanel.add(titleComboBox);

 priceLabel = new JLabel("Price:");

 priceTextField = new JTextField(12);

 priceTextField.setEditable(false);

 displayPanel.add(priceLabel);

 displayPanel.add(priceTextField);

 quantityLabel = new JLabel("Quantity:");

 quantityTextField = new JTextField(12);

 displayPanel.add(quantityLabel);

 displayPanel.add(quantityTextField);

 totalLabel = new JLabel("Total:");

 totalTextField = new JTextField(12);

 totalTextField.setEditable(false);

 displayPanel.add(totalLabel);

 displayPanel.add(totalTextField);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 calculateButton = new JButton("Calculate");

 buttonPanel.add(calculateButton);

 closeButton = new JButton("Close");

 buttonPanel.add(closeButton);

 setLayout(new BorderLayout());

 add(displayPanel, BorderLayout.CENTER);

 add(buttonPanel, BorderLayout.SOUTH);

 titleComboBox.setNextFocusableComponent(quantityTextField);

 quantityTextField.setNextFocusableComponent(calculateButton);

 calculateButton.addActionListener(this);

 closeButton.addActionListener(this);

 }

 public void itemStateChanged(ItemEvent e){

 Object source = e.getSource();

 try{

 if (source == titleComboBox){

 int recordNumber = titleComboBox.getSelectedIndex();

 Book book = BookIO.readRecord(recordNumber+1);

 String priceString = currency.format(book.getPrice());

 priceTextField.setText(priceString);

 quantityTextField.requestFocus();

 totalTextField.setText("");

 }

 }

 catch(IOException ioe){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 }

 public void actionPerformed(ActionEvent e){

 try{

 Object source = e.getSource();

 if (source == calculateButton) {

 int recordNumber = titleComboBox.getSelectedIndex();

 Book book = BookIO.readRecord(recordNumber+1);

 String code = book.getCode();

 String inputQuantity = quantityTextField.getText();

 int quantity = Integer.parseInt(inputQuantity);

 BookOrder order = new BookOrder(code, quantity);

 String priceString = currency.format(book.getPrice());

 priceTextField.setText(priceString);

 String totalString = currency.format(order.getTotal());

 totalTextField.setText(totalString);

 }

 else if (source == closeButton){

 BookIO.close();

 System.exit(0);

 }

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(null, "NumberFormatException");

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 }

}

sourcecode/ch12/ComboBookOrder/books.dat

sourcecode/ch12/ListBookOrder/Book.java

sourcecode/ch12/ListBookOrder/Book.java
import java.io.*;

public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode, String bookTitle, double bookPrice){

 code = bookCode;

 title = bookTitle;

 price = bookPrice;

 }

 public Book(String bookCode) throws IOException{

 code = bookCode;

 Book tempBook = BookIO.readRecord(bookCode);

 title = tempBook.getTitle();

 price = tempBook.getPrice();

 }

 public String getCode(){ return code; }

 public String getTitle(){ return title; }

 public double getPrice(){ return price; }

}

sourcecode/ch12/ListBookOrder/BookIO.java

sourcecode/ch12/ListBookOrder/BookIO.java
import java.io.*;

import java.util.*;

public class BookIO{

 private static Book book = null;

 private static String[] codes = null;

 private static RandomAccessFile randomFile = null;

 private static final File BOOK_FILE = new File("books.dat");

 private static final int CODE_SIZE = 4;

 private static final int TITLE_SIZE = 20;

 private static final int RECORD_SIZE = CODE_SIZE*2 + TITLE_SIZE*2 + 8;

 public static void open() throws IOException{

 randomFile = new RandomAccessFile(BOOK_FILE, "rw");

 codes = readCodes();

 }

 public static void close(){

 try{

 randomFile.close();

 }

 catch(IOException e){

 System.out.println("I/OException thrown when closing file.");

 }

 }

 public static int getRecordCount() throws IOException{

 long length = BOOK_FILE.length();

 int recordCount = (int) (length / RECORD_SIZE);

 return recordCount;

 }

 public static String readString(DataInput in, int length)

 throws IOException{

 String s = "";

 int i = 0;

 while (i < length){

 char c = in.readChar();

 if (c!=0)

 s += c;

 i++;

 }

 return s;

 }

 public static Book readRecord(int recordNumber) throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 String code = readString(randomFile, CODE_SIZE);

 String title = readString(randomFile, TITLE_SIZE);

 double price = randomFile.readDouble();

 book = new Book(code, title, price);

 return book;

 }

 public static Book readRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 book = readRecord(recordNumber);

 return book;

 }

 public static int getRecordNumber(String bookCode) throws IOException{

 int match = -1;

 int i = 0;

 boolean flag = true;

 while ((i < getRecordCount()) && (flag==true)){

 if (bookCode.equals(codes[i])){

 match = i+1;

 flag = false;

 }

 i++;

 }

 return match;

 }

 public static String[] readCodes() throws IOException{

 codes = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE);

 codes[i] = readString(randomFile, CODE_SIZE);

 }

 return codes;

 }

 public static String[] readTitles() throws IOException{

 String[] titles = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE + 8);

 titles[i] = readString(randomFile, TITLE_SIZE);

 }

 return titles;

 }

 public static void writeString(DataOutput out, String s, int length)

 throws IOException{

 for (int i = 0; i < length; i++){

 if (i < s.length())

 out.writeChar(s.charAt(i));

 else

 out.writeChar(0);

 }

 }

 public static void writeRecord(Book book, int recordNumber)

 throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 writeString(randomFile, book.getCode(), CODE_SIZE);

 writeString(randomFile, book.getTitle(), TITLE_SIZE);

 randomFile.writeDouble(book.getPrice());

 }

 public static Book moveFirst() throws IOException{

 book = readRecord(1);

 return book;

 }

 public static Book movePrevious() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != 1)

 book = readRecord(recordNumber - 1);

 return book;

 }

 public static Book moveNext() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != getRecordCount())

 book = readRecord(recordNumber + 1);

 return book;

 }

 public static Book moveLast() throws IOException{

 int lastRecordNumber = getRecordCount();

 book = readRecord(lastRecordNumber);

 return book;

 }

 public static void addRecord(Book addBook) throws IOException{

 writeRecord(addBook, getRecordCount() + 1);

 close();

 open();

 }

 public static void updateRecord(Book book) throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 writeRecord(book, recordNumber);

 }

 public static void deleteRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 Vector books = new Vector();

 for (int i = 0; i< getRecordCount(); i++){

 books.add(readRecord(i+1));

 }

 books.remove(recordNumber-1);

 randomFile.setLength(RECORD_SIZE *(getRecordCount() -1));

 for (int i = 0; i<books.size(); i++){

 writeRecord((Book)books.elementAt(i),i+1);

 }

 if (recordNumber < getRecordCount())

 book = readRecord(recordNumber);

 else

 book = readRecord(getRecordCount()-1);

 close();

 open();

 }

}

sourcecode/ch12/ListBookOrder/BookOrder.java

sourcecode/ch12/ListBookOrder/BookOrder.java
import java.text.*;

import java.io.*;

public class BookOrder{

 private Book book;

 private int quantity;

 private double total;

 public BookOrder(String bookCode, int bookQuantity) throws IOException{

 book = new Book(bookCode);

 quantity = bookQuantity;

 setTotal();

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public String getTitle(){

 String title = book.getTitle();

 return title;

 }

 public double getPrice(){

 double price = book.getPrice();

 return price;

 }

 public int getQuantity(){

 return quantity;

 }

 public double getTotal(){

 setTotal();

 return total;

 }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

}

sourcecode/ch12/ListBookOrder/BookOrderGUI.java

sourcecode/ch12/ListBookOrder/BookOrderGUI.java
//this application handles focus and key events

import javax.swing.*;

import java.awt.event.*;

import java.awt.*;

import java.text.*;

import javax.swing.event.*;

import javax.swing.border.*;

import java.io.*;

public class BookOrderGUI extends JFrame{

 public BookOrderGUI(){

 setTitle("Book Order");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int height = d.height;

 int width = d.width;

 setBounds(width/4, height/4, 350, 200);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 BookIO.close();

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 JPanel panel = new BookOrderPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 JFrame frame = new BookOrderGUI();

 frame.show();

 }

}

class BookOrderPanel extends JPanel implements FocusListener, KeyListener, ActionListener, ListSelectionListener{

 private JLabel priceLabel;

 private JLabel quantityLabel;

 private JLabel totalLabel;

 private JList titleList;

 private JTextField priceTextField;

 private JTextField quantityTextField;

 private JTextField totalTextField;

 private JButton calculateButton;

 private JButton closeButton;

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 public BookOrderPanel(){

 String[] titles = null;

 try{

 BookIO.open();

 titles = BookIO.readTitles();

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 titleList = new JList(titles);

 titleList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 titleList.addListSelectionListener(this);

 titleList.setVisibleRowCount(4);

 JScrollPane titleScroll = new JScrollPane(titleList);

 Border etchedBorder = BorderFactory.createEtchedBorder();

 Border titleBorder = BorderFactory.createTitledBorder(

 etchedBorder, "Title:");

 titleScroll.setBorder(titleBorder);

 priceLabel = new JLabel("Price:");

 quantityLabel = new JLabel("Quantity:");

 totalLabel = new JLabel("Total:");

 priceTextField = new JTextField(12);

 quantityTextField = new JTextField(12);

 totalTextField = new JTextField(12);

 calculateButton = new JButton("Calculate");

 closeButton = new JButton("Close");

 JPanel buttonPanel = new JPanel();

 buttonPanel.add(calculateButton);

 buttonPanel.add(closeButton);

 setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = 100;

 c.weighty = 100;

 c.ipadx = 5;

 c.gridx = 1;

 c.gridy = 1;

 c.gridwidth = 2;

 c.gridheight = 3;

 c.anchor = GridBagConstraints.NORTHWEST;

 add(titleScroll, c);

 c.gridx = 3;

 c.gridy = 1;

 c.gridwidth = 1;

 c.gridheight = 1;

 c.anchor = GridBagConstraints.EAST;

 add(priceLabel, c);

 c.gridy = 2;

 add(quantityLabel, c);

 c.gridy = 3;

 add(totalLabel, c);

 c.gridx = 4;

 c.gridy = 1;

 c.gridwidth = 2;

 c.anchor = GridBagConstraints.WEST;

 add(priceTextField, c);

 c.gridy = 2;

 add(quantityTextField, c);

 c.gridy = 3;

 add(totalTextField, c);

 c.gridx = 3;

 c.gridy = 4;

 c.gridwidth = 3;

 c.anchor = GridBagConstraints.EAST;

 add(buttonPanel, c);

 priceTextField.setEditable(false);

 totalTextField.setEditable(false);

 titleList.setNextFocusableComponent(quantityTextField);

 quantityTextField.setNextFocusableComponent(calculateButton);

 quantityTextField.addFocusListener(this);

 quantityTextField.addKeyListener(this);

 calculateButton.addKeyListener(this);

 calculateButton.addActionListener(this);

 closeButton.addActionListener(this);

 }

 public void focusLost(FocusEvent e){

 if (e.getComponent() == quantityTextField && !e.isTemporary()){

 try{

 int quantity = Integer.parseInt(quantityTextField.getText());

 }

 catch(NumberFormatException nfe){

 JOptionPane.showMessageDialog(null, "Invalid quantity.\n"

 + "Please enter a positive number.",

 "Error", JOptionPane.ERROR_MESSAGE);

 quantityTextField.requestFocus();

 }

 }

 }

 public void focusGained(FocusEvent e){

 }

 public void keyPressed(KeyEvent e){

 int keyCode = e.getKeyCode();

 if ((keyCode == KeyEvent.VK_C) && (e.isAltDown())){

 calculateButton.requestFocus();

 calculateButton.doClick();

 }

 }

 public void keyReleased(KeyEvent e){

 }

 public void keyTyped(KeyEvent e){

 }

 public void valueChanged(ListSelectionEvent e){

 Object source = e.getSource();

 try{

 if (source == titleList){

 int recordNumber = titleList.getSelectedIndex();

 Book book = BookIO.readRecord(recordNumber+1);

 String priceString = currency.format(book.getPrice());

 priceTextField.setText(priceString);

 totalTextField.setText("");

 quantityTextField.requestFocus();

 }

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source == closeButton){

 BookIO.close();

 System.exit(0);

 }

 else if (source == calculateButton){

 int recordNumber = titleList.getSelectedIndex();

 Book book = BookIO.readRecord(recordNumber+1);

 String code = book.getCode();

 String inputQuantity = quantityTextField.getText();

 int quantity = Integer.parseInt(inputQuantity);

 BookOrder order = new BookOrder(code, quantity);

 double price = order.getPrice();

 String priceString = currency.format(price);

 priceTextField.setText(priceString);

 double total = order.getTotal();

 String totalString = currency.format(total);

 totalTextField.setText(totalString);

 }

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 }

}

sourcecode/ch12/ListBookOrder/books.dat

sourcecode/ch12/LoanCalculator/FinancialCalculations.java

sourcecode/ch12/LoanCalculator/FinancialCalculations.java
public class FinancialCalculations{

 public static double calculateMonthlyPayment(double loanAmount,

 int months, double monthlyInterestRate){

 double monthlyPayment = loanAmount * monthlyInterestRate/

 (1 - 1/Math.pow(1+monthlyInterestRate, months));

 return monthlyPayment;

 }

 public static double calculateFutureValue(double monthlyPayment,

 int months, double monthlyInterestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

 i++;

 }

 return futureValue;

 }

 public static double calculateLoanAmount(double monthlyPayment,

 int months, double monthlyInterestRate){

 double amount = (monthlyPayment*(1-1/(Math.pow((1+monthlyInterestRate),

 months))))/monthlyInterestRate;

 return amount;

 }

}

sourcecode/ch12/LoanCalculator/LoanCalculatorFrame.java

sourcecode/ch12/LoanCalculator/LoanCalculatorFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.border.*;

import java.text.*;

public class LoanCalculatorFrame extends JFrame implements ActionListener{

 private JTextField amountField, rateField, yearsField, paymentField;

 private JLabel amountLabel, rateLabel, yearsLabel, paymentLabel;

 private JButton calculateButton, exitButton;

 private JRadioButton paymentRadioButton, amountRadioButton;

 public LoanCalculatorFrame(){

 setTitle("Loan Calculator");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 267;

 int height = 250;

 setBounds((d.width - width)/2, (d.height - height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 JPanel radioPanel = new JPanel();

 paymentRadioButton = new JRadioButton("Monthly Payment");

 amountRadioButton = new JRadioButton("Loan Amount", true);

 paymentRadioButton.addActionListener(this);

 amountRadioButton.addActionListener(this);

 ButtonGroup radioGroup = new ButtonGroup();

 radioGroup.add(paymentRadioButton);

 radioGroup.add(amountRadioButton);

 radioPanel.add(paymentRadioButton);

 radioPanel.add(amountRadioButton);

 Border titledRadioBorder =

 BorderFactory.createTitledBorder("Calculate");

 radioPanel.setBorder(titledRadioBorder);

 JPanel displayPanel = new JPanel();

 displayPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 amountLabel = new JLabel("Loan Amount:");

 rateLabel = new JLabel("Yearly Interest Rate:");

 yearsLabel = new JLabel("Number of Years:");

 paymentLabel = new JLabel("Monthly Payment:");

 amountField = new JTextField(10);

 rateField = new JTextField(10);

 yearsField = new JTextField(10);

 yearsField.setNextFocusableComponent(calculateButton);

 paymentField = new JTextField(10);

 amountField.setEditable(false);

 displayPanel.add(amountLabel);

 displayPanel.add(amountField);

 displayPanel.add(rateLabel);

 displayPanel.add(rateField);

 displayPanel.add(yearsLabel);

 displayPanel.add(yearsField);

 displayPanel.add(paymentLabel);

 displayPanel.add(paymentField);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 calculateButton = new JButton("Calculate");

 exitButton = new JButton("Exit");

 buttonPanel.add(calculateButton);

 buttonPanel.add(exitButton);

 calculateButton.addActionListener(this);

 exitButton.addActionListener(this);

 Container contentPane = getContentPane();

 contentPane.setLayout(new BorderLayout());

 contentPane.add(radioPanel, BorderLayout.NORTH);

 contentPane.add(displayPanel, BorderLayout.CENTER);

 contentPane.add(buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 if (source == exitButton)

 System.exit(0);

 else if (source == amountRadioButton){

 amountField.setText("");

 amountField.setEditable(false);

 paymentField.setEditable(true);

 paymentField.requestFocus();

 }

 else if (source == paymentRadioButton){

 paymentField.setText("");

 paymentField.setEditable(false);

 amountField.setEditable(true);

 amountField.requestFocus();

 }

 else if (source == calculateButton){

 try{

 actionCalculateButton();

 }

 catch(NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, "Invalid data entered.\n"

 + "Please check all numbers and try again.");

 }

 }

 }

 private void actionCalculateButton(){

 double rate = Double.parseDouble(rateField.getText());

 int years = Integer.parseInt(yearsField.getText());

 double monthlyInterest = rate/12/100;

 int months = years * 12;

 DecimalFormat decimal = new DecimalFormat("0.00");

 if(paymentRadioButton.isSelected()){

 double amount = Double.parseDouble(amountField.getText());

 double payment = FinancialCalculations.calculateMonthlyPayment(

 amount, months, monthlyInterest);

 paymentField.setText(decimal.format(payment));

 }

 else if(amountRadioButton.isSelected()){

 double payment = Double.parseDouble(paymentField.getText());

 double amount = FinancialCalculations.calculateLoanAmount(

 payment, months, monthlyInterest);

 amountField.setText(decimal.format(amount));

 }

 }

 public static void main(String[] args){

 JFrame frame = new LoanCalculatorFrame();

 frame.show();

 }

}

sourcecode/ch12/TextAreaApp/Book.java

sourcecode/ch12/TextAreaApp/Book.java
import java.io.*;

public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode, String bookTitle, double bookPrice){

 code = bookCode;

 title = bookTitle;

 price = bookPrice;

 }

 public Book(String bookCode) throws IOException{

 code = bookCode;

 Book tempBook = BookIO.readRecord(bookCode);

 title = tempBook.getTitle();

 price = tempBook.getPrice();

 }

 public String getCode(){ return code; }

 public String getTitle(){ return title; }

 public double getPrice(){ return price; }

}

sourcecode/ch12/TextAreaApp/BookIO.java

sourcecode/ch12/TextAreaApp/BookIO.java
import java.io.*;

import java.util.*;

public class BookIO{

 private static Book book = null;

 private static String[] codes = null;

 private static RandomAccessFile randomFile = null;

 private static final File BOOK_FILE = new File("books.dat");

 private static final int CODE_SIZE = 4;

 private static final int TITLE_SIZE = 20;

 private static final int RECORD_SIZE = CODE_SIZE*2 + TITLE_SIZE*2 + 8;

 public static void open() throws IOException{

 randomFile = new RandomAccessFile(BOOK_FILE, "rw");

 codes = readCodes();

 }

 public static void close(){

 try{

 randomFile.close();

 }

 catch(IOException e){

 System.out.println("I/OException thrown when closing file.");

 }

 }

 public static int getRecordCount() throws IOException{

 long length = BOOK_FILE.length();

 int recordCount = (int) (length / RECORD_SIZE);

 return recordCount;

 }

 public static String readString(DataInput in, int length)

 throws IOException{

 String s = "";

 int i = 0;

 while (i < length){

 char c = in.readChar();

 if (c!=0)

 s += c;

 i++;

 }

 return s;

 }

 public static Book readRecord(int recordNumber) throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 String code = readString(randomFile, CODE_SIZE);

 String title = readString(randomFile, TITLE_SIZE);

 double price = randomFile.readDouble();

 book = new Book(code, title, price);

 return book;

 }

 public static Book readRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 book = readRecord(recordNumber);

 return book;

 }

 public static int getRecordNumber(String bookCode) throws IOException{

 int match = -1;

 int i = 0;

 boolean flag = true;

 while ((i < getRecordCount()) && (flag==true)){

 if (bookCode.equals(codes[i])){

 match = i+1;

 flag = false;

 }

 i++;

 }

 return match;

 }

 public static String[] readCodes() throws IOException{

 codes = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE);

 codes[i] = readString(randomFile, CODE_SIZE);

 }

 return codes;

 }

 public static String[] readTitles() throws IOException{

 String[] titles = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE + 8);

 titles[i] = readString(randomFile, TITLE_SIZE);

 }

 return titles;

 }

public static void writeString(DataOutput out, String s, int length)

 throws IOException{

 for (int i = 0; i < length; i++){

 if (i < s.length())

 out.writeChar(s.charAt(i));

 else

 out.writeChar(0);

 }

 }

public static void writeRecord(Book book, int recordNumber)

 throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 writeString(randomFile, book.getCode(), CODE_SIZE);

 writeString(randomFile, book.getTitle(), TITLE_SIZE);

 randomFile.writeDouble(book.getPrice());

 }

public static Book moveFirst() throws IOException{

 book = readRecord(1);

 return book;

 }

 public static Book movePrevious() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != 1)

 book = readRecord(recordNumber - 1);

 return book;

 }

 public static Book moveNext() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != getRecordCount())

 book = readRecord(recordNumber + 1);

 return book;

 }

 public static Book moveLast() throws IOException{

 int lastRecordNumber = getRecordCount();

 book = readRecord(lastRecordNumber);

 return book;

 }

 public static void addRecord(Book addBook) throws IOException{

 writeRecord(addBook, getRecordCount() + 1);

 close();

 open();

 }

 public static void updateRecord(Book book) throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 writeRecord(book, recordNumber);

 }

 public static void deleteRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 Vector books = new Vector();

 for (int i = 0; i< getRecordCount(); i++){

 books.add(readRecord(i+1));

 }

 books.remove(recordNumber-1);

 randomFile.setLength(RECORD_SIZE *(getRecordCount() -1));

 for (int i = 0; i<books.size(); i++){

 writeRecord((Book)books.elementAt(i),i+1);

 }

 if (recordNumber < getRecordCount())

 book = readRecord(recordNumber);

 else

 book = readRecord(getRecordCount()-1);

 close();

 open();

 }

}

sourcecode/ch12/TextAreaApp/BookOrder.java

sourcecode/ch12/TextAreaApp/BookOrder.java
import java.text.*;

import java.io.*;

public class BookOrder{

 private Book book;

 private int quantity;

 private double total;

 public BookOrder(String bookCode, int bookQuantity) throws IOException{

 book = new Book(bookCode);

 quantity = bookQuantity;

 setTotal();

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public String getTitle(){

 String title = book.getTitle();

 return title;

 }

 public double getPrice(){

 double price = book.getPrice();

 return price;

 }

 public int getQuantity(){

 return quantity;

 }

 public double getTotal(){

 setTotal();

 return total;

 }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

}

sourcecode/ch12/TextAreaApp/BookOrderFrame.java

sourcecode/ch12/TextAreaApp/BookOrderFrame.java
//this example uses a GridBag layout. You can learn how to use this layout

//in figure 12-12.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.*;

import java.io.*;

import javax.swing.border.*;

public class BookOrderFrame extends JFrame{

 public BookOrderFrame(){

 setTitle("Book Order");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 470;

 int height = 175;

 setBounds((d.width - width)/2, (d.height - height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 BookIO.close();

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 JPanel panel = new BookOrderPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 JFrame frame = new BookOrderFrame();

 frame.show();

 }

}

class BookOrderPanel extends JPanel implements ItemListener, ActionListener{

 private JLabel titleLabel, priceLabel, quantityLabel, totalLabel;

 private JTextField priceTextField, quantityTextField,

 totalTextField;

 private JComboBox titleComboBox;

 private JButton calculateButton, closeButton;

 private JTextArea commentTextArea;

 private NumberFormat currency = NumberFormat.getCurrencyInstance();

 public BookOrderPanel(){

 titleLabel = new JLabel("Title:");

 String[] titles = null;

 try{

 BookIO.open();

 titles = BookIO.readTitles();

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 titleComboBox = new JComboBox(titles);

 titleComboBox.addItemListener(this);

 commentTextArea = new JTextArea(4, 20);

 commentTextArea.setLineWrap(true);

 commentTextArea.setWrapStyleWord(true);

 JScrollPane commentScroll = new JScrollPane(commentTextArea);

 Border etchedBorder = BorderFactory.createEtchedBorder();

 Border commentBorder = BorderFactory.createTitledBorder(

 etchedBorder, "Comments:");

 commentScroll.setBorder(commentBorder);

 priceLabel = new JLabel("Price:");

 priceTextField = new JTextField(12);

 priceTextField.setEditable(false);

 quantityLabel = new JLabel("Quantity:");

 quantityTextField = new JTextField(12);

 totalLabel = new JLabel("Total:");

 totalTextField = new JTextField(12);

 totalTextField.setEditable(false);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 calculateButton = new JButton("Calculate");

 buttonPanel.add(calculateButton);

 closeButton = new JButton("Close");

 buttonPanel.add(closeButton);

 titleComboBox.setNextFocusableComponent(quantityTextField);

 quantityTextField.setNextFocusableComponent(calculateButton);

 calculateButton.addActionListener(this);

 closeButton.addActionListener(this);

 setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = 100;

 c.weighty = 100;

 c.anchor = GridBagConstraints.EAST;

 c = getConstraints(c, 1, 1, 1, 1);

 add(titleLabel, c);

 c = getConstraints(c, 1, 2, 1, 1);

 add(priceLabel, c);

 c = getConstraints(c, 1, 3, 1, 1);

 add(quantityLabel, c);

 c = getConstraints(c, 1, 4, 1, 1);

 add(totalLabel, c);

 c = getConstraints(c, 2, 1, 2, 1);

 add(titleComboBox, c);

 c = getConstraints(c, 2, 2, 2, 1);

 add(priceTextField, c);

 c = getConstraints(c, 2, 3, 2, 1);

 add(quantityTextField, c);

 c = getConstraints(c, 2, 4, 2, 1);

 add(totalTextField, c);

 c = getConstraints(c, 5, 1, 2, 4);

 add(commentScroll, c);

 c = getConstraints(c, 5, 5, 2, 1);

 add(buttonPanel, c);

 }

 private GridBagConstraints getConstraints(GridBagConstraints c,

 int x, int y, int width, int height){

 c.gridx = x;

 c.gridy = y;

 c.gridwidth = width;

 c.gridheight = height;

 return c;

 }

 //**/

 //*the BookIO.readRecord method throws an IOException */

 public void itemStateChanged(ItemEvent e){

 Object source = e.getSource();

 try{

 if (source == titleComboBox){

 int recordNumber = titleComboBox.getSelectedIndex();

 Book book = BookIO.readRecord(recordNumber+1);

 String priceString = currency.format(book.getPrice());

 priceTextField.setText(priceString);

 quantityTextField.requestFocus();

 totalTextField.setText("");

 }

 }

 catch(IOException ioe){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 }

 /**/

 public void actionPerformed(ActionEvent e){

 try{

 Object source = e.getSource();

 if (source == calculateButton) {

 int recordNumber = titleComboBox.getSelectedIndex();

 Book book = BookIO.readRecord(recordNumber+1);

 String code = book.getCode();

 String inputQuantity = quantityTextField.getText();

 int quantity = Integer.parseInt(inputQuantity);

 BookOrder order = new BookOrder(code, quantity);

 String priceString = currency.format(book.getPrice());

 priceTextField.setText(priceString);

 String totalString = currency.format(order.getTotal());

 totalTextField.setText(totalString);

 }

 else if (source == closeButton){

 BookIO.close();

 System.exit(0);

 }

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(null, "NumberFormatException");

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 }

}

sourcecode/ch12/TextAreaApp/books.dat

sourcecode/ch13/BookMaintenance/Book.java

sourcecode/ch13/BookMaintenance/Book.java
import java.io.*;

public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode, String bookTitle, double bookPrice){

 code = bookCode;

 title = bookTitle;

 price = bookPrice;

 }

 public Book(String bookCode) throws IOException{

 code = bookCode;

 Book tempBook = BookIO.readRecord(bookCode);

 title = tempBook.getTitle();

 price = tempBook.getPrice();

 }

 public String getCode(){ return code; }

 public String getTitle(){ return title; }

 public double getPrice(){ return price; }

}

sourcecode/ch13/BookMaintenance/BookFrame.java

sourcecode/ch13/BookMaintenance/BookFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

import java.text.*;

import java.io.*;

public class BookFrame extends JFrame implements ActionListener,

 DocumentListener, KeyListener{

 private JButton addButton, updateButton, deleteButton, exitButton,

 firstButton, prevButton, nextButton, lastButton;

 private JLabel codeLabel, titleLabel, priceLabel;

 private JTextField codeField, titleField, priceField;

 private JMenuItem addMenuItem, updateMenuItem, deleteMenuItem,

 exitMenuItem, firstMenuItem, nextMenuItem,

 prevMenuItem, lastMenuItem;

 private boolean addFlag = false;

 private NumberFormat currency = NumberFormat.getCurrencyInstance();

 private Book currentBook = null;

 public BookFrame(){

 setTitle("Book Maintenance");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 400, height = 200;

 setBounds((d.width - width)/2, (d.height - height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 BookIO.close();

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 JMenu fileMenu = new JMenu("File");

 exitMenuItem = new JMenuItem("Exit", 'x');

 fileMenu.setMnemonic('f');

 fileMenu.add(exitMenuItem);

 JMenu moveMenu = new JMenu("Move");

 firstMenuItem = new JMenuItem("First", 'f');

 prevMenuItem = new JMenuItem("Prev", 'p');

 nextMenuItem = new JMenuItem("Next", 'n');

 lastMenuItem = new JMenuItem("Last", 'l');

 moveMenu.setMnemonic('m');

 moveMenu.add(firstMenuItem);

 moveMenu.add(prevMenuItem);

 moveMenu.add(nextMenuItem);

 moveMenu.add(lastMenuItem);

 JMenu recordsMenu = new JMenu("Records");

 addMenuItem = new JMenuItem("Add", 'a');

 updateMenuItem = new JMenuItem("Update", 'u');

 deleteMenuItem = new JMenuItem("Delete", 'd');

 recordsMenu.setMnemonic('r');

 recordsMenu.add(addMenuItem);

 recordsMenu.add(updateMenuItem);

 recordsMenu.add(deleteMenuItem);

 recordsMenu.addSeparator();

 recordsMenu.add(moveMenu);

 addMenuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_A,

 Event.CTRL_MASK+Event.ALT_MASK));

 updateMenuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_U,

 Event.CTRL_MASK));

 deleteMenuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_D,

 Event.CTRL_MASK));

 JMenuBar menuBar = new JMenuBar();

 menuBar.add(fileMenu);

 menuBar.add(recordsMenu);

 setJMenuBar(menuBar);

 exitMenuItem.addActionListener(this);

 addMenuItem.addActionListener(this);

 updateMenuItem.addActionListener(this);

 deleteMenuItem.addActionListener(this);

 firstMenuItem.addActionListener(this);

 prevMenuItem.addActionListener(this);

 nextMenuItem.addActionListener(this);

 lastMenuItem.addActionListener(this);

 codeLabel = new JLabel("Code: ");

 codeField = new JTextField("", 7);

 titleLabel = new JLabel("Title: ");

 titleField = new JTextField("", 26);

 priceLabel = new JLabel("Price: ");

 priceField = new JTextField("", 7);

 JPanel updatePanel = new JPanel();

 addButton = new JButton("Add");

 updateButton = new JButton("Update");

 deleteButton = new JButton("Delete");

 exitButton = new JButton("Exit");

 updatePanel.add(addButton);

 updatePanel.add(updateButton);

 updatePanel.add(deleteButton);

 updatePanel.add(exitButton);

 JPanel navigationPanel = new JPanel();

 firstButton = new JButton("First");

 prevButton = new JButton("Prev");

 nextButton = new JButton("Next");

 lastButton = new JButton("Last");

 navigationPanel.add(firstButton);

 navigationPanel.add(prevButton);

 navigationPanel.add(nextButton);

 navigationPanel.add(lastButton);

 addButton.addActionListener(this);

 updateButton.addActionListener(this);

 deleteButton.addActionListener(this);

 exitButton.addActionListener(this);

 firstButton.addActionListener(this);

 prevButton.addActionListener(this);

 nextButton.addActionListener(this);

 lastButton.addActionListener(this);

 codeField.addKeyListener(this);

 titleField.addKeyListener(this);

 priceField.addKeyListener(this);

 titleField.getDocument().addDocumentListener(this);

 priceField.getDocument().addDocumentListener(this);

 JPanel panel = new JPanel();

 panel.setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = 100;

 c.weighty = 100;

 c.ipadx = 5;

 c.anchor = GridBagConstraints.EAST;

 c = getConstraints(c, 1, 1, 1, 1);

 panel.add(codeLabel, c);

 c = getConstraints(c, 1, 2, 1, 1);

 panel.add(titleLabel, c);

 c = getConstraints(c, 1, 3, 1, 1);

 panel.add(priceLabel, c);

 c.anchor = GridBagConstraints.WEST;

 c = getConstraints(c, 2, 1, 3, 1);

 panel.add(codeField, c);

 c = getConstraints(c, 2, 2, 3, 1);

 panel.add(titleField, c);

 c = getConstraints(c, 2, 3, 3, 1);

 panel.add(priceField, c);

 c.anchor = GridBagConstraints.CENTER;

 c = getConstraints(c, 1, 4, 4, 1);

 panel.add(updatePanel, c);

 c = getConstraints(c, 1, 5, 4, 1);

 panel.add(navigationPanel, c);

 try{

 BookIO.open();

 currentBook = BookIO.moveFirst();

 }

 catch (FileNotFoundException e){

 JOptionPane.showMessageDialog(null, e.getMessage());

 System.exit(1);

 }

 catch (IOException e){

 JOptionPane.showMessageDialog(null, e.getMessage());

 }

 performBookDisplay();

 enableButtons(true);

 contentPane.add(panel);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source instanceof JMenuItem){

 JMenuItem item = (JMenuItem) source;

 String text = item.getText();

 if(text.equals("Exit")){

 BookIO.close();

 System.exit(0);

 }

 else if (text.equals("Add"))

 addButton.doClick();

 else if (text.equals("Update"))

 updateButton.doClick();

 else if (text.equals("Delete"))

 deleteButton.doClick();

 else if (text.equals("First"))

 firstButton.doClick();

 else if (text.equals("Prev"))

 prevButton.doClick();

 else if (text.equals("Next"))

 nextButton.doClick();

 else if (text.equals("Last"))

 lastButton.doClick();

 }

 else if (source == exitButton)

 System.exit(0);

 else if (source == firstButton){

 currentBook = BookIO.moveFirst();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == prevButton){

 currentBook = BookIO.movePrevious();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == nextButton){

 currentBook = BookIO.moveNext();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == lastButton){

 currentBook = BookIO.moveLast();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == addButton){

 codeField.requestFocus();

 enableButtons(false);

 codeField.setText("");

 titleField.setText("");

 priceField.setText("");

 addFlag = true;

 }

 else if (source == updateButton){

 String priceString = priceField.getText();

 if (priceString.charAt(0) == '$')

 priceString = priceString.substring(1);

 double price = Double.parseDouble(priceString);

 Book book = new Book(codeField.getText(),

 titleField.getText(), price);

 if (addFlag == false){

 BookIO.updateRecord(book);

 }

 if (addFlag == true){

 BookIO.addRecord(book);

 addFlag = false;

 }

 currentBook = book;

 performBookDisplay();

 enableButtons(true);

 }

 else if(source == deleteButton){

 BookIO.deleteRecord(currentBook.getCode());

 nextButton.requestFocus();

 nextButton.doClick();

 }

 }

 catch (FileNotFoundException fnfe){

 JOptionPane.showMessageDialog(this, fnfe.getMessage());

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, nfe.getMessage());

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(this, ioe.getMessage());

 }

 }

 private GridBagConstraints getConstraints(GridBagConstraints c,

 int x, int y, int width, int height){

 c.gridx = x;

 c.gridy = y;

 c.gridwidth = width;

 c.gridheight = height;

 return c;

 }

 private void performBookDisplay(){

 codeField.setText(currentBook.getCode());

 titleField.setText(currentBook.getTitle());

 priceField.setText(currency.format(currentBook.getPrice()));

 }

 private void enableButtons(boolean flag){

 updateButton.setEnabled(!flag);

 updateMenuItem.setEnabled(!flag);

 addButton.setEnabled(flag);

 addMenuItem.setEnabled(flag);

 deleteButton.setEnabled(flag);

 deleteMenuItem.setEnabled(flag);

 firstButton.setEnabled(flag);

 firstMenuItem.setEnabled(flag);

 nextButton.setEnabled(flag);

 nextMenuItem.setEnabled(flag);

 prevButton.setEnabled(flag);

 prevMenuItem.setEnabled(flag);

 lastButton.setEnabled(flag);

 lastMenuItem.setEnabled(flag);

 }

 public void keyPressed(KeyEvent e){

 int keyCode = e.getKeyCode();

 if (keyCode == KeyEvent.VK_ESCAPE){

 codeField.requestFocus();

 performBookDisplay();

 enableButtons(true);

 }

 }

 public void keyReleased(KeyEvent e){

 }

 public void keyTyped(KeyEvent e){

 }

 public void insertUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void removeUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void changedUpdate(DocumentEvent e){

 }

 public static void main(String[] args){

 JFrame frame = new BookFrame();

 frame.show();

 }

}

sourcecode/ch13/BookMaintenance/BookIO.java

sourcecode/ch13/BookMaintenance/BookIO.java
import java.io.*;

import java.util.*;

public class BookIO{

 private static Book book = null;

 private static String[] codes = null;

 private static RandomAccessFile randomFile = null;

 private static final File BOOK_FILE = new File("books.dat");

 private static final int CODE_SIZE = 4;

 private static final int TITLE_SIZE = 20;

 private static final int RECORD_SIZE = CODE_SIZE*2 + TITLE_SIZE*2 + 8;

 public static void open() throws IOException{

 randomFile = new RandomAccessFile(BOOK_FILE, "rw");

 codes = readCodes();

 }

 public static void close(){

 try{

 randomFile.close();

 }

 catch(IOException e){

 System.out.println("I/OException thrown when closing file.");

 }

 }

 public static int getRecordCount() throws IOException{

 long length = BOOK_FILE.length();

 int recordCount = (int) (length / RECORD_SIZE);

 return recordCount;

 }

 public static String readString(DataInput in, int length)

 throws IOException{

 String s = "";

 int i = 0;

 while (i < length){

 char c = in.readChar();

 if (c!=0)

 s += c;

 i++;

 }

 return s;

 }

 public static Book readRecord(int recordNumber) throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 String code = readString(randomFile, CODE_SIZE);

 String title = readString(randomFile, TITLE_SIZE);

 double price = randomFile.readDouble();

 book = new Book(code, title, price);

 return book;

 }

 public static Book readRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 book = readRecord(recordNumber);

 return book;

 }

 public static int getRecordNumber(String bookCode) throws IOException{

 int match = -1;

 int i = 0;

 boolean flag = true;

 while ((i < getRecordCount()) && (flag==true)){

 if (bookCode.equals(codes[i])){

 match = i+1;

 flag = false;

 }

 i++;

 }

 return match;

 }

 public static String[] readCodes() throws IOException{

 codes = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE);

 codes[i] = readString(randomFile, CODE_SIZE);

 }

 return codes;

 }

 public static String[] readTitles() throws IOException{

 String[] titles = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE + 8);

 titles[i] = readString(randomFile, TITLE_SIZE);

 }

 return titles;

 }

public static void writeString(DataOutput out, String s, int length)

 throws IOException{

 for (int i = 0; i < length; i++){

 if (i < s.length())

 out.writeChar(s.charAt(i));

 else

 out.writeChar(0);

 }

 }

public static void writeRecord(Book book, int recordNumber)

 throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 writeString(randomFile, book.getCode(), CODE_SIZE);

 writeString(randomFile, book.getTitle(), TITLE_SIZE);

 randomFile.writeDouble(book.getPrice());

 }

public static Book moveFirst() throws IOException{

 book = readRecord(1);

 return book;

 }

 public static Book movePrevious() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != 1)

 book = readRecord(recordNumber - 1);

 return book;

 }

 public static Book moveNext() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != getRecordCount())

 book = readRecord(recordNumber + 1);

 return book;

 }

 public static Book moveLast() throws IOException{

 int lastRecordNumber = getRecordCount();

 book = readRecord(lastRecordNumber);

 return book;

 }

 public static void addRecord(Book addBook) throws IOException{

 writeRecord(addBook, getRecordCount() + 1);

 close();

 open();

 }

 public static void updateRecord(Book book) throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 writeRecord(book, recordNumber);

 }

 public static void deleteRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 Vector books = new Vector();

 for (int i = 0; i< getRecordCount(); i++){

 books.add(readRecord(i+1));

 }

 books.remove(recordNumber-1);

 randomFile.setLength(RECORD_SIZE *(getRecordCount() -1));

 for (int i = 0; i<books.size(); i++){

 writeRecord((Book)books.elementAt(i),i+1);

 }

 if (recordNumber < getRecordCount())

 book = readRecord(recordNumber);

 else

 book = readRecord(getRecordCount()-1);

 close();

 open();

 }

}

sourcecode/ch13/BookMaintenance/books.dat

sourcecode/ch14/FontsApp/FontsFrame.java

sourcecode/ch14/FontsApp/FontsFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class FontsFrame extends JFrame{

 public FontsFrame(){

 setTitle("Fonts and Colors");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 500;

 int height = 175;

 setBounds((int) (d.width-width)/2,

 (int) (d.height-height)/2, width, height);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 FontsPanel panel = new FontsPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 FontsFrame frame = new FontsFrame();

 frame.show();

 }

}

class FontsPanel extends JPanel implements ItemListener{

 JComboBox fontComboBox, sizeComboBox, colorComboBox;

 JCheckBox boldCheckBox, italicCheckBox;

 Font font;

 Color color;

 public FontsPanel(){

 GraphicsEnvironment ge;

 ge = GraphicsEnvironment.getLocalGraphicsEnvironment();

 fontComboBox = new JComboBox(ge.getAvailableFontFamilyNames());

 fontComboBox.setSelectedItem("SansSerif");

 fontComboBox.addItemListener(this);

 String[] sizes = {"8", "10", "12", "14", "16", "18", "20"};

 sizeComboBox = new JComboBox(sizes);

 sizeComboBox.setSelectedItem("18");

 sizeComboBox.addItemListener(this);

 String[] colors = {"Black", "Red", "Blue", "Green"};

 colorComboBox = new JComboBox(colors);

 colorComboBox.setSelectedItem("Black");

 colorComboBox.addItemListener(this);

 boldCheckBox = new JCheckBox("Bold");

 boldCheckBox.addItemListener(this);

 italicCheckBox = new JCheckBox("Italic");

 italicCheckBox.addItemListener(this);

 JPanel northPanel = new JPanel();

 northPanel.add(fontComboBox);

 northPanel.add(sizeComboBox);

 northPanel.add(colorComboBox);

 northPanel.add(italicCheckBox);

 northPanel.add(boldCheckBox);

 setLayout(new BorderLayout());

 add(northPanel, BorderLayout.NORTH);

 font = new Font("SansSerif", Font.PLAIN, 18);

 }

public void itemStateChanged(ItemEvent e){

 String fontFamily = (String) fontComboBox.getSelectedItem();

 int style = Font.PLAIN;

 String sizeInt = (String) sizeComboBox.getSelectedItem();

 int size = Integer.parseInt(sizeInt);

 String colorString = (String) colorComboBox.getSelectedItem();

 if (colorString.equals("Black"))

 color = Color.black;

 else if (colorString.equals("Blue"))

 color = Color.blue;

 else if (colorString.equals("Red"))

 color = Color.red;

 else if (colorString.equals("Green"))

 color = Color.green;

 if ((boldCheckBox.isSelected()) && (italicCheckBox.isSelected()))

 style = Font.BOLD + Font.ITALIC;

 else if (boldCheckBox.isSelected())

 style = Font.BOLD;

 else if (italicCheckBox.isSelected())

 style = Font.ITALIC;

 font = new Font(fontFamily, style, size);

 repaint();

 }

 public void paintComponent(Graphics g){

 super.paintComponent(g);

 g.setFont(font);

 g.setColor(color);

 String text = "The quick brown fox jumped over the lazy dog.";

 FontMetrics fm = g.getFontMetrics();

 int widthPanel= getWidth();

 int heightPanel = getHeight();

 int widthString = fm.stringWidth(text);

 int heightString = fm.getHeight();

 g.drawString(text, (widthPanel - widthString)/2,

 (heightPanel-heightString)/2);

 }

}

sourcecode/ch14/ShapesApp/ShapesFrame.java

sourcecode/ch14/ShapesApp/ShapesFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.awt.geom.*;

public class ShapesFrame extends JFrame{

 public ShapesFrame(){

 setTitle("Shapes");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 300;

 int height = 175;

 setBounds((int) (d.width-width)/2,

 (int) (d.height-height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 ShapesPanel panel = new ShapesPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 ShapesFrame frame = new ShapesFrame();

 frame.show();

 }

}

class ShapesPanel extends JPanel implements ItemListener{

 JComboBox shapeComboBox, colorComboBox;

 JCheckBox fillCheckBox;

 Shape shape;

 Color color;

 public ShapesPanel(){

 String[] shapes = {"Rectangle", "Round Rectangle",

 "Ellipse", "Arc", "Triangle"};

 shapeComboBox = new JComboBox(shapes);

 shapeComboBox.addItemListener(this);

 shapeComboBox.setSelectedItem("Rectangle");

 shape = new Rectangle2D.Double(50, 50, 200, 60);

 String[] colors = {"Black", "Red", "Blue", "Green"};

 colorComboBox = new JComboBox(colors);

 colorComboBox.setSelectedItem("Black");

 colorComboBox.addItemListener(this);

 fillCheckBox = new JCheckBox("Fill");

 fillCheckBox.setSelected(false);

 fillCheckBox.addItemListener(this);

 add(shapeComboBox);

 add(colorComboBox);

 add(fillCheckBox);

 }

 public void itemStateChanged(ItemEvent e){

 String shapeString = (String) shapeComboBox.getSelectedItem();

 int x = 50, y = 50, w = 200, h = 60;

 if (shapeString.equals("Rectangle"))

 shape = new Rectangle2D.Double(x, y, w, h);

 else if (shapeString.equals("Round Rectangle"))

 shape = new RoundRectangle2D.Double(x, y, w, h, 40, 40);

 else if (shapeString.equals("Ellipse"))

 shape = new Ellipse2D.Double(x, y, w, h);

 else if (shapeString.equals("Arc"))

 shape = new Arc2D.Double(x, y, w, h, 30, 210, Arc2D.CHORD);

 else if (shapeString.equals("Triangle")){

 int[] xPoints = {x, (x+w)/2, w};

 int[] yPoints = {y+h, y, y+h};

 shape = new Polygon(xPoints, yPoints, 3);

 }

 String colorString = (String) colorComboBox.getSelectedItem();

 if (colorString.equals("Black"))

 color = Color.black;

 else if (colorString.equals("Blue"))

 color = Color.blue;

 else if (colorString.equals("Red"))

 color = Color.red;

 else if (colorString.equals("Green"))

 color = Color.green;

 repaint();

 }

 public void paintComponent(Graphics g){

 super.paintComponent(g);

 Graphics2D g2D = (Graphics2D) g;

 g2D.setColor(color);

 if (fillCheckBox.isSelected())

 g2D.fill(shape);

 else

 g2D.draw(shape);

 }

}

sourcecode/ch15/AWTLoanCalculator/FinancialCalculations.class
public synchronized class FinancialCalculations {
 public void FinancialCalculations();
 public static double calculateMonthlyPayment(double, int, double);
 public static double calculateFutureValue(double, int, double);
 public static double calculateLoanAmount(double, int, double);
}

sourcecode/ch15/AWTLoanCalculator/FinancialCalculations.java

sourcecode/ch15/AWTLoanCalculator/FinancialCalculations.java
public class FinancialCalculations{

 public static double calculateMonthlyPayment(double loanAmount,

 int months, double monthlyInterestRate){

 double monthlyPayment = loanAmount * monthlyInterestRate/

 (1 - 1/Math.pow(1+monthlyInterestRate, months));

 return monthlyPayment;

 }

 public static double calculateFutureValue(double monthlyPayment,

 int months, double monthlyInterestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

 i++;

 }

 return futureValue;

 }

 public static double calculateLoanAmount(double monthlyPayment,

 int months, double monthlyInterestRate){

 double amount = (monthlyPayment*(1-1/(Math.pow((1+monthlyInterestRate),

 months))))/monthlyInterestRate;

 return amount;

 }

}

sourcecode/ch15/AWTLoanCalculator/LoanCalculator.html

Loan Calculator

If you can’t see this applet, your web browser may not be Java-enabled.

sourcecode/ch15/AWTLoanCalculator/LoanCalculatorApplet.class
public synchronized class LoanCalculatorApplet extends java.applet.Applet {
 public void LoanCalculatorApplet();
 public void init();
}

sourcecode/ch15/AWTLoanCalculator/LoanCalculatorApplet.java

sourcecode/ch15/AWTLoanCalculator/LoanCalculatorApplet.java
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.text.*;

public class LoanCalculatorApplet extends Applet{

 public void init(){

 Panel panel = new LoanCalculatorPanel();

 setLayout(new BorderLayout());

 add(panel, BorderLayout.CENTER);

 }

}

class LoanCalculatorPanel extends Panel implements ActionListener{

 private TextField amountTextField, rateTextField, yearsTextField,

 paymentTextField;

 private Label amountLabel, rateLabel, yearsLabel, paymentLabel;

 private Button calculateButton;

 public LoanCalculatorPanel(){

 Panel displayPanel = new Panel();

 displayPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 amountLabel = new Label("Loan Amount:");

 rateLabel = new Label("Yearly Interest Rate:");

 yearsLabel = new Label("Number of Years:");

 paymentLabel = new Label("Monthly Payment:");

 amountTextField = new TextField(10);

 rateTextField = new TextField(10);

 yearsTextField = new TextField(10);

 paymentTextField = new TextField(10);

 paymentTextField.setEditable(false);

 displayPanel.add(amountLabel);

 displayPanel.add(amountTextField);

 displayPanel.add(rateLabel);

 displayPanel.add(rateTextField);

 displayPanel.add(yearsLabel);

 displayPanel.add(yearsTextField);

 displayPanel.add(paymentLabel);

 displayPanel.add(paymentTextField);

 Panel buttonPanel = new Panel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 calculateButton = new Button("Calculate");

 calculateButton.addActionListener(this);

 buttonPanel.add(calculateButton);

 setLayout(new BorderLayout());

 add(displayPanel, BorderLayout.CENTER);

 add(buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source == calculateButton){

 //double amount = Double.parseDouble(amountTextField.getText());

 //double rate = Double.parseDouble(rateTextField.getText());

 double amount = new Double(amountTextField.getText()).doubleValue();

 double rate = new Double(rateTextField.getText()).doubleValue();

 int years = Integer.parseInt(yearsTextField.getText());

 double monthlyInterest = rate/12/100;

 int months = years * 12;

 double payment = FinancialCalculations.calculateMonthlyPayment(

 amount, months, monthlyInterest);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 paymentTextField.setText(currency.format(payment));

 }

 }

 catch (NumberFormatException nfe){

 }

 }

}

sourcecode/ch15/AWTLoanCalculator/LoanCalculatorPanel.class
synchronized class LoanCalculatorPanel extends java.awt.Panel implements java.awt.event.ActionListener {
 private java.awt.TextField amountTextField;
 private java.awt.TextField rateTextField;
 private java.awt.TextField yearsTextField;
 private java.awt.TextField paymentTextField;
 private java.awt.Label amountLabel;
 private java.awt.Label rateLabel;
 private java.awt.Label yearsLabel;
 private java.awt.Label paymentLabel;
 private java.awt.Button calculateButton;
 public void LoanCalculatorPanel();
 public void actionPerformed(java.awt.event.ActionEvent);
}

sourcecode/ch15/SwingLoanCalculator/FinancialCalculations.class
public synchronized class FinancialCalculations {
 public void FinancialCalculations();
 public static double calculateMonthlyPayment(double, int, double);
 public static double calculateFutureValue(double, int, double);
 public static double calculateLoanAmount(double, int, double);
}

sourcecode/ch15/SwingLoanCalculator/FinancialCalculations.java

sourcecode/ch15/SwingLoanCalculator/FinancialCalculations.java
public class FinancialCalculations{

 public static double calculateMonthlyPayment(double loanAmount,

 int months, double monthlyInterestRate){

 double monthlyPayment = loanAmount * monthlyInterestRate/

 (1 - 1/Math.pow(1+monthlyInterestRate, months));

 return monthlyPayment;

 }

 public static double calculateFutureValue(double monthlyPayment,

 int months, double monthlyInterestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

 i++;

 }

 return futureValue;

 }

 public static double calculateLoanAmount(double monthlyPayment,

 int months, double monthlyInterestRate){

 double amount = (monthlyPayment*(1-1/(Math.pow((1+monthlyInterestRate),

 months))))/monthlyInterestRate;

 return amount;

 }

}

sourcecode/ch15/SwingLoanCalculator/LoanCalculator.html

Loan Calculator

If you can't see this applet, your web browser may not be Java-enabled.

sourcecode/ch15/SwingLoanCalculator/LoanCalculatorApplet.class
public synchronized class LoanCalculatorApplet extends javax.swing.JApplet {
 public void LoanCalculatorApplet();
 public void init();
}

sourcecode/ch15/SwingLoanCalculator/LoanCalculatorApplet.java

sourcecode/ch15/SwingLoanCalculator/LoanCalculatorApplet.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.*;

public class LoanCalculatorApplet extends JApplet{

 public void init(){

 Container contentPane = getContentPane();

 JPanel panel = new LoanCalculatorPanel();

 contentPane.add(panel);

 }

}

class LoanCalculatorPanel extends JPanel implements ActionListener{

 private JTextField amountTextField, rateTextField, yearsTextField,

 paymentTextField;

 private JLabel amountLabel, rateLabel, yearsLabel, paymentLabel;

 private JButton calculateButton;

 public LoanCalculatorPanel(){

 JPanel displayPanel = new JPanel();

 displayPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 amountLabel = new JLabel("Loan Amount:");

 rateLabel = new JLabel("Yearly Interest Rate:");

 yearsLabel = new JLabel("Number of Years:");

 paymentLabel = new JLabel("Monthly Payment:");

 amountTextField = new JTextField(10);

 rateTextField = new JTextField(10);

 yearsTextField = new JTextField(10);

 paymentTextField = new JTextField(10);

 paymentTextField.setEditable(false);

 displayPanel.add(amountLabel);

 displayPanel.add(amountTextField);

 displayPanel.add(rateLabel);

 displayPanel.add(rateTextField);

 displayPanel.add(yearsLabel);

 displayPanel.add(yearsTextField);

 displayPanel.add(paymentLabel);

 displayPanel.add(paymentTextField);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 calculateButton = new JButton("Calculate");

 buttonPanel.add(calculateButton);

 calculateButton.addActionListener(this);

 yearsTextField.setNextFocusableComponent(calculateButton);

 setLayout(new BorderLayout());

 add(displayPanel, BorderLayout.CENTER);

 add(buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source == calculateButton){

 double amount = Double.parseDouble(amountTextField.getText());

 double rate = Double.parseDouble(rateTextField.getText());

 int years = Integer.parseInt(yearsTextField.getText());

 double monthlyInterest = rate/12/100;

 int months = years * 12;

 double payment = FinancialCalculations.calculateMonthlyPayment(

 amount, months, monthlyInterest);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 paymentTextField.setText(currency.format(payment));

 }

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, "Invalid data entered.\n"

 + "Please check all numbers and try again.");

 }

 }

}

sourcecode/ch15/SwingLoanCalculator/LoanCalculatorPanel.class
synchronized class LoanCalculatorPanel extends javax.swing.JPanel implements java.awt.event.ActionListener {
 private javax.swing.JTextField amountTextField;
 private javax.swing.JTextField rateTextField;
 private javax.swing.JTextField yearsTextField;
 private javax.swing.JTextField paymentTextField;
 private javax.swing.JLabel amountLabel;
 private javax.swing.JLabel rateLabel;
 private javax.swing.JLabel yearsLabel;
 private javax.swing.JLabel paymentLabel;
 private javax.swing.JButton calculateButton;
 public void LoanCalculatorPanel();
 public void actionPerformed(java.awt.event.ActionEvent);
}

sourcecode/ch17/TextReader/example.txt
5ctrueJava
End of file

sourcecode/ch17/TextReader/TextReaderApp.java

sourcecode/ch17/TextReader/TextReaderApp.java
import java.io.*;

public class TextReaderApp{

 public static void main(String[] args) throws IOException{

 File data = new File("example.txt");

 if (data.exists()){

 BufferedReader in = new BufferedReader(

 new FileReader(data));

 String line = in.readLine();

 while(line != null){

 System.out.println(line);

 line = in.readLine();

 }

 in.close();

 }

 else

 System.out.println("File not found - example.txt");

 }

}

sourcecode/ch17/TextWriter/example.txt
5ctrueJava
End of file

sourcecode/ch17/TextWriter/TextWriterApp.java

sourcecode/ch17/TextWriter/TextWriterApp.java
import java.io.*;

public class TextWriterApp{

 public static void main(String[] args) throws IOException{

 File data = new File("example.txt");

 PrintWriter out = new PrintWriter(

 new BufferedWriter(

 new FileWriter(data)));

 out.print(5);

 out.print('c');

 out.print(true);

 out.println("Java");

 out.print("End of file");

 out.close();

 }

}

sourcecode/ch18/BinaryReader/BinaryReaderApp.java

sourcecode/ch18/BinaryReader/BinaryReaderApp.java
import java.io.*;

public class BinaryReaderApp{

 public static void main(String[] args) throws IOException{

 File data = new File("example.dat");

 if (data.exists()){

 DataInputStream in = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream(data)));

 int number = in.readInt();

 System.out.println(number);

 char letter = in.readChar();

 System.out.println(letter);

 boolean value = in.readBoolean();

 System.out.println(value);

 String string = in.readUTF();

 System.out.println(string);

 in.readChar();

 int numberOfChars = in.available()/2;

 String characters = "";

 for (int i = 0; i < numberOfChars; i++){

 char c = in.readChar();

 characters += c;

 }

 System.out.println(characters);

 in.close();

 }

 }

}

sourcecode/ch18/BinaryReader/example.dat

sourcecode/ch18/BinaryWriter/BinaryWriterApp.java

sourcecode/ch18/BinaryWriter/BinaryWriterApp.java
import java.io.*;

public class BinaryWriterApp{

 public static void main(String[] args) throws IOException{

 File data = new File("example.dat");

 DataOutputStream out = new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream(data)));

 out.writeInt(5);

 out.writeChar('c');

 out.writeBoolean(true);

 out.writeUTF("Java");

 out.writeChar('\n');

 out.writeChars("End of file");

 out.close();

 }

}

sourcecode/ch18/BookMaintenance/Book.java

sourcecode/ch18/BookMaintenance/Book.java
import java.io.*;

public class Book{

 private String code;

 private String title;

 private double price;

 public Book(String bookCode, String bookTitle, double bookPrice){

 code = bookCode;

 title = bookTitle;

 price = bookPrice;

 }

 public Book(String bookCode) throws IOException{

 code = bookCode;

 Book tempBook = BookIO.readRecord(bookCode);

 title = tempBook.getTitle();

 price = tempBook.getPrice();

 }

 public String getCode(){ return code; }

 public String getTitle(){ return title; }

 public double getPrice(){ return price; }

}

sourcecode/ch18/BookMaintenance/BookFrame.java

sourcecode/ch18/BookMaintenance/BookFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

import java.text.*;

import java.io.*;

public class BookFrame extends JFrame{

 public BookFrame(){

 setTitle("Book Maintenance");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 400, height = 200;

 setBounds((d.width - width)/2, (d.height - height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 BookIO.close();

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 BookPanel panel = new BookPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 JFrame frame = new BookFrame();

 frame.show();

 }

}

class BookPanel extends JPanel implements ActionListener,

 DocumentListener, KeyListener{

 private JButton addButton, updateButton, deleteButton, exitButton,

 firstButton, prevButton, nextButton, lastButton;

 private JLabel codeLabel, titleLabel, priceLabel;

 private JTextField codeField, titleField, priceField;

 private boolean addFlag = false;

 private NumberFormat currency = NumberFormat.getCurrencyInstance();

 private Book currentBook = null;

 public BookPanel(){

 codeLabel = new JLabel("Code: ");

 codeField = new JTextField("", 7);

 titleLabel = new JLabel("Title: ");

 titleField = new JTextField("", 26);

 priceLabel = new JLabel("Price: ");

 priceField = new JTextField("", 7);

 JPanel updatePanel = new JPanel();

 addButton = new JButton("Add");

 updateButton = new JButton("Update");

 deleteButton = new JButton("Delete");

 exitButton = new JButton("Exit");

 updatePanel.add(addButton);

 updatePanel.add(updateButton);

 updatePanel.add(deleteButton);

 updatePanel.add(exitButton);

 JPanel navigationPanel = new JPanel();

 firstButton = new JButton("First");

 prevButton = new JButton("Prev");

 nextButton = new JButton("Next");

 lastButton = new JButton("Last");

 navigationPanel.add(firstButton);

 navigationPanel.add(prevButton);

 navigationPanel.add(nextButton);

 navigationPanel.add(lastButton);

 addButton.addActionListener(this);

 updateButton.addActionListener(this);

 deleteButton.addActionListener(this);

 exitButton.addActionListener(this);

 firstButton.addActionListener(this);

 prevButton.addActionListener(this);

 nextButton.addActionListener(this);

 lastButton.addActionListener(this);

 codeField.addKeyListener(this);

 titleField.addKeyListener(this);

 priceField.addKeyListener(this);

 titleField.getDocument().addDocumentListener(this);

 priceField.getDocument().addDocumentListener(this);

 setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = 100;

 c.weighty = 100;

 c.ipadx = 5;

 c.anchor = GridBagConstraints.EAST;

 c = getConstraints(c, 1, 1, 1, 1);

 add(codeLabel, c);

 c = getConstraints(c, 1, 2, 1, 1);

 add(titleLabel, c);

 c = getConstraints(c, 1, 3, 1, 1);

 add(priceLabel, c);

 c.anchor = GridBagConstraints.WEST;

 c = getConstraints(c, 2, 1, 3, 1);

 add(codeField, c);

 c = getConstraints(c, 2, 2, 3, 1);

 add(titleField, c);

 c = getConstraints(c, 2, 3, 3, 1);

 add(priceField, c);

 c.anchor = GridBagConstraints.CENTER;

 c = getConstraints(c, 1, 4, 4, 1);

 add(updatePanel, c);

 c = getConstraints(c, 1, 5, 4, 1);

 add(navigationPanel, c);

 try{

 BookIO.open();

 currentBook = BookIO.moveFirst();

 }

 catch (FileNotFoundException e){

 JOptionPane.showMessageDialog(null, "FileNotFoundException");

 System.exit(1);

 }

 catch (IOException e){

 JOptionPane.showMessageDialog(null, "IOException");

 }

 performBookDisplay();

 enableButtons(true);

 }

 private GridBagConstraints getConstraints(GridBagConstraints c,

 int x, int y, int width, int height){

 c.gridx = x;

 c.gridy = y;

 c.gridwidth = width;

 c.gridheight = height;

 return c;

 }

 private void performBookDisplay(){

 codeField.setText(currentBook.getCode());

 titleField.setText(currentBook.getTitle());

 priceField.setText(currency.format(currentBook.getPrice()));

 }

 private void enableButtons(boolean flag1){

 boolean flag2 = false;

 if (flag1 == false) flag2 = true;

 updateButton.setEnabled(flag2);

 addButton.setEnabled(flag1);

 deleteButton.setEnabled(flag1);

 firstButton.setEnabled(flag1);

 nextButton.setEnabled(flag1);

 prevButton.setEnabled(flag1);

 lastButton.setEnabled(flag1);

 }

 public void actionPerformed(ActionEvent e){

 try{

 Object source = e.getSource();

 if (source == exitButton){

 BookIO.close();

 System.exit(0);

 }

 else if (source == firstButton){

 currentBook = BookIO.moveFirst();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == prevButton){

 currentBook = BookIO.movePrevious();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == nextButton){

 currentBook = BookIO.moveNext();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == lastButton){

 currentBook = BookIO.moveLast();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == addButton){

 codeField.requestFocus();

 enableButtons(false);

 codeField.setText("");

 titleField.setText("");

 priceField.setText("");

 addFlag = true;

 }

 else if (source == updateButton){

 String priceString = priceField.getText();

 if (priceString.charAt(0) == '$')

 priceString = priceString.substring(1);

 double price = Double.parseDouble(priceString);

 Book book = new Book(codeField.getText(),

 titleField.getText(), price);

 if (addFlag == false){

 BookIO.updateRecord(book);

 }

 if (addFlag == true){

 BookIO.addRecord(book);

 addFlag = false;

 }

 currentBook = book;

 performBookDisplay();

 enableButtons(true);

 }

 else if(source == deleteButton){

 BookIO.deleteRecord(currentBook.getCode());

 nextButton.requestFocus();

 nextButton.doClick();

 }

 }

 catch (FileNotFoundException fnfe){

 JOptionPane.showMessageDialog(this, "FileNotFoundException");

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, "NumberFormatException");

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(this, "IOException");

 }

 }

 public void keyPressed(KeyEvent e){

 int keyCode = e.getKeyCode();

 if (keyCode == KeyEvent.VK_ESCAPE){

 codeField.requestFocus();

 performBookDisplay();

 enableButtons(true);

 }

 }

 public void keyReleased(KeyEvent e){}

 public void keyTyped(KeyEvent e){}

 public void insertUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void removeUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void changedUpdate(DocumentEvent e){}

}

sourcecode/ch18/BookMaintenance/BookIO.java

sourcecode/ch18/BookMaintenance/BookIO.java
import java.io.*;

import java.util.*;

public class BookIO{

 private static Book book = null;

 private static String[] codes = null;

 private static RandomAccessFile randomFile = null;

 private static final File BOOK_FILE = new File("books.dat");

 private static final int CODE_SIZE = 4;

 private static final int TITLE_SIZE = 20;

 private static final int RECORD_SIZE = CODE_SIZE*2 + TITLE_SIZE*2 + 8;

 public static void open() throws IOException{

 randomFile = new RandomAccessFile(BOOK_FILE, "rw");

 codes = readCodes();

 }

 public static void close(){

 try{

 randomFile.close();

 }

 catch(IOException e){

 System.out.println("I/OException thrown when closing file.");

 }

 }

 public static int getRecordCount() throws IOException{

 long length = BOOK_FILE.length();

 int recordCount = (int) (length / RECORD_SIZE);

 return recordCount;

 }

 public static String readString(DataInput in, int length)

 throws IOException{

 String s = "";

 int i = 0;

 while (i < length){

 char c = in.readChar();

 if (c!=0)

 s += c;

 i++;

 }

 return s;

 }

 public static Book readRecord(int recordNumber) throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 String code = readString(randomFile, CODE_SIZE);

 String title = readString(randomFile, TITLE_SIZE);

 double price = randomFile.readDouble();

 book = new Book(code, title, price);

 return book;

 }

 public static Book readRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 book = readRecord(recordNumber);

 return book;

 }

 public static int getRecordNumber(String bookCode) throws IOException{

 int match = -1;

 int i = 0;

 boolean flag = true;

 while ((i < getRecordCount()) && (flag==true)){

 if (bookCode.equals(codes[i])){

 match = i+1;

 flag = false;

 }

 i++;

 }

 return match;

 }

 public static String[] readCodes() throws IOException{

 codes = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE);

 codes[i] = readString(randomFile, CODE_SIZE);

 }

 return codes;

 }

 public static String[] readTitles() throws IOException{

 String[] titles = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE + 8);

 titles[i] = readString(randomFile, TITLE_SIZE);

 }

 return titles;

 }

 public static void writeString(DataOutput out, String s, int length)

 throws IOException{

 for (int i = 0; i < length; i++){

 if (i < s.length())

 out.writeChar(s.charAt(i));

 else

 out.writeChar(0);

 }

 }

 public static void writeRecord(Book book, int recordNumber)

 throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 writeString(randomFile, book.getCode(), CODE_SIZE);

 writeString(randomFile, book.getTitle(), TITLE_SIZE);

 randomFile.writeDouble(book.getPrice());

 }

 public static Book moveFirst() throws IOException{

 book = readRecord(1);

 return book;

 }

 public static Book movePrevious() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != 1)

 book = readRecord(recordNumber - 1);

 return book;

 }

 public static Book moveNext() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != getRecordCount())

 book = readRecord(recordNumber + 1);

 return book;

 }

 public static Book moveLast() throws IOException{

 int lastRecordNumber = getRecordCount();

 book = readRecord(lastRecordNumber);

 return book;

 }

 public static void addRecord(Book addBook) throws IOException{

 writeRecord(addBook, getRecordCount() + 1);

 close();

 open();

 }

 public static void updateRecord(Book book) throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 writeRecord(book, recordNumber);

 }

 public static void deleteRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 Vector books = new Vector();

 for (int i = 0; i< getRecordCount(); i++){

 books.add(readRecord(i+1));

 }

 books.remove(recordNumber-1);

 randomFile.setLength(RECORD_SIZE *(getRecordCount() -1));

 for (int i = 0; i<books.size(); i++){

 writeRecord((Book)books.elementAt(i),i+1);

 }

 if (recordNumber < getRecordCount())

 book = readRecord(recordNumber);

 else

 book = readRecord(getRecordCount()-1);

 close();

 open();

 }

}

sourcecode/ch18/BookMaintenance/books.dat

sourcecode/ch18/RandomAccReader/books.dat

sourcecode/ch18/RandomAccReader/RandomAccessReaderApp.java

sourcecode/ch18/RandomAccReader/RandomAccessReaderApp.java
import java.io.*;

public class RandomAccessReaderApp{

 public static void main(String[] args) throws IOException{

 RandomAccessFile in = new RandomAccessFile("books.dat", "r");

 int recordNumber = 3;

 int recordLength = 4*2 + 8;

 in.seek((recordNumber-1) * (recordLength));

 String code = "";

 for (int i = 0; i < 4; i++){

 char c = in.readChar();

 code += c;

 }

 double price = in.readDouble();

 in.close();

 System.out.println(code);

 System.out.println(price);

 }

}

sourcecode/ch18/RandomAccWriter/RandomAccessWriterApp.java

sourcecode/ch18/RandomAccWriter/RandomAccessWriterApp.java
import java.io.*;

public class RandomAccessWriterApp{

 public static void main(String[] args) throws IOException{

 String[] codes = {"WARP", "MBDK", "CITR", "WUTH"};

 double[] prices = {14.95, 12.95, 9.95, 12.95};

 RandomAccessFile out = new RandomAccessFile("books.dat", "rw");

 for (int i = 0; i < codes.length; i++){

 out.writeChars(codes[i]);

 out.writeDouble(prices[i]);

 }

 out.close();

 }

}

sourcecode/ch18/StringHelper/StringHelper.class
public synchronized class StringHelper {
 public void StringHelper();
 public static void writeString(java.io.DataOutput, String, int) throws java.io.IOException;
 public static String readString(java.io.DataInput, int) throws java.io.IOException;
}

sourcecode/ch18/StringHelper/StringHelper.java

sourcecode/ch18/StringHelper/StringHelper.java
import java.io.*;

public class StringHelper{

 public static void writeString(DataOutput out, String s,

 int length) throws IOException{

 for (int i = 0; i < length; i++){

 if (i < s.length())

 out.writeChar(s.charAt(i));

 else

 out.writeChar(0);

 }

 }

 public static String readString(DataInput in, int length)

 throws IOException{

 String s = "";

 int i = 0;

 while (i < length){

 char c = in.readChar();

 if (c != 0)

 s += c;

 i++;

 }

 return s;

 }

}

sourcecode/ch19/BookMaintenance/Book.java

sourcecode/ch19/BookMaintenance/Book.java
public class Book{

 private String code;

 private String title;

 private double price;

 public Book(){

 this("", "", 11.95);

 }

 public Book(String bookCode, String bookTitle, double bookPrice){

 code = bookCode;

 title = bookTitle;

 price = bookPrice;

 }

 public String getCode(){return code;}

 public String getTitle(){return title;}

 public double getPrice(){return price;}

 public void setCode(String bookCode){code = bookCode;}

 public void setTitle(String bookTitle){title = bookTitle;}

 public void setPrice(double bookPrice){price = bookPrice;}

 public String toString(){

 return "Code: " + code + "\n" +

 "Title: " + title + "\n" +

 "Price: " + price + "\n";

 }

}

sourcecode/ch19/BookMaintenance/BookDB.java

sourcecode/ch19/BookMaintenance/BookDB.java
import java.sql.*;

import javax.swing.JOptionPane;

public class BookDB{

 private static Connection connection;

 private static Statement scrollStatement;

 private static ResultSet books;

 public static void connect() throws ClassNotFoundException, SQLException{

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 String url = "jdbc:odbc:MurachBooks";

 String user = "Admin";

 String password = "";

 connection = DriverManager.getConnection(url, user, password);

 }

 public static void open() throws SQLException{

 scrollStatement = connection.createStatement(

 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

 String query = "SELECT BookCode, BookTitle, BookPrice "

 + "FROM Books ORDER BY BookCode ASC";

 books = scrollStatement.executeQuery(query);

 }

 public static void close(){

 try{

 books.close();

 scrollStatement.close();

 }

 catch(SQLException sqle){

 System.err.println(sqle.getMessage());

 }

 }

 public static Book moveFirst() throws SQLException{

 books.first();

 Book firstBook = new Book(books.getString("BookCode"),

 books.getString("BookTitle"),

 books.getDouble("BookPrice"));

 return firstBook;

 }

 public static Book movePrevious() throws SQLException{

 if (books.isFirst() == false)

 books.previous();

 else

 books.first();

 Book previousBook = new Book(books.getString(1),

 books.getString(2),

 books.getDouble(3));

 return previousBook;

 }

 public static Book moveNext() throws SQLException{

 if (books.isLast() == false)

 books.next();

 else

 books.last();

 Book nextBook = new Book(books.getString(1),

 books.getString(2),

 books.getDouble(3));

 return nextBook;

 }

 public static Book moveLast() throws SQLException{

 books.last();

 Book lastBook = new Book(books.getString(1),

 books.getString(2),

 books.getDouble(3));

 return lastBook;

 }

 public static void addRecord(Book book) throws SQLException{

 String query = "INSERT INTO Books (BookCode, BookTitle, BookPrice) " +

 "VALUES ('" + book.getCode() + "', " +

 "'" + book.getTitle() + "', " +

 "'" + book.getPrice() + "')";

 Statement statement = connection.createStatement();

 statement.executeUpdate(query);

 statement.close();

 close();

 open();

 }

 public static void updateRecord(Book book) throws SQLException{

 String query = "UPDATE Books SET " +

 "BookCode = '" + book.getCode() + "', " +

 "BookTitle = '" + book.getTitle() + "', " +

 "BookPrice = '" + book.getPrice() + "' " +

 "WHERE BookCode = '" + book.getCode() + "'";

 Statement statement = connection.createStatement();

 statement.executeUpdate(query);

 statement.close();

 }

 public static void deleteRecord(String bookCode) throws SQLException{

 String query = "DELETE FROM Books " +

 "WHERE BookCode = '" + bookCode + "'";

 Statement statement = connection.createStatement();

 statement.executeUpdate(query);

 statement.close();

 close();

 open();

 }

}

sourcecode/ch19/BookMaintenance/BookFrame.java

sourcecode/ch19/BookMaintenance/BookFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

import java.text.*;

import java.sql.*;

public class BookFrame extends JFrame{

 public BookFrame(){

 setTitle("Book Maintenance");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 400, height = 200;

 setBounds((d.width - width)/2, (d.height - height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 BookDB.close();

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 BookPanel panel = new BookPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 JFrame frame = new BookFrame();

 frame.show();

 }

}

class BookPanel extends JPanel implements ActionListener,

 DocumentListener, KeyListener{

 private JButton addButton, updateButton, deleteButton, exitButton,

 firstButton, prevButton, nextButton, lastButton;

 private JLabel codeLabel, titleLabel, priceLabel;

 private JTextField codeField, titleField, priceField;

 public static boolean addFlag = false;

 public static NumberFormat currency = NumberFormat.getCurrencyInstance();

 Book currentBook = null;

 public BookPanel(){

 codeLabel = new JLabel("Code: ");

 codeField = new JTextField("", 7);

 titleLabel = new JLabel("Title: ");

 titleField = new JTextField("", 26);

 priceLabel = new JLabel("Price: ");

 priceField = new JTextField("", 7);

 JPanel updatePanel = new JPanel();

 addButton = new JButton("Add");

 updateButton = new JButton("Update");

 deleteButton = new JButton("Delete");

 exitButton = new JButton("Exit");

 updatePanel.add(addButton);

 updatePanel.add(updateButton);

 updatePanel.add(deleteButton);

 updatePanel.add(exitButton);

 JPanel navigationPanel = new JPanel();

 firstButton = new JButton("First");

 prevButton = new JButton("Prev");

 nextButton = new JButton("Next");

 lastButton = new JButton("Last");

 navigationPanel.add(firstButton);

 navigationPanel.add(prevButton);

 navigationPanel.add(nextButton);

 navigationPanel.add(lastButton);

 addButton.addActionListener(this);

 updateButton.addActionListener(this);

 deleteButton.addActionListener(this);

 exitButton.addActionListener(this);

 firstButton.addActionListener(this);

 prevButton.addActionListener(this);

 nextButton.addActionListener(this);

 lastButton.addActionListener(this);

 codeField.addKeyListener(this);

 titleField.addKeyListener(this);

 priceField.addKeyListener(this);

 codeField.getDocument().addDocumentListener(this);

 titleField.getDocument().addDocumentListener(this);

 priceField.getDocument().addDocumentListener(this);

 setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = 100;

 c.weighty = 100;

 c.ipadx = 5;

 c.anchor = GridBagConstraints.EAST;

 c = getConstraints(c, 1, 1, 1, 1);

 add(codeLabel, c);

 c = getConstraints(c, 1, 2, 1, 1);

 add(titleLabel, c);

 c = getConstraints(c, 1, 3, 1, 1);

 add(priceLabel, c);

 c.anchor = GridBagConstraints.WEST;

 c = getConstraints(c, 2, 1, 3, 1);

 add(codeField, c);

 c = getConstraints(c, 2, 2, 3, 1);

 add(titleField, c);

 c = getConstraints(c, 2, 3, 3, 1);

 add(priceField, c);

 c.anchor = GridBagConstraints.CENTER;

 c = getConstraints(c, 1, 4, 4, 1);

 add(updatePanel, c);

 c = getConstraints(c, 1, 5, 4, 1);

 add(navigationPanel, c);

 try{

 BookDB.connect();

 BookDB.open();

 currentBook = BookDB.moveFirst();

 }

 catch (ClassNotFoundException e){

 JOptionPane.showMessageDialog(null, e.getMessage());

 System.exit(1);

 }

 catch (SQLException e){

 JOptionPane.showMessageDialog(null, e.getMessage());

 }

 performBookDisplay();

 enableButtons(true);

 }

 private GridBagConstraints getConstraints(GridBagConstraints c,

 int x, int y, int width, int height){

 c.gridx = x;

 c.gridy = y;

 c.gridwidth = width;

 c.gridheight = height;

 return c;

 }

 private void performBookDisplay(){

 codeField.setText(currentBook.getCode());

 titleField.setText(currentBook.getTitle());

 priceField.setText(currency.format(currentBook.getPrice()));

 }

 private void enableButtons(boolean flag1){

 boolean flag2 = false;

 if (flag1 == false)

 flag2 = true;

 updateButton.setEnabled(flag2);

 addButton.setEnabled(flag1);

 deleteButton.setEnabled(flag1);

 firstButton.setEnabled(flag1);

 nextButton.setEnabled(flag1);

 prevButton.setEnabled(flag1);

 lastButton.setEnabled(flag1);

 }

 private double parseCurrency(String currencyString){

 if (currencyString.charAt(0) == '$')

 currencyString = currencyString.substring(1);

 return Double.parseDouble(currencyString);

 }

 public void actionPerformed(ActionEvent e){

 try{

 Object source = e.getSource();

 if (source == exitButton){

 BookDB.close();

 System.exit(0);

 }

 else if (source == firstButton){

 currentBook = BookDB.moveFirst();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == prevButton){

 currentBook = BookDB.movePrevious();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == nextButton){

 currentBook = BookDB.moveNext();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == lastButton){

 currentBook = BookDB.moveLast();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == addButton){

 codeField.requestFocus();

 enableButtons(false);

 codeField.setText("");

 titleField.setText("");

 priceField.setText("");

 addFlag = true;

 }

 else if (source == updateButton){

 double price = parseCurrency(priceField.getText());

 Book book = new Book(codeField.getText(),

 titleField.getText(),

 price);

 if (addFlag == false){

 BookDB.updateRecord(book);

 currentBook = book;

 }

 if (addFlag == true){

 BookDB.addRecord(book);

 currentBook = BookDB.moveFirst();

 addFlag = false;

 }

 currentBook = book;

 performBookDisplay();

 enableButtons(true);

 }

 else if(source == deleteButton){

 BookDB.deleteRecord(currentBook.getCode());

 firstButton.requestFocus();

 firstButton.doClick();

 performBookDisplay();

 enableButtons(true);

 }

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, nfe.getMessage());

 }

 catch (SQLException sqle){

 JOptionPane.showMessageDialog(this, sqle.getMessage());

 }

 }

 public void keyPressed(KeyEvent e){

 int keyCode = e.getKeyCode();

 if (keyCode == KeyEvent.VK_ESCAPE){

 performBookDisplay();

 enableButtons(true);

 codeField.requestFocus();

 }

 }

 public void keyReleased(KeyEvent e){

 }

 public void keyTyped(KeyEvent e){

 }

 public void insertUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void removeUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void changedUpdate(DocumentEvent e){

 }

}

sourcecode/ch19/database/MurachBooks.ldb

sourcecode/ch19/database/MurachBooks.mdb
		BookOrderID		BookCode		Quantity

		1		CCFR		2

		4		CC2R		10

		5		CCFR		1

		7		DB21		3

		8		DB21		2

		9		CC2R		1

		10		SCMD		1

		BookCode		BookTitle		BookPrice

		CC2R		CICS for the COBOL Programmer, Part 2 (2nd Ed.)		¤ 36.50

		CRFR		The CICS Programmer's Desk Reference (2nd Ed.)		¤ 42.50

		DB21		DB2 for the COBOL Programmer, Part 1		¤ 36.50

		DB22		DB2 for the COBOL Programmer, Part 2		¤ 36.50

		DDBS		How to Design and Develop Business Systems		¤ 25.00

		EXLS		Excel 5: Lists, pivots tables, and external databases		¤ 11.95

		ICCF		DOS/VSE ICCF		¤ 31.00

		IMS1		IMS for the COBOL Programmer, Part 1		¤ 36.50

		IMS2		IMS for the COBOL Programmer, Part 2		¤ 36.50

		LDSR		The Least You Need to Know about DOS (2nd. Ed.)		¤ 20.00

		LWIN		The Least You Need to Know about Windows 3.1		¤ 20.00

		MBAL		MVS Assembler Language		¤ 36.50

		MJIG		MVS JCL Instructor's Guide		¤ 100.00

		MJLR		MVS JCL (2nd. Ed.)		¤ 42.50

		MWMM		Word 6: How to use the Mail Merge Feature		¤ 9.95

		OSUT		OS Utilities		¤ 17.50

		PREX		Work Like a PRO with Excel 5 for Windows		¤ 20.00

		PRMW		Work like a PRO with Word 6 for Windows		¤ 20.00

		PRW7		Work like a PRO with Word for Windows 95		¤ 25.00

		PRX7		Work Like a PRO with Excel for Windows 95		¤ 25.00

		RW		Report Writer		¤ 17.50

		SC1R		Structured ANS COBOL, Part 1		¤ 32.50

		SC2R		Structured ANS COBOL, Part 2		¤ 32.50

		SCDK		Structured COBOL Methods Diskette		¤ 25.00

		SCMD		Structured COBOL Methods		¤ 25.00

		SDIG		DOS/VSE JCL (2nd Ed.)		¤ 34.50

		TSO1		MVS TSO, Part 1:Concepts and ISPF		¤ 36.50

		TSO2		MVS TSO, Part 2:Commands,CLIST, and REXX		¤ 36.50

		VBAL		DOS/VSE Assembler Language		¤ 36.50

		VC2R		VS COBOL II (2nd Ed.)		¤ 27.50

		VJLR		DOS/VSE JCL (2nd Ed.)		¤ 34.50

SELECT Books.BookCode, Books.BookTitle, Books.BookPrice, BookOrders.Quantity, [BookPrice]*[Quantity] AS Total
FROM Books INNER JOIN BookOrders ON Books.BookCode = BookOrders.BookCode
WHERE (((Books.BookPrice)>35))
ORDER BY Books.BookCode;

SELECT Books.BookCode, Books.BookTitle, Books.BookPrice
FROM Books
WHERE (((Books.BookPrice)>35))
ORDER BY Books.BookCode;

SELECT Invoices.InvoiceNumber, Invoices.InvoiceDate, Books.BookTitle, Books.BookPrice, BookOrders.Quantity
FROM (BookOrders INNER JOIN Invoices ON BookOrders.InvoiceID = Invoices.InvoiceID) INNER JOIN Books ON BookOrders.BookCode = Books.BookCode
ORDER BY Invoices.InvoiceNumber;

sourcecode/ch19/database/MurachBooks97.ldb

sourcecode/ch19/database/MurachBooks97.mdb
		BookOrderID		BookCode		Quantity

		1		CCFR		2

		4		CC2R		10

		5		CCFR		1

		7		DB21		3

		8		DB21		2

		9		CC2R		1

		10		SCMD		1

		BookCode		BookTitle		BookPrice

		CC2R		CICS for the COBOL Programmer, Part 2 (2nd Ed.)		¤ 36.50

		CRFR		The CICS Programmer's Desk Reference (2nd Ed.)		¤ 42.50

		DB21		DB2 for the COBOL Programmer, Part 1		¤ 36.50

		DB22		DB2 for the COBOL Programmer, Part 2		¤ 36.50

		DDBS		How to Design and Develop Business Systems		¤ 25.00

		EXLS		Excel 5: Lists, pivots tables, and external databases		¤ 11.95

		ICCF		DOS/VSE ICCF		¤ 31.00

		IMS1		IMS for the COBOL Programmer, Part 1		¤ 36.50

		IMS2		IMS for the COBOL Programmer, Part 2		¤ 36.50

		LDSR		The Least You Need to Know about DOS (2nd. Ed.)		¤ 20.00

		LWIN		The Least You Need to Know about Windows 3.1		¤ 20.00

		MBAL		MVS Assembler Language		¤ 36.50

		MJIG		MVS JCL Instructor's Guide		¤ 100.00

		MJLR		MVS JCL (2nd. Ed.)		¤ 42.50

		MWMM		Word 6: How to use the Mail Merge Feature		¤ 9.95

		OSUT		OS Utilities		¤ 17.50

		PREX		Work Like a PRO with Excel 5 for Windows		¤ 20.00

		PRMW		Work like a PRO with Word 6 for Windows		¤ 20.00

		PRW7		Work like a PRO with Word for Windows 95		¤ 25.00

		PRX7		Work Like a PRO with Excel for Windows 95		¤ 25.00

		RW		Report Writer		¤ 17.50

		SC1R		Structured ANS COBOL, Part 1		¤ 32.50

		SC2R		Structured ANS COBOL, Part 2		¤ 32.50

		SCDK		Structured COBOL Methods Diskette		¤ 25.00

		SCMD		Structured COBOL Methods		¤ 25.00

		SDIG		DOS/VSE JCL (2nd Ed.)		¤ 34.50

		TSO1		MVS TSO, Part 1:Concepts and ISPF		¤ 36.50

		TSO2		MVS TSO, Part 2:Commands,CLIST, and REXX		¤ 36.50

		VBAL		DOS/VSE Assembler Language		¤ 36.50

		VC2R		VS COBOL II (2nd Ed.)		¤ 27.50

		VJLR		DOS/VSE JCL (2nd Ed.)		¤ 34.50

SELECT Books.BookCode, Books.BookTitle, Books.BookPrice, BookOrders.Quantity, [BookPrice]*[Quantity] AS Total
FROM Books INNER JOIN BookOrders ON Books.BookCode = BookOrders.BookCode
WHERE (((Books.BookPrice)>35))
ORDER BY Books.BookCode;

SELECT Books.BookCode, Books.BookTitle, Books.BookPrice
FROM Books
WHERE (((Books.BookPrice)>35))
ORDER BY Books.BookCode;

SELECT Invoices.InvoiceNumber, Invoices.InvoiceDate, Books.BookTitle, Books.BookPrice, BookOrders.Quantity
FROM (BookOrders INNER JOIN Invoices ON BookOrders.InvoiceID = Invoices.InvoiceID) INNER JOIN Books ON BookOrders.BookCode = Books.BookCode
ORDER BY Invoices.InvoiceNumber;

sourcecode/ch20/AlarmUtil/Alarm.java

sourcecode/ch20/AlarmUtil/Alarm.java
import javax.swing.*;

import java.util.*;

import java.text.*;

public class Alarm{

 private java.util.Timer timer;

 public Alarm(){

 GregorianCalendar alarmGregDateTime =

 new GregorianCalendar(2001, Calendar.JUNE, 23, 14, 24);

 Date alarmDateTime = alarmGregDateTime.getTime();

 timer = new java.util.Timer();

 timer.schedule(new AlarmTask(), alarmDateTime);

 }

 public static void main(String[] args){

 Alarm alarm = new Alarm();

 }

}

class AlarmTask extends TimerTask{

 public void run(){

 JOptionPane.showMessageDialog(null, "Time for your meeting!");

 System.exit(0);

 }

}

sourcecode/ch20/Banner/BannerApplet.html

sourcecode/ch20/Banner/MovingBannerApplet.class
public synchronized class MovingBannerApplet extends java.applet.Applet implements Runnable {
 private Thread bannerThread;
 private int x;
 public void MovingBannerApplet();
 public void init();
 public void start();
 public void run();
 public void paint(java.awt.Graphics);
 public void stop();
}

sourcecode/ch20/Banner/MovingBannerApplet.java

sourcecode/ch20/Banner/MovingBannerApplet.java
import java.awt.*;

import java.applet.*;

public class MovingBannerApplet extends Applet implements Runnable {

 private Thread bannerThread = null;

 private int x;

 public void init(){

 setBackground(Color.white);

 x = 10;

 }

 public void start() {

 if (bannerThread == null) {

 bannerThread = new Thread(this);

 bannerThread.start();

 }

 }

 public void run() {

 Thread myThread = Thread.currentThread();

 while (bannerThread == myThread) {

 try{

 Thread.sleep(100);

 }

 catch (InterruptedException e){}

 repaint();

 }

 }

 public void paint(Graphics g) {

 x += 5;

 Dimension d = getSize();

 if (x > (d.width - 10))

 x = 10;

 g.setFont(new Font("SansSerif", Font.BOLD, 24));

 g.setColor(Color.red);

 g.drawString("New Low Rates!", x, 50);

 }

 public void stop() {

 bannerThread = null;

 }

}

sourcecode/ch20/CountRunnable/CountDownApp.java

sourcecode/ch20/CountRunnable/CountDownApp.java
public class CountDownApp{

 public static void main(String[] args){

 Thread count1 = new Thread(new CountDownEven());

 Thread count2 = new Thread(new CountDownOdd());

 count1.start();

 count2.start();

 }

}

sourcecode/ch20/CountRunnable/CountDownEven.java

sourcecode/ch20/CountRunnable/CountDownEven.java
public class CountDownEven implements Runnable{

 public void run(){

 Thread currentThread = Thread.currentThread();

 for (int i = 6; i > 0; i-=2){

 System.out.println(currentThread.getName() + " Count " + i);

 Thread.yield();

 }

 }

}

sourcecode/ch20/CountRunnable/CountDownOdd.java

sourcecode/ch20/CountRunnable/CountDownOdd.java
public class CountDownOdd implements Runnable{

 public void run(){

 Thread currentThread = Thread.currentThread();

 for (int i = 5; i > 0; i -= 2){

 System.out.println(currentThread.getName() + " Count " + i);

 Thread.yield();

 }

 }

}

sourcecode/ch20/CountThread/CountDownApp.java

sourcecode/ch20/CountThread/CountDownApp.java
public class CountDownApp{

 public static void main(String[] args){

 Thread count1 = new CountDownEven();

 Thread count2 = new CountDownOdd();

 count1.start();

 count2.start();

 }

}

sourcecode/ch20/CountThread/CountDownEven.java

sourcecode/ch20/CountThread/CountDownEven.java
public class CountDownEven extends Thread{

 public void run(){

 for (int i = 6; i > 0; i-=2){

 System.out.println(this.getName() + " Count " + i);

 Thread.yield();

 }

 }

}

sourcecode/ch20/CountThread/CountDownOdd.java

sourcecode/ch20/CountThread/CountDownOdd.java
public class CountDownOdd extends Thread{

 public void run(){

 for (int i = 5; i > 0; i -= 2){

 System.out.println(this.getName() + " Count " + i);

 Thread.yield();

 }

 }

}

sourcecode/ch20/DrawImage/DrawImageApplet.class
public synchronized class DrawImageApplet extends java.applet.Applet implements java.awt.event.ActionListener, Runnable {
 private Thread drawImageThread;
 private java.awt.Button interruptButton;
 public void DrawImageApplet();
 public void init();
 public void actionPerformed(java.awt.event.ActionEvent);
 public void start();
 public void stop();
 public void run();
}

sourcecode/ch20/DrawImage/DrawImageApplet.html

sourcecode/ch20/DrawImage/DrawImageApplet.java

sourcecode/ch20/DrawImage/DrawImageApplet.java
/* This is best shown in a browser. The interrupt method works well here...you can't just set the thread to null in the actionPerformed

method...the while loop check in the run method isn't done until the

two for loops are finished executing.*/

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class DrawImageApplet extends Applet

 implements ActionListener, Runnable {

 private Thread drawImageThread = null;

 private Button interruptButton;

 public void init(){

 setLayout(new BorderLayout());

 interruptButton = new Button("Interrupt");

 interruptButton.addActionListener(this);

 add(interruptButton, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 drawImageThread.interrupt();

 }

 public void start() {

 if (drawImageThread == null) {

 drawImageThread = new Thread(this);

 drawImageThread.start();

 }

 }

 public void stop() {

 drawImageThread = null;

 }

 public void run() {

 Thread currentThread = Thread.currentThread();

 while(currentThread == drawImageThread){

 for (int i = 0; i < 255; i++){

 for (int j = 0; j < 255; j++){

 if (drawImageThread.isInterrupted() == false){

 Graphics g = getGraphics();

 g.setColor(new Color(i, j, (i+j)/2));

 g.drawLine(i, j, 1, 1);

 Thread.yield();

 }

 }

 }

 }

 }

}

sourcecode/ch20/LoanCalculator/FinancialCalculations.java

sourcecode/ch20/LoanCalculator/FinancialCalculations.java
public class FinancialCalculations{

 public static double calculateMonthlyPayment(double loanAmount,

 int months, double monthlyInterestRate){

 double monthlyPayment = loanAmount * monthlyInterestRate/

 (1 - 1/Math.pow(1+monthlyInterestRate, months));

 return monthlyPayment;

 }

 public static double calculateFutureValue(double monthlyPayment,

 int months, double monthlyInterestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

 i++;

 }

 return futureValue;

 }

 public static double calculateLoanAmount(double monthlyPayment,

 int months, double monthlyInterestRate){

 double amount = (monthlyPayment*(1-1/(Math.pow((1+monthlyInterestRate),

 months))))/monthlyInterestRate;

 return amount;

 }

}

sourcecode/ch20/LoanCalculator/LoanCalculatorFrame.java

sourcecode/ch20/LoanCalculator/LoanCalculatorFrame.java
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.*;

import java.util.Date;

public class LoanCalculatorFrame extends JFrame

 implements ActionListener{

 private JTextField amountTextField, rateTextField, yearsTextField,

 paymentTextField;

 private JLabel amountLabel, rateLabel, yearsLabel, paymentLabel;

 private JButton calculateButton, exitButton;

 private Timer timer;

 private JLabel clockLabel;

 public LoanCalculatorFrame() {

 setTitle("Loan Calculator");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int height = 200;

 int width = 267;

 setBounds((d.width-width)/2, (d.height-height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 JPanel displayPanel = new JPanel();

 displayPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 amountLabel = new JLabel("Loan Amount:");

 rateLabel = new JLabel("Yearly Interest Rate:");

 yearsLabel = new JLabel("Number of Years:");

 paymentLabel = new JLabel("Monthly Payment:");

 amountTextField = new JTextField(10);

 rateTextField = new JTextField(10);

 yearsTextField = new JTextField(10);

 paymentTextField = new JTextField(10);

 paymentTextField.setEditable(false);

 displayPanel.add(amountLabel);

 displayPanel.add(amountTextField);

 displayPanel.add(rateLabel);

 displayPanel.add(rateTextField);

 displayPanel.add(yearsLabel);

 displayPanel.add(yearsTextField);

 displayPanel.add(paymentLabel);

 displayPanel.add(paymentTextField);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 calculateButton = new JButton("Calculate");

 exitButton = new JButton("Exit");

 buttonPanel.add(calculateButton);

 buttonPanel.add(exitButton);

 JPanel loanCalculatorPanel = new JPanel();

 loanCalculatorPanel.setLayout(new BorderLayout());

 loanCalculatorPanel.add(displayPanel, BorderLayout.CENTER);

 loanCalculatorPanel.add(buttonPanel, BorderLayout.SOUTH);

 calculateButton.addActionListener(this);

 exitButton.addActionListener(this);

 yearsTextField.setNextFocusableComponent(calculateButton);

 Container contentPane = getContentPane();

 contentPane.add(loanCalculatorPanel);

 JPanel clockPanel = new JPanel();

 clockPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 clockLabel = new JLabel("Starting...");

 clockPanel.add(clockLabel);

 loanCalculatorPanel.add(clockPanel, BorderLayout.NORTH);

 // add code that creates and starts the Timer object here

 timer = new Timer(1000, this);

 timer.setInitialDelay(0);

 timer.start();

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source == timer){

 Date t = new Date();

 DateFormat df = DateFormat.getTimeInstance(DateFormat.MEDIUM);

 String time = df.format(t);

 clockLabel.setText(time);

 }

 else if (source == exitButton)

 System.exit(0);

 else if (source == calculateButton){

 double amount = Double.parseDouble(amountTextField.getText());

 double rate = Double.parseDouble(rateTextField.getText())/12/100;

 int months = Integer.parseInt(yearsTextField.getText()) * 12;

 double payment = FinancialCalculations.calculateMonthlyPayment(

 amount, months, rate);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 paymentTextField.setText(currency.format(payment));

 }

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, "Invalid data entered.\n"

 + "Please check all numbers and try again.");

 }

 }

 public static void main(String[] args){

 JFrame frame = new LoanCalculatorFrame();

 frame.show();

 }

}

sourcecode/ch20/OrderMonitor/Buyer.java

sourcecode/ch20/OrderMonitor/Buyer.java
public class Buyer extends Thread{

 private OrderMonitor monitor;

 private String orderString;

 public Buyer(OrderMonitor m, String s){

 monitor = m;

 orderString = s;

 }

 public void run(){

 monitor.sendOrder(orderString);

 System.out.println("Buyer sent: " + orderString);

 }

}

sourcecode/ch20/OrderMonitor/OrderMonitor.java

sourcecode/ch20/OrderMonitor/OrderMonitor.java
public class OrderMonitor{

 private boolean request = false;

 private String orderString;

 public synchronized String retrieveOrder(){

 while (request == false){

 try{

 wait();

 }

 catch(InterruptedException e){}

 }

 request = false;

 notifyAll();

 return orderString;

 }

 public synchronized void sendOrder(String s){

 while(request == true){

 try{

 wait();

 }

 catch(InterruptedException e){}

 }

 request = true;

 notifyAll();

 orderString = s;

 }

}

sourcecode/ch20/OrderMonitor/OrderMonitorTest.java

sourcecode/ch20/OrderMonitor/OrderMonitorTest.java
public class OrderMonitorTest{

 public static void main(String[] args){

 OrderMonitor monitor = new OrderMonitor();

 Seller s = new Seller(monitor);

 //s.setDaemon(true);

 s.start();

 Buyer b1 = new Buyer(monitor, "Order one");

 b1.start();

 Buyer b2 = new Buyer(monitor, "Order two");

 b2.start();

 //Buyer b3 = new Buyer(monitor, "Order three");

 //b3.start();

 }

}

sourcecode/ch20/OrderMonitor/Seller.java

sourcecode/ch20/OrderMonitor/Seller.java
public class Seller extends Thread{

 private OrderMonitor monitor;

 public Seller(OrderMonitor m){

 monitor = m;

 }

 public void run(){

 while (true){

 String orderString = monitor.retrieveOrder();

 System.out.println("Seller retrieved: " + orderString);

 //code that processes the order

 }

 }

}

root
sourcecode.rar

Murach’s Beginning Java 2

 page 2

Murach’s Beginning Java 2 (Includes Version 1.3 &
1.4)

Andrea Steelman

Mike Murach & Associates, Inc

2560 West Shaw Lane, Suite 101 Fresno, CA 93711-2765
Author:

Andrea Steelman
Writer/editor:
Joel Murach

Contributing editor:
Donna Dean

The Chubb Institute
Production editor:

Judy Taylor
Cover Design:
Zylka Design
Production:
Tom Murach

Books in the Murach series
Murach’s Beginning Java 2

Murach’s Visual Basic 6
Murach’s Structured COBOL

Murach’s CICS for the COBOL Programmer

© 2001, Mike Murach & Associates, Inc.
All rights reserved.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1
ISBN: 1-890774-12-X

Library of Congress Cataloging-in-Publication Data

Steelman, Andrea, 1973-
Murach’s beginning Java 2 / Andrea Steelman.

p. cm.
“Includes versions 1.3 & 1.4.”

ISBN 1-890774-12-X
1. Java (Computer program language) I. Title: Beginning Java 2. II. Title.

QA76.73.J38 S84 2001
005.2’762—dc21

2001044046

Murach’s Beginning Java 2

 page 3

Introduction
If you’re new to Java or object-oriented programming, this book gets you started right. By the end of
chapter 2, you’ll be writing programs that use Java classes. By chapter 4, you’ll be developing your own
classes. And by chapter 6, you’ll be able to design, code, and test object-oriented programs in Java.

But this isn’t just a beginning book. By the time you finish this book, you’ll know how to develop
graphical user interfaces with Swing components; how to read and write data that’s stored in files; how
to use JDBC to work with the data in databases; how to develop applets that are run from Internet
browsers; and much more. In short, you’ll have a set of professional Java skills that you can use for
developing real-world business applications.

Can one book do all that? Yes...but it has to be better than the competing books in more ways than one.

5 ways the content is better
1. If you’re a beginner, you’ll learn how to develop object-oriented Java programs in the first four

chapters. No other book gets you started that fast.
2. In chapter 5, you’ll learn how to work with inheritance and interfaces since they are critical to

the effective use of the hundreds of classes that are available with Java. Unlike other books
that present theory without application, this chapter focuses just on what you need to know to
use Java classes effectively.

3. In chapter 6, you’ll learn how to design and test object-oriented programs. Although you can’t
do an effective job of developing a Java program without knowing how to design one, no other
beginning book has a chapter like this.

4. Figuring out how to create a graphical user interface can be a nightmare with other books,
but this one has you create your first GUI from start to finish in chapter 11. Then, chapters 12-
14 show you how to enhance that interface. And chapter 15 shows you how to use these skills
as you develop Java applets that can be run from a web browser.

5. Because stored data is critical to most business applications, chapters 16-18 show you how
to work with files, and chapter 19 shows you how to work with databases. In particular,
chapters 18 and 19 teach you how to use files and databases to provide the data for the
business objects of Java applications. And no other book has content like that.

4 ways the instruction is better

1. Realistic business applications and examples throughout this book provide the models
that you need for building your own object-oriented programs. In contrast, most
competing books present “toy” applications that have little resemblance to applications in
the real world.

2. Since one of the keys to Java programming is understanding how all of the pieces fit
together, this book presents 24 complete Java applications. For the largest application,
chapter 6 presents its design, chapter 12 presents its GUI classes, chapter 18 presents
the class that can be used if the data is stored in a file, and chapter 19 presents the class
that can be used if the data is stored in a database. This is ambitious, effective, and no
other book even tries to do anything like it.

3. The exercises at the end of each chapter use the source code and data on the CD ROM
to give you a maximum amount of practice in a minimum amount of time. This leads to
dramatic improvements in learning efficiency.

4. All of the information in this book is presented in user-friendly “paired pages,” with the
essential details and examples on the right and the perspective on the left. This lets you
learn faster by reading less. And nobody else has anything like it.

Who this book is for
This book is for anyone who wants to learn how to program with Java. It works if you have no
programming experience at all. It works if you have programming experience with another language like
COBOL or Visual Basic. And it works if you’ve already read three or four other Java books and still don’t
know how to develop a real-world business application.

If you’re completely new to programming, the prerequisites are minimal. You just need to be familiar
with the operation of the platform that you’re using. If, for example, you’re using Windows on a PC, you
should know how to use the Windows interface to perform tasks like opening, saving, printing, and
closing files.

Murach’s Beginning Java 2

 page 4

What Java versions and platforms this book supports
Since Java 1.0 was first released in 1996, three other versions have been released: 1.1, 1.2, and 1.3.
With version 1.2, Java became known as Java 2, and that name is still in use today. As this book goes
to press, the current release of Java is version 1.3.1. So that’s the version that’s on the CD ROM at the
back of this book, and that’s the version that we used to develop all of the program examples.
Note, however, that version 1.4 is currently in beta test, and it should be released later this year. That’s
why we tested all of the programs in this book using the 1.4 beta, too. We have also covered the most
useful new features of version 1.4 in this book. Whenever you want to upgrade to this version, you can
download it from the Sun web site as explained in chapter 1.

As you work with Java, please keep in mind that all versions are upwards-compatible. That means that
everything in the previous versions will work with the new versions. In general, a new version just
provides some new classes and methods. Some of these provide new capabilities; some improve upon
the old ones. As a result, you’ll want to use some of the new classes and methods in your new
programs. But you can usually leave the old classes and methods in your old programs because they
will still work.

Since Java is platform-independent, a Java program can be run on any platform that supports Java.
That means that this book teaches you how to write Java programs that will run on computers that use
operating systems like Windows, Solaris, or Linux. However, since the platform for most computer users
today is Windows, this book uses Windows to illustrate any platform-dependent procedures. If you’re
working on another platform, you may need to download information from the Sun web site to learn how
to do some of those procedures on your system.

What’s on the bound-in CD ROM
To start, the CD ROM that comes with this book contains all the source code and data that you need to
do the exercises in this book. That way, you don’t have to start every exercise from scratch. In addition,
the CD ROM contains the source code and data for all of the applications, applets, and examples that
are presented in this book.

To make it easier for you to get started, the CD ROM also provides version 1.3.1 of the Java Software
Development Kit (SDK), along with the HTML-based documentation for this version of the SDK.
Although these products are available for free from the Java web site, they’re large files that may take
several hours to download. As a result, the files on this CD ROM can save you some time.

This CD ROM also contains an evaluation copy of the TextPad text editor. This text editor is specifically
designed to help you develop Java applications on Windows systems. If you like this product and want
to use it beyond the evaluation period, please pay the reasonable fee (around $27) to register your
copy. It’s a small price to pay for an excellent product.

Last, the CD ROM contains an integrated development environment for Java applications known as
Forte for Java. It too is available for free from the Java web site, but having it on the CD can save you
hours of download time.
In chapter 1 of this book, you’ll learn more about all of these items. You’ll also learn how to install them
on your system. For a quick look at the installation procedures, though, please refer to the last page in
this book.

Support materials for trainers and instructors
If you’re a trainer or instructor who would like to use this book as the basis for a course, a complete set
of instructional materials is available for it. To start, take a look at the exercises for each chapter. Note
how they give your students a maximum amount of practice in a controlled, time-effective way.

Then, to complete the instructional package, we are developing student projects and an instructor’s
guide. The student projects will give your students a chance to develop complete applications on their
own. The instructor’s guide will include solutions to the exercises, solutions to the student projects,
tests, answers, and PowerPoint slides for classroom presentations. Taken together, this book, its CD,
and the instructional materials make a powerful teaching package.

Murach’s Beginning Java 2

 page 5

To find out more, please go to the “Instructor Info” section of our web site at www.murach.com, call us
at 1-800-221-5528, or e-mail us at murachbooks@murach.com. And if you feel that something is
missing from our instructional materials, please let us know so we can fix that.

Please let us know how this book works for you
When we started this book, our goals were (1) to teach you Java as quickly and easily as possible, and
(2) to teach you the practical Java concepts and skills that you need for developing real-world business
applications. Now, we sincerely hope that we’ve succeeded.
If you have any comments about this book, we’d appreciate hearing from you. In particular, we’d like to
know whether this book has lived up to your expectations. To reply, you can e-mail us at
murachbooks@murach.com or send your comments to our street address.

Thanks for buying this book. Thanks for reading it. And good luck with your Java programming.

Andrea Steelman, Author
July 6, 2001

Joel Murach,
Editor
July 6, 2001

Murach’s Beginning Java 2

 page 6

Section I: The essence of Java programming
The best way to learn Java programming is to start doing it, and that’s the approach the chapters in this
section take. So in chapter 1, you get started right as you learn how to get Java on your system and
how to compile and run Java programs. Then, in chapters 2 and 3, you learn how to use the Java
language essentials as you write your first Java applications. At this point, you’re using some of the
basic Java classes and objects, but you’re not writing object-oriented programs.
To develop programs the way the professionals do, however, you need to write object-oriented
programs. So that’s what you’ll learn how to do in the next two chapters. In chapter 4, you learn how to
write programs that consist of two or more classes. In chapter 5, you are introduced to all of the object-
oriented concepts and skills that you need as you work with Java. These are useful as you create and
use your own classes and objects, and they are absolutely essential for making effective use of the
hundreds of classes that Java provides.
Before you can write an effective object-oriented program, though, you need to know how to design and
test an object-oriented program. So that’s what you’ll learn to do in the last chapter of this section. When
you complete it, you’ll have the essential skills that you need for designing, coding, and testing object-
oriented Java programs. You’ll also have a clear view of what Java programming is and what you have
to do to become proficient at it. That’s why we call this section “The essence of Java programming.”

Chapter List
Chapter 1: How to get started with Java
Chapter 2: Java language essentials (part 1)
Chapter 3: Java languageessentials (part 2)
Chapter 4: How to write object-oriented programs
Chapter 5: How to work with inheritance and interfaces
Chapter 6: How to design and test object-oriented programs

Chapter 1: How to get started with Java
Before you can begin learning the Java language, you need to install Java and you need to learn how to
use some tools for working with Java. So that’s what you’ll learn in this chapter. Along the way, you’ll be
introduced to some of the concepts and terms you need for working with Java.

Introduction to Java
In 1996, Sun Microsystems released a new programming language called Java. This language had
some unique features that gave it great promise as a language that could be used on all platforms for all
types of applications. In the three figures that follow, you’ll learn more about this language, its features,
and its applications.

Toolkits and platforms
Figure 1-1 describes all major releases of Java to date starting with version 1.0 and ending with version
1.4. As you can see, Sun referred to versions 1.0 and 1.1 of the Java toolkit as the Java Development
Kit (JDK). With version 1.2, however, Sun began using the term Software Development Kit (SDK) to
describe the Java toolkit. In practice, these two terms are often used interchangeably. In this book, we’ll
use the term SDK since it’s the most current term.
All versions of the SDK since version 1.2 are referred to as Java 2 because they all run under the Java
2 Platform. This book will show you how to use the Java 2 Platform, Standard Edition (J2SE). Once you
master the Standard Edition, you will have all the skills you need to begin learning how to use the Java
2 Platform, Enterprise Edition (J2EE). In fact, many of the same skills apply to both editions.

One reason that Java has become so widely used is that it can create programs that can run on any of
the operating systems shown in this figure. In addition, Java programs can also be run under the
Macintosh operating system. You’ll learn more about the details of how this works later in this chapter.

Java compared to C++

When Sun’s developers created Java, they tried to keep the syntax for Java similar to the syntax for
Microsoft C++ so it would be easy for C++ programmers to learn Java. That’s one of the four features
that are used for comparing Java and C++ in this figure.

Murach’s Beginning Java 2

 page 7

The second feature is one of the most touted Java features. Specifically, Java is designed so its
applications can be run on any computer platform. In contrast, C++ needs to have a specific compiler
for each platform that its applications are going to run on. You’ll learn more about this in figure 1-3.

The third feature, though, indicates one of the weaknesses of Java. Specifically, the speed (or
performance) of its applications is often considerably slower than the speed of traditional applications. In
fact, this is an issue that limits the use of Java for some types of applications.

The fourth feature has to do with the use of internal memory. Specifically, Java is easier to use than
C++ because it handles many operations involving the creation and destruction of memory
automatically. This also makes it easier to write bug-free code.

Figure 1-1: Introduction to Java
Java timeline

Operating systems supported by Sun

 Win-32 (Windows NT, Windows 95, Windows 98, Windows 2000, and Windows XT)
 Solaris (SPARC or Intel platform)
 Linux

Java compared to C++

Description

 Versions 1.0 and 1.1 of the Java toolkit were called the Java Development Kit, or
JDK.

 Versions 1.2 through 1.4 of the Java toolkit are called the Software Development Kit,
or SDK.

 The Java 2 Platform, Standard Edition, or J2SE, supports versions 1.2 through 1.4 of
the SDK.

 The Java 2 Platform, Enterprise Edition, or J2EE, can be used to create enterprise-
level, server-side applications.

Murach’s Beginning Java 2

 page 8

Applications, applets, and servlets
Figure 1-2 describes the three types of programs that you can create with Java. First, you can use Java
to create applications. This figure shows an application that uses a graphical user interface, or GUI, to
get user input and perform a calculation. In this book, you’ll be introduced to a variety of applications
with the emphasis on GUI applications that get data from files and databases.
One of the unique characteristics of Java is that you can use it to create a special type of web-based
application known as an applet. For instance, this figure shows an applet that works the same way as
the application above it. The main difference between an application and an applet is that an applet can
be stored in an HTML page and can run inside a Java-enabled browser. As a result, you can distribute
applets via the Internet or an intranet. After you master the basics of building GUI applications, chapter
15 shows you how to create applets.
The Enterprise Edition of the Java 2 Platform can be used to create a special type of server-side
application known as a servlet. Servlets can access enterprise databases and make that data available
via the web. Since servlets are an advanced subject, they aren’t presented in this book.

Figure 1-2: Applications, applets, and servlets
An application

An applet

Description

 An application is a program that runs in a window. The application shown above uses
a graphical user interface, or GUI, to get input and display output.

 An applet is a special type of program that runs within a web browser after it has
been retrieved from the Internet or an intranet. You’ll learn how to create applets in
chapter 15.

 A servlet is a special type of program that does server-side processing.

How Java compiles and interprets code
Figure 1-3 shows how Java compiles and runs an application. To start, you can use any text editor to
enter and edit Java source code. Then, you use the Java compiler to compile the source code into a
format known as Java bytecodes. At this point, the bytecodes can be run on any platform that has a
Java interpreter to interpret (or translate) the Java bytecodes into code that can be understood by the
underlying operating system.
Since Java interpreters are available for all major operating systems, you can run Java on most
platforms. This is what gives Java applications their platform independence. In contrast, C++ requires a
specific compiler for each type of platform that its programs are going to run on. When a platform has a

Murach’s Beginning Java 2

 page 9

Java interpreter installed on it, it can be considered an implementation of a Java virtual machine, or
JVM.

To enhance the platform independence of Java, some web browsers like Netscape and the Internet
Explorer are Java-enabled. In other words, these browsers contain Java interpreters. This allows
applets, which are bytecodes that are downloaded from the Internet or an intranet, to run within a web
browser.
The problem with this is that both Netscape and the Internet Explorer only support older versions of the
Java interpreter. In addition, Netscape and the Internet Explorer support slightly different subsets of the
Java language. To solve this problem, Sun has developed a tool known as the Java plug-in, which lets
the user upgrade the interpreter to a later version. This make it possible to develop applets that take
advantage of the latest features of Java, but this works better for intranet applications than Internet
applications. You’ll learn more about this in chapter 15.

Figure 1-3: How Java compiles and interprets code
How Java compiles and interprets code

Description

 Any text editor can save and edit the source code for a Java application. Source code
files use the java extension.

 The Java compiler translates source code into a platform-independent format known
as Java bytecodes. Files that contain Java bytecodes use the class extension.

 The Java interpreter executes Java bytecodes. Since Java interpreters exist for all
major operating systems, Java bytecodes can be run on most platforms. Any
computer with a Java interpreter can be considered an implementation of a Java
virtual machine (JVM).

 Some web browsers like Netscape and the Internet Explorer contain Java
interpreters. This lets applets run within these browsers. However, both Netscape
and the Internet Explorer only provide older versions of the Java interpreter.

 Sun provides a tool known as the Java plug-in that allows the Netscape and Internet
Explorer browsers to use the most current version of the Java virtual machine.

How to get Java on your system
Before you can start to use Java, the SDK must be installed on your system. In addition, your system
may need to be configured to work with the SDK. If Java isn’t already installed and your system isn’t
already configured, you can use the next three figures to make sure it is. Then, you’ll be ready to create
your first Java application. Even if Java is already installed on your system, though, you should read the
summary of files and directories that are part of the SDK.

Murach’s Beginning Java 2

 page 10

How to install the SDK
Figure 1-4 shows how to install version 1.3.1 of the SDK. If you’re using Windows, the easiest way to do
that is to use the CD that comes with this book. Just navigate to the directory that holds the Windows
SDK and run the setup file. Then, respond to the resulting dialog boxes. However, if you want to install a
different version of Java, you can download that version from the Java web site as described in this
figure.

Since Sun is continually updating the Java web site, the procedure shown in this figure may not be up-
to-date by the time you read this. As a result, you may have to do some searching to find the current
version of the SDK. In general, you can start by looking for products for the Java 2 Platform, Standard
Edition. Then, you can find the most current version of the SDK for your operating system.

Figure 1-4: How to install the SDK
The Java web site address

www.java.sun.com

How to download and install the SDK from the Java web site
1. Go to the Java web site.
2. Locate Java products and find the Java 2 Platform, Standard Edition.
3. Go to the download page for the most current SDK version that’s available for your

platform.
4. After clicking on the download button, follow the instructions. Note the name of the

file and the download size.
5. Select one of the FTP download options, unless you’re behind a firewall and you

need to use the HTTP option.
6. Save the setup file to your hard disk. On a 56K modem, it takes about 2 hours to

download this file.
7. Once the entire package has downloaded, check to make sure that you got the

executable and that the size is correct. Otherwise, you will get an error when you
try to run the executable.

8. Run the exe file, and respond to the resulting dialog boxes. When you’re prompted
for the SDK directory, use the default directory and install all of the components
unless disk space is a problem.

How to install the Windows SDK from the CD that comes with this book
1. Put the CD that comes with this book into your CD drive, and navigate to the

WindowsSDK directory. (If you want to use some other platform, you need to
download it from the Java web site.)

2. Double-click on the exe file, and respond to the resulting dialog boxes. When you’re
prompted for the SDK directory, use the default directory. Then, install all of the
components unless disk space is a problem.

A summary of the directories and files of the SDK
Figure 1-5 shows the directories and files that are created when you install the SDK. Here, the SDK is
stored in the c:\jdk1.3.1 directory. By default, this directory has six subdirectories: bin, demo, include,
include-old, jre, and lib.
The bin directory holds all the tools necessary for developing and testing a program including the Java
compiler. The demo directory contains many sample applications and applets. You can browse through
these to learn more about what Java can do, and you can review the source code. The two include
directories hold header files for the C programming language. These directories allow you to incorporate
C code into a Java program.
The jre directory contains the Java interpreter, or Java Runtime Environment (JRE), that’s needed to
run Java applications once they’ve been compiled. Although the SDK uses this internal version of the
JRE, you can also download a standalone version of the JRE from the Java web site. Once you’re done
developing a Java application, for example, you can distribute the standalone JRE to other computers
so they can run your application. The lib directory contains libraries and support files required by the
development tools.
The last directory is the docs directory, which is used to store the Java documentation. In chapter 3,
you’ll learn how to download and install this documentation.

Murach’s Beginning Java 2

 page 11

In the jdk1.3.1 directory, you can find two readme files that contain much of the information that’s
presented in this figure as well as more technical and detailed information about the SDK. You can view
the HTML file with a web browser, and you can open the text file with a text editor.
The jdk1.3.1 directory also contains the src.jar file, which is a type of compressed file known as a Java
Archive file, or JAR file. This file holds the source code for the SDK. Before you can view the source
code, though, you must extract the files that contain the source code from this JAR file. You’ll learn how
to do this in chapter 15.
When you work with Windows, you’ll find that it uses the terms folder and subfolder to refer to DOS
directories and subdirectories. For consistency, though, we use the term directory throughout this book.
In practice, these terms are often used interchangeably.

Figure 1-5: A summary of the directories and files of the SDK
The file structure of the SDK

The subdirectories of the SDK

The files of the SDK

Description

 The Java Runtime Environment, or JRE, is the Java interpreter that allows you to run
compiled programs in Java. The jre directory is an internal copy of the runtime
environment that works with the SDK. You can also download a standalone version
of the JRE for computers that don’t have the SDK installed on them.

Murach’s Beginning Java 2

 page 12

 The src.jar file is a compressed file known as a Java Archive file, or JAR file. If you
use the jar tool that comes with the SDK to extract the files from this JAR file, you
can view the source code of the Java API.

How to configure Windows to work with the SDK
Figure 1-6 shows you how to configure Windows to make it easier to work with the SDK. If you’re not
using Windows, you can refer to the Java web site to see what you need to do to configure Java for
your system.
To configure Windows to work with the SDK, you need to add the bin directory to the command path.
That way, Windows will know where to look to find the Java commands that you use.
One way to update the path for Windows 95 or 98 is to use the procedure in this figure to edit the Path
or Set Path command in the autoexec.bat file. This is the file that is automatically executed every time
you start your computer. After you edit the file, you can enter c:\autoexec.bat at the DOS prompt to run
the autoexec.bat file and establish the new path. Then, you can enter path at the command prompt to
make sure that the bin directory is now in the command path.

When you edit the autoexec.bat file, be careful! Since this file may affect the operation of other
programs on your PC, you don’t want to delete or modify any of the commands that this file contains.
You only want to add one directory to the command path. If that doesn’t work, be sure that you’re able
to restore the autoexec.bat file to its original condition.

If you’re using a later version of Windows, you can use the second procedure in this figure to set the
command path. It is easier to use with less chance that you’ll do something that will affect the operation
of other programs.

If you don’t configure Windows in this way, you can still compile and run Java programs, but it’s more
difficult. In particular, you need to enter the path for each program that you’re going to run. For instance,
you need to enter
\jdk1.3.1\bin\javac

to run the javac command that’s stored in the c:\jdk1.3.1\bin directory. This is illustrated by the last
example in this figure. If you understand DOS, you should understand how this works.

Figure 1-6: How to configure Windows to work with the SDK
A typical Path statement in the autoexec.bat file

How to set the path for Windows 95/98/2000

1. Go to the Start menu and select the Run option.
2. In the Run dialog box, enter “sysedit” and select OK. This should start the System

Configuration Editor.
3. If necessary, use the Window menu to switch to the autoexec.bat file.
4. If the file contains a Path or Set Path command, type a semicolon at the end of the

command; then, type “c:\jdk1.3\bin” as shown above. If no such command is there,
enter “path=c:\jdk1.3\bin” at the beginning of the file.

5. Save the file and exit the System Configuration Editor.
6. To have the new path take effect, you can restart your computer (which runs the

autoexec.bat file) or you can open up an MS-DOS window and enter
c:\autoexec.bat at the DOS prompt.

How to set the path for Windows NT
1. Go to the Start menu, point to Settings, and select the Control Panel.
2. Select the Environment option.
3. Add c:\jdk1.3.1\bin to the far right side of the current path in User Variables or System

Variables and select OK.
The commands for compiling and running a program if you set the path

Murach’s Beginning Java 2

 page 13

The same commands if you don’t set the path

Description
 After you add the Java bin directory to the path, Windows is able to find the commands

that you use to compile and run your Java programs. From any DOS prompt, you can
display the current path by typing “path”.

 To configure other operating systems, you can refer to the Java web site.

How to use Windows tools to work with Java
Once the SDK is installed on your computer and configured for your operating system, you’re ready to
create your first application. Since most Java programmers use Windows, you will now learn how to use
the Windows tools for compiling and running Java programs. In particular, you will learn how to use
Notepad for entering and editing a program and the DOS prompt for compiling and testing it.

This will give you the general idea of how a Java program is developed on any platform. Then, if you’re
using another operating system, you can learn similar procedures for developing programs on that
system.

Note, however, that this chapter will soon show you how to use a product named TextPad for entering,
compiling, and running Java programs on a Windows system. Since this is simpler than using Notepad
and DOS commands and since TextPad is included on the CD for this book, we recommend that you
use TextPad as you develop the programs for this book. As a result, you should read the procedures
that follow primarily for the perspective that they give. Later, if you actually need to use these
procedures, you can refer back to them for specific details.

How to use Notepad to save and edit source code
Figure 1-7 shows how to use the Notepad text editor to save and edit the source code for an
application. After you start Notepad, you can enter and edit the code just as you would with any text
editor. However, saving a source code file can be tricky for two reasons.
First, you must use the four-letter java extension. Second, since Java is a case-sensitive language, you
must save the file with the proper capitalization. If the capitalization of the filename doesn’t match the
capitalization of the class name that’s used in the Java code, you’ll get an error message when you try
to compile the code. In this figure, you can see that “BookOrderApp” is used in both the code and the
filename.

To make sure you get the capitalization and the java extension right, you should enclose the filename in
quotation marks as shown in this figure. Otherwise, Notepad may truncate the extension to jav or
change the capitalization in the filename. Either way, you’ll get errors when you try to compile the
source code.
In addition, you must save the source code in a standard text-only format such as the ASCII format or
the ANSI format. Since Notepad only supports ASCII, you can’t go wrong when you’re using Notepad.
If, however, you’re using a text editor or word processor that supports other formats, you’ll need to make
sure that you save the file in one of these standard text-only formats.

Figure 1-7: How to use NotePad to save and edit source code
The Notepad text editor with source code in it

Murach’s Beginning Java 2

 page 14

The bottom part of Notepad’s Save As dialog box

Syntax to save the code in a file

"ProgramName.java"
Typical capitalization for file names

Book.java
BookOrderApp.java

Operation
 To start Notepad, click on the Start menu, select Programs, select Accessories, and

select Notepad.
 To enter or edit code, use the same techniques that you use with any other text editor

or word processor.
 To save the source code, select the Save command from the File menu and enter the

filename within quotation marks. That way, the file will be saved with the
capitalization that you’ve used and with the java extension. Otherwise, the
capitalization may be changed or the extension may be truncated to jav. (On some
versions of Windows, the quotation marks may not be necessary, so you may want
to experiment with this.)

How to use the DOS prompt to compile source code
Figure 1-8 shows how to use the DOS prompt, or command prompt, to compile and run applications. To
start, you should use the change directory (cd) command to change the current directory to the directory
that holds the application. In this figure, for example, you can see that the directory has been changed
to c:\java\ch01 because that’s the directory that the BookOrderApp.java file is stored in.
Then, to compile an application, you use the javac command to start the Java compiler. When you enter
the javac command, you follow it by a space and the complete name of the *.java file that you want to
compile. Here again, because Java is case-sensitive, you need to use the same capitalization that you
used when you saved the *.java file.

If the application doesn’t compile successfully, the Java compiler will display one or more error
messages. Usually, you can get an idea of what caused each error by reading its message. Then, you
can use Notepad to correct and resave the *.java file, and you can compile the program again. Since
this means that you’ll be switching back and forth between Notepad and the DOS prompt, you’ll want to
leave both windows open.

Murach’s Beginning Java 2

 page 15

When you compile an application successfully, the Java compiler will create a *.class file that has the
same filename as the *.java file. For example, a successful compilation of the BookOrderApp.java file
will create the BookOrderApp.class file.

How to use the DOS prompt to run an application
To run a program, you use the java command to start the Java interpreter. Although you need to use the
proper capitalization when you use the java command, you don’t need to include an extension for the
file. When you enter the java command correctly, the Java interpreter will run the *.class file for the
application.
Most of the time, running a Java program will display a graphical user interface like the one shown in
figure 1-2. However, you can also print information to the DOS prompt, which in that case is called the
console. For example, the BookOrderApp file in this figure prints a single line of text to the console.

When an application ends properly, you will be returned to the DOS prompt. Then, you can enter
another command. If an application doesn’t end properly, though, you can press Ctrl+C to cancel the
execution of the program and return to the DOS prompt.

Figure 1-8: How to use the DOS prompt to compile and run an application
The commands for compiling and running an application

Syntax to compile an application

javac ProgramName.java
Syntax to run an application

java ProgramName
Description

 The DOS prompt, or command prompt, is the prompt that indicates that the operating
system is waiting for the next command. When you use DOS, this prompt usually
shows the current directory, and it always ends with >. In the example above, the
last line is the command prompt, which shows that the current directory is
c:\java\ch01.

Operation
 To open the DOS Prompt window with Windows 95, 98 or NT, click on the Start

button, select Programs, and select MS-DOS Prompt. With Windows 2000, click on
the Start button, select Accessories, and select Command Prompt.

 To change to the directory that contains the file with your source code, use the
change directory command (cd) as shown above.

 To compile the source code, enter the Java compile command (javac), followed by
the filename (including the java extension).

 If the code compiles successfully, the compiler generates another file with the same
name, but with class as the extension. This file contains the bytecodes.

 If the code doesn’t compile successfully, the java compiler will generate error
messages. Then, you must switch back to your text editor, fix the errors, save your
changes, and try compiling the program again.

 To run the compiled version of your source code, enter the Java command (java),
followed by the program name without any extension. Since this is a case-sensitive
command, make sure to use the same capitalization that you used when naming the
file.

Murach’s Beginning Java 2

 page 16

Note
The code shown in the DOS Prompt window above will only work if c:\jdk1.3.1\bin
has been added to the command path as in figure 1-6.

Common error messages and solutions
Figure 1-9 summarizes some common error messages. The first two errors illustrate compile-time
errors. These are errors that occur when the Java compiler tries to compile the program. In contrast, the
third error illustrates a run-time error. That is an error that occurs while the Java interpreter is trying to
run the program.

The first error message in this figure involves a syntax error. When the compiler encounters a syntax
error, it prints two lines for each error. The first line prints the name of the *.java file, followed by a colon,
followed by the line number for the error, followed by a brief description of the error. The second line
prints the code that caused the error including a caret character that tries to identify the location where
the syntax error occurred. In this example, the syntax error is that a semicolon is missing at the end of
the line.
The second error message in this figure involves a problem defining the public class for the file. The
compiler displays an error message like this when the filename for the *.java file doesn’t match the
name of the public class defined in the source code. For example, a *.java file that defines a class
named BookOrderApp must contain this code
public class BookOrderApp{
and this file must be saved as BookOrderApp.java. If the name of the file doesn’t match the name of the
public class (including capitalization), the compiler will give you an error like the one shown in this
figure. You’ll learn more about the syntax for defining a public class in the next chapter.

The third error message in this figure occurs if you enter the wrong name after the java command. If, for
example, you enter “bookorderapp” after the java command, you’ll get an error like this. That’s because
the capitalization for the class isn’t correct. If, on the other hand, you enter “BookOrderApp.class” after
the java command, you’ll get a similar error. That’s because you shouldn’t include the extension when
you use the java command.

Most of the time, the information displayed by an error message will give you an idea of how to fix the
problem. Sometimes, though, the compiler doesn’t give you accurate error messages. In that case,
you’ll need to double-check all of your code. You’ll learn more about debugging error messages like
these as you progress through this book.

Figure 1-9: Common error messages and solutions
A common error message

Two common compile-time error messages and solutions

Error: BookOrderApp.java:3: ‘;’ expected
System.out.println("Title: War and Peace

Murach’s Beginning Java 2

 page 17

Description: The first line in this error message displays the filename of the
*.java file, a number indicating the line where the error occurred,
and a brief description of the error. The second line displays the
line of code that may have caused the error with a caret symbol (^)
below the location where there may be improper syntax.

Solution: Use a text editor to correct the problem and save the file.

Error: BookOrderApp.java:1: class BookOrder is public,
should be
declared in a file named BookOrder.java
public class BookOrder{

Description: The *.java filename doesn’t match the name of the public class.
Remember, you must save the file with the same name as the
name that’s coded after the words “public class”. In addition, you
must add the java extension to the filename.

Solution: Enter the correct filename after the javac command. Or, use the
text editor to save the java file with the proper spelling and
capitalization.

A common run-time error message and solution

Error: Exception in thread "main"
java.lang.NoClassDefFoundError:
bookorderapp (wrong name: BookOrderApp)

Description: The name that was entered for the *.class file isn’t correct.
Remember, you must use the proper capitalization and you must
omit the class extension.

Solution: Enter the correct name after the java command. You can use the
dir command to check the capitalization for the file as shown in the
next figure. If necessary, you may need to use the javac command
to recreate the *.class file from the *.java file.

Essential DOS skills for working with Java
Figure 1-10 summarizes some of the most useful commands and keystrokes for working with DOS. In
addition, it shows how to install and use a DOS program called DOSKey, which makes entering and
editing DOS commands easier. If you’re going to use DOS to work with Java, you should review these
DOS commands and keystrokes, and you will probably want to turn on the DOSKey program. If you
aren’t going to use DOS, of course, you can skip this figure.

At the top of this figure, you can see a DOS Prompt window that shows two DOS commands and a
directory listing. In this window, the first command changes the current directory to c:\java\ch01. The
next command displays a directory listing. If you study this listing, you can see that this directory
contains two files with one line of information for each file. At the right side of each line, you can see the
complete filenames for these two files (BookOrderApp.java and BookOrderApp.class), and you can see
the capitalization for these files as well.

If you master the DOS commands summarized in this figure, you should be able to use DOS to work
with Java. To switch to another drive, type the letter of the drive followed by a colon. To change the
current directory to another directory, use the cd command. To display a directory listing for the current
directory, use the dir command. To return to the DOS prompt when an application hasn’t ended
properly, press Ctrl+C. Although DOS provides many more commands that let you create directories,
move files, copy files, and rename files, you can also use the Windows Explorer to perform those types
of tasks.

Although you don’t need to use the DOSKey program, it can save you a lot of typing and frustration. If,
for example, you compile a program and you encounter a syntax error, you will need to use a text editor

Murach’s Beginning Java 2

 page 18

to fix the error in the source code. Then, you will need to compile the program again. If you’re using
DOSKey, you can do that by pressing the up-arrow key to display the command and by pressing the
Enter key to execute the command. And if you make a mistake when entering a command, you can use
the left- and right-arrow keys to edit the command instead of having to enter the entire command again.

Figure 1-10: Essential DOS skills for working with Java
A directory listing

A review of DOS commands and keystrokes

How to start the DOSKey program

 To start the DOSKey program, enter “doskey /insert” at the command prompt.
 To automatically start the DOSKey program for all future sessions, enter the“doskey

/insert” statement after the “path” statement in the autoexec.bat file. For help on
editing the autoexec.bat file, see figure 1-6.

How to use the DOSKey program

Murach’s Beginning Java 2

 page 19

How to use TextPad to work with Java
Now that you’ve learned how to use Notepad and the DOS prompt for working with Java, you’re ready
to learn how to use TextPad. Since this text editor is designed for working with Java, it’s a big
improvement over Notepad. As a result, we recommend that you use the trial version that’s included on
the CD that comes with this book.

Unfortunately, TextPad only runs under Windows. So if you’re not using Windows, you can use the text
editor that comes with your operating system or you can search the web to find a better text editor.

How to use TextPad to save and edit source code
Figure 1-11 shows how to use TextPad to save and edit source code. In short, you can use the
standard Windows shortcut keystrokes and menus to enter, edit, and save your code. You can use the
File menu to open and close files. You can use the Edit menu to cut, copy, and paste text. And you can
use the Search menu to find and replace text. In addition, TextPad color codes the source files so it’s
easier to recognize the Java syntax, and TextPad makes it easier to save *.java files with the proper
capitalization and extension.

Unlike Notepad, TextPad doesn’t come as a part of Windows. As a result, you must install it before you
can use it. To do that, run the setup file that’s on the CD that comes with this book. Then, respond to the
resulting dialog boxes. Since this version of TextPad is a trial version, you should pay for TextPad if you
decide to use it beyond the initial trial period. Fortunately, this program is relatively inexpensive (about
$27), especially when you consider how much time and effort it can save you.

Figure 1-11: How to use TextPad to save and edit source code
The TextPad text editor with source code in it

TextPad’s Save As dialog box

Murach’s Beginning Java 2

 page 20

How to install TextPad on your PC
 Navigate to the TextPadSetup directory on the CD that comes with this book. Then,

double-click on the exe file and respond to the resulting dialog boxes.
How to enter, edit, and save source code

 To enter and edit source code, you can use the same techniques that you use for
working with any other Windows text editor.

 To save the source code, select the Save command from the File menu (Ctrl+S). Then,
enter the filename so it’s exactly the same as the class name, and select the Java
option from the Save As Type list so TextPad adds the four-letter java extension to the
file-name. (On earlier versions of Windows, you may need to enter the four-letter
extension with the filename as in BookOrderApp.java. Otherwise, the extension will be
truncated to jav.)

How to use TextPad to compile source code
Figure 1-12 shows how to use TextPad to compile the source code for a Java application. The quickest
way to do that is to press Ctrl+1 to execute the Compile Java command of the Tools menu. If the source
code compiles cleanly, TextPad will generate a Command Results window and return you to the original
source code window.

However, if the source code doesn’t compile cleanly, TextPad will leave you at a Command Results
window like the one shown in this figure. In this case, you can read the error message, switch to the
source code window, correct the error, and compile the source code again. Since each error message
identifies the line number of the error, you can make it easier to find the error by selecting the Line
Number option from the View menu. That way, TextPad will display line numbers as shown in this
figure.

When you have several Java files open at once, you can use the Document Selector pane to switch
between files. In this figure, only two documents are open (BookOrderApp and Command Results), but
you can open as many Java files as you like. You can also use the Window menu and standard
Windows keystrokes (Ctrl+F6 and Ctrl+Shift+F6) to switch between windows.
To edit as efficiently as possible, you can use the Document Properties command in the View menu to
set formatting options. In particular, you should set the tab settings so you can easily align the code in a
program. You’ll learn more about that in the next chapter.

Murach’s Beginning Java 2

 page 21

How to use TextPad to run an application

Once you’ve compiled the source code for an application, you can run that application by pressing
Ctrl+2. If the application that you run prints text to the console, TextPad will start a DOS Prompt window
like the one shown in this figure. Then, you can press any key to end the application. If necessary, you
can also click on the Close button or press Alt+F4 to close the DOS Prompt window.

Figure 1-12: How to use TextPad to compile and run an application
The Tools menu

A compile-time error

Text printed to the console

How to compile and run an application

 To compile the current source code, press Ctrl+1 or select the Compile Java
command from the Tools menu.

 To run the current application, press Ctrl+2 or select the Run Java Application
command.

 If you encounter compile-time errors, TextPad will print them to a window named
Command Results. To switch between this window and the window that holds the
source code, you can press Ctrl+F6 or use the Document Selector pane that’s on
the left side of the TextPad window.

 When you print to the console, a DOS window like the one above is displayed, and
you need to press any key to end the application. If necessary, you can press
Alt+F4 or click on the Close button to close the window.

How to display line numbers and set options
 To display the line numbers for the source code, check Line Numbers in the View

menu.

Murach’s Beginning Java 2

 page 22

 To set formatting options like tab settings, choose Document Properties in the View
menu.

Introduction to Java IDEs
Many Integrated Development Environments (IDEs) are available for working with Java. A typical IDE
not only provides a text editor, but also visual tools for designing forms and debugging code. To
illustrate a typical IDE, this topic uses Forte for Java, an IDE that’s available for free from the Java web
site. However, many other IDEs are available such as Borland’s JBuilder, WebGain’s VisualCafé,
Oracle’s JDeveloper, and Metrowerk’s CodeWarrior.
The first screen in figure 1-13 shows two of the Forte windows that can be used to edit source code.
Here, the Explorer window has been used to open the source code for a program named ClockFrame in
the Editor window.

The second screen in this figure shows the windows that can be used to visually create the forms of a
graphical user interface. Here, you can place visual components such as labels, text boxes, and buttons
on a form. Then, you can use the Component Inspector window to view and modify the properties of
these components. When you’re done, you can use Forte to generate the appropriate code for the form.

In addition, Forte provides many advanced debugging features that aren’t available from a simple tool
like TextPad. For example, Forte provides a Debugger window and a Debug menu that allows you to
set breakpoints and step through code line by line.

Why we don’t recommend using an IDE when you’re learning Java

We don’t recommend using an IDE when you’re learning Java for two reasons. First, an IDE will often
generate code for you. Although this can save time and effort once you’ve learned Java, this won’t help
you learn. While you’re learning, you need to have complete control over the code. Second, an IDE is a
complex tool with operational details that are themselves difficult to learn. And that can distract you from
your learning goals.

Why we recommend using an IDE once you’ve mastered Java

Once you’ve got a solid grasp on the use of Java, an IDE is a sophisticated tool that can make working
with Java easier. In particular, an IDE can make it easier to develop graphical user interfaces and to
debug your code. So when you’re through reading this book, you’ll be ready to start using one of these
tools. That’s why we’ve included Forte for Java on the CD that comes with this book.

Figure 1-13: The Integrated Development Environment for Forte
Forte’s Editing workspace

Murach’s Beginning Java 2

 page 23

Forte’s GUI Editing workspace

Perspective
In this chapter, you learned how to install and configure the SDK for developing Java programs. You
also learned how to use either the Windows tools or TextPad to enter, edit, compile, and run a program.

Murach’s Beginning Java 2

 page 24

With that as background, you’re ready to start writing your own Java programs. And that’s what you’ll
learn to do in the next chapter.

Summary
 You use the Software Development Kit (SDK) to develop Java programs. This used to

be called the Java Development Kit (JDK). Versions 1.2 and later of the SDK run under
the Java 2 Platform, Standard Edition (J2SE) so they are referred to as Java 2.

 You can use the Standard Edition of Java to create applications and a special type of
Internet-based application known as an applet. In addition, you can use the Java 2
Platform, Enterprise Edition (J2EE) to create server-side applications known as servlets.

 The Java compiler translates source code into a platform-independent format known as
Java bytecodes. Then, the Java interpreter, or Java Runtime Environment (JRE),
translates the bytecodes into instructions that can be run by a specific operating system.
Any machine that has a Java interpreter installed on it can be considered an
implementation of a Java virtual machine (JVM).

 When you use the SDK with Windows, you should add the bin directory to the command
path.

 When you use Windows for developing Java programs, you can use Notepad as the
text editor. Then, you can use the DOS prompt to enter the commands for compiling
and running an application.

 To compile an application, you use the javac command to start the Java compiler. To
run an application, you use the java command to start the Java interpreter.

 When you compile a program, you may get compile-time errors. When you run a
program, you may get run-time errors.

 A text editor like TextPad provides features that make it easier to enter, edit, compile,
and test Java programs.

 Once you’ve mastered the basics of Java, an Integrated Development Environment
(IDE) can make working with Java easier. While you’re learning, though, it’s better to
use a text editor like TextPad.

Terms
Java Development Kit (JDK) folder

Software Development Kit (SDK) subfolder

Java 2 directory

Java 2 Platform, Standard Edition (J2SE) subdirectory

Java 2 Platform, Enterprise Edition (J2EE) command path

application autoexec.bat file

graphical user interface (GUI) text editor

applet case-sensitive

servlet ASCII format

source code ANSI format

Java compiler DOS prompt

bytecodes command prompt

Java interpreter javac command

platform independence java command

Java virtual machine (JVM) console

Java plug-in compile-time error

Java Runtime Environment (JRE) run-time error

Java Archive file (JAR file) Integrated Development Environment (IDE)

Objectives
 Describe how Java compares with C++ based on these features: syntax, platform

independence, and speed.

Murach’s Beginning Java 2

 page 25

 Name and describe the three types of programs that you can create with Java.
 Explain how the use of bytecodes helps Java achieve platform independence.
 Install version 1.3.1 of the SDK for the Java 2 Platform, Standard Edition. If necessary,

configure your system to work with the SDK.
 Given the source code for a Java application, use Notepad and the DOS prompt to

enter, edit, compile, and run a program.
 Given the source code for a Java application, use TextPad to enter, edit, compile, and

run the program.

Before you do the exercises for this chapter
Before you begin the exercises that follow, you should run the install program for the CD that comes
with this book to install its directories and files. Then, you should copy the Java directory that’s in the
c:\Murach\Java2\ExerciseStarts directory to your c drive. You should use the procedure in figure 1-4 to
install the SDK. You should use the procedure in figure 1-6 to set the command path for your system.
And you should use the procedure in figure 1-11 to install TextPad.

Exercise 1-1: Use TextPad to develop an application

This exercise will guide you through the process of using TextPad to enter, save, compile, and run a
simple application.
Enter and save the source code

1. Start TextPad. You should be able to do that by clicking on the Start button, pointing
to Programs, pointing to TextPad, and clicking on TextPad.

2. Enter this code (type carefully and use the same capitalization):
3. public class TextPadTest{
4. public static void main(String[] args){
5. System.out.println("TextPad test");
6. }

}
7. Use the Save command in the File menu to display the Save As dialog box. Next,

navigate to the c:\java\ch01 directory and enter TextPadTest in the File name box. If
necessary, select the Java option from the Save as Type combo box. Then, click on
the Save button to save the file. (If this saves the file with jav as the extension, use
the Save As command to save the file again. This time, type TextPadTest.java as the
filename.)

Compile the source code and run the application
4. Press Ctrl+1 to compile the source code.
5. If you get an error message, read the error message, edit the text file, save your

changes, and compile the application again. Repeat this process until you compile
the application cleanly.

6. Press Ctrl+2 to run the application.
7. This application should start a DOS prompt that displays a line that reads “TextPad

test” followed by a line that reads “Press any key to continue…” so press any key.
Then, press Alt+F4 to close the DOS Prompt window if it’s still open. You should be
returned to the TextPad window.

Introduce and correct a compile-time error
8. In the TextPad window, delete the semicolon at the end of the System.out.println

statement. Then, press Ctrl+1 to compile the source code. TextPad should display
an error message in the Command Result window that indicates that the semicolon
is missing.

9. In the Document Selector pane, click on the TextPadTest.java file to switch back to
the source code. Then, press Ctrl+F6 twice to toggle back and forth between the
Command Result window and the source code.

10. Correct the error and compile the file again (this automatically saves your changes).
This time the file should compile cleanly. Then, close the file and exit TextPad.

Exercise 1-2: Use Windows tools to develop an application

If you want to see how the Windows tools work for developing an application, this exercise will guide
you through the process of using Notepad and the DOS prompt to save, compile, and run a simple

Murach’s Beginning Java 2

 page 26

application. This will also give you a good idea of how you can use a text editor and the command
prompt on any operating system.
Use Notepad to enter and save the source code

1. Start Notepad. On most systems, you can do that by clicking on the Start button,
pointing to Programs, pointing to Accessories, and clicking on Notepad.

2. Enter this code (type carefully and use the same capitalization):
3. public class NotepadTest{
4. public static void main(String[] args){
5. System.out.println("Notepad test");
6. }

}
7. Select the Save command from the File menu to display the Save As dialog box.

Next, navigate to the c:\java\ch01 directory. Then, enter “NotepadTest.java” in the
File Name text box (with the quotation marks), and click on the Save button to save
the file. (If you want to see whether the quotation marks are needed, use the Save
As command again without the quotation marks to see if the file already exists. If it
does, you don’t need the quotation marks the next time you save a new file.)

Use the DOS prompt to compile and run the application
4. Open a DOS Prompt window. On most systems, you can do that by clicking on the

Start button, pointing to Programs, and clicking on MS-DOS Prompt.
5. Use the cd command to change the current directory to the c:\java\ch01 directory.
6. Use the dir command to view the files that are stored in this directory. If you are in the

correct directory, you should see the NotepadTest.java file. Notice how the right side
of the directory listing shows the long filename.

7. Use the javac command to compile the NotepadTest.java file. If you get an error
message, read the error message, edit the text file, save your changes, and compile
the application again. Repeat this process until you compile the application cleanly.

8. Use the dir command to view the files again. Notice that the file named
NotepadTest.class has been created.

9. Use the java command to run the NotepadTest application (make sure to use the
proper capitalization). This should display the words “Notepad test” after the DOS
prompt. Then, close the Notepad and DOS Prompt windows.

Exercise 1-3: Use the DOS prompt to run an existing application

This exercise shows how to run any Java application from the DOS prompt.
1. Open the DOS Prompt window (see step 4 of exercise 1-2). Then, use the cd

command to change the current directory to c:\java\ch01.
2. Use the java command to run the InvoiceApp application. When the first dialog box is

displayed, enter 1000 as the order total. Then, note the results that are displayed in
the second dialog box, and press the Enter key to try this again. When you’re done
experimenting, enter “x” to end the application. Then, close the DOS Prompt window.

This is the application that you’ll learn how to develop in the next chapter. And this shows how the Java
virtual machine can be used to run any Java application, whether or not it has been compiled on that
machine.

Exercise 1-4: Use any tools to develop an application

If you aren’t going to use Windows tools or TextPad to develop your Java programs, you can try
whatever tools you are going to use with this generic exercise.
Use any text editor to enter and save the source code

1. Start the text editor and enter this code (type carefully and use the same
capitalization):

2. public class Test{
3. public static void main(String[] args){
4. System.out.println("Test");
5. }

}
6. Save this code in the c:\java\ch01 directory in a file named “Test.java”.

Murach’s Beginning Java 2

 page 27

Compile the source code and run the application
3. Compile the source code. If you’re using a text editor that has a compile command,

use this command. Otherwise, use your command prompt to compile the source
code. To do that, start your command prompt and navigate to the c:\java\ch01
directory. Then, enter the javac command like this (make sure to use the same
capitalization):

javac Test.java
4. Run the application. If you’re using a text editor that has a run or execute command,

use this command. Otherwise, use your command prompt to run the application. To
do that, enter the java command like this (make sure to use the same capitalization):

java Test
5. When you enter this command, the application should print “Test” to the console (the

console’s appearance will depend on the tool that you’re using).

Chapter 2: Java language essentials (part 1)
Once you’ve got Java on your system, the quickest and best way to learn Java programming is to do
Java programming. That’s why this chapter shows you how to write a complete Java program that uses
dialog boxes for input and output. When you finish this chapter, you should be able to write comparable
programs of your own.

Basic coding skills
To start, this chapter introduces you to some basic coding skills. First, you’ll learn how to code
comments and Java statements. Next, you’ll learn how create the identifiers that you’ll use in your
programs. Then, you’ll learn how declare the class and main method for a Java application.

How to code comments
Comments can be used to document what a program does, what specific blocks of code do, and what
specific lines of code do. Since the Java compiler ignores comments, you can include them anywhere in
a program without affecting how your code works. Figure 2-1 shows you how to code two types of
comments.
The first example shows a block comment at the start of a program. This type of comment can be used
to document information that applies to the entire program. That can include the author’s name,
program completion date, the purpose of the program, the files used by the program, and so on. Block
comments can also be used in the body of a program to describe and explain the code that follows.
To document the purpose of a single line of code, you can use end-of-line comments. Once the
compiler reads the slashes (//) that start this type of comment, it ignores all characters until the end of
the current line. In the second example in this figure, end-of-line comments indicate the beginnings and
endings of each block of code in a class. Since this can make it easier to keep track of the pairs of
braces that are used within a Java application, this can be useful, especially for beginning Java
programmers.

In practice, a block comment is commonly used at the start of the program to give general information
about the program. In addition, comments should be used to document the portions of the program that
are difficult to understand. The trick is to provide comments for the portions of code that need
explanation without cluttering the program with unnecessary comments.

How to code statements
The statements in a Java program direct the operation of the program. When you code a statement, you
can start it anywhere in a coding line, you can continue it from one line to another, and you can code
one or more spaces anywhere a single space is valid. To end most statements, you code a semicolon.
But when a statement requires a set of braces {}, it ends with the right brace.

To make a program easier to read, you should use indentation and spacing to align statements and
parts of statements. This is illustrated by the program in this figure and by all of the programs and
examples in this book.

Incidentally, you’ll know how to code every statement in this program by the time you complete this
chapter. As you read, you may want to refer back to this figure to see how what you’ve just learned is
used in this program.

Figure 2-1: How to code comments and statements

Murach’s Beginning Java 2

 page 28

A block comment at the start of a program

/*

 * Date: 4/3/01

 * Author: A. Steelman

 * Purpose: Uses one dialog box to get the order total from the user.

 * Then, it calculates the discount amount and invoice total

 * and displays all three values in a second dialog box.

 */

An application that uses end-of-line comments

import javax.swing.JOptionPane; // needed to display dialog boxes

public class InvoiceApp{ // begin class

 public static void main(String[] args){ // begin main method

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){ // begin while loop

 String inputString = JOptionPane.showInputDialog(

 "Enter order total: ");

 double orderTotal = Double.parseDouble(inputString);

 double discountAmount = 0;

 if (orderTotal >= 100)

 discountAmount = orderTotal * .2;

 else

 discountAmount = orderTotal * .1;

 double invoiceTotal = orderTotal - discountAmount;

 String message = "Order total: " + orderTotal + "\n"

 + "Discount amount: " + discountAmount + "\n"

 + "Invoice total: " + invoiceTotal + "\n\n"

 + "To continue, press Enter.\n"

 + "To exit, enter ‘x’: ";

 choice = JOptionPane.showInputDialog(message);

 } // end while loop

Murach’s Beginning Java 2

 page 29

 System.exit(0);

 } // end main method

} // end class

Description
 Comments are used to help document what a program does and what the code

within it does, while Java statements direct what the program does.
How to code comments

 To code a block comment, type /* at the start of the block and */ at the end. You can
also code asterisks to identify the lines in the block, but that isn’t necessary.

 To code an end-of-line comment, type // followed by the comment.
How to code statements

 You can start a statement at any point in a line and continue the statement from one
line to the next. To make a program easier to read, you can use indentation and
extra spaces to align statements and parts of statements.

 Although most statements end with a semicolon, some statements like the while
statement end with the right brace (}) of a pair of braces ({}).

How to create identifiers
As you code a Java program, you need to create and use identifiers. These are the names in the
program that you define. In each program, for example, you need to create an identifier for the name of
the program and for the variables that are used by the program.
Figure 2-2 shows you how to create identifiers. In brief, you must start each identifier with a letter,
underscore, or dollar sign. After that first character, you can use any combination of letters,
underscores, dollar signs, or digits.

Since Java is case-sensitive, you need to pay attention to capitalization when you create and use
identifiers. If, for example, you define an identifier as CustomerAddress, you can’t refer to it later as
Customeraddress. That’s a common compile-time error.

When you create an identifier, you should always try to make the name both meaningful and easy to
remember. To make a name meaningful, you should use as many characters as you need, so it’s easy
for other programmers to read and understand your code. For instance, netPrice is more meaningful
than nPrice, and nPrice is more meaningful than np. To make a name easy to remember, you should
avoid abbreviations. If, for example, you use nwCst as an identifier, you may have difficulty
remembering whether it was nCust, nwCust, or nwCst later on. If you code the name as newCustomer,
though, you won’t have any trouble remembering what it was. Yes, you type more characters when you
create identifiers that are meaningful and easy to remember, but that will be justified by the time you’ll
save when you test, debug, and maintain the program.
Notice that you can’t create an identifier that is the same as one of the Java keywords. These are the
words that are reserved by the Java language, and you’ll learn how to use many of them in this chapter.
Note, however, that the entire language consists of just 50 keywords.

Figure 2-2: How to create identifiers
Valid identifiers

InvoiceApp choice TITLE
Book inputString MONTHS_PER_YEAR
BookOrder orderTotal $orderTotal
BookOrderApp getOrderTotal _orderTotal
BookOrderApp2 x input_string
BookGUI book1 _get_total
BookPanel book2 $_64_Valid

The rules for naming an identifier
 Start each identifier with a letter, underscore, or dollar sign. Use letters, dollar signs,

underscores, or digits for subsequent characters.
 Use up to 255 characters.
 Don’t use Java keywords.

Murach’s Beginning Java 2

 page 30

Keywords
bool
ean

if inter
face

class true

char else packa
ge

volat
ile

false

byte final switc
h

while throws

floa
t

priva
te

case retur
n

native

void prote
cted

break throw implemen
ts

shor
t

publi
c

defau
lt

try import

doub
le

stati
c

for catch synchron
ized

int new conti
nue

final
ly

const

long this do trans
ient

goto

abst
ract

super exten
ds

insta
nceof

null

Description
 An identifier is any name that you create in a Java program. These can be the names

of classes, methods, variables, and so on.
 A keyword is a word that’s reserved by the Java language. As a result, you can’t use

keywords as identifiers.
 When you refer to an identifier, be sure to use the correct uppercase and lowercase

letters because Java is a case-sensitive language.

How to declare a class
When you develop a Java application, you develop one or more classes that do the processing for the
program. As you learned in chapter 1, the code for each class is stored in a *.java file, and the compiled
code is stored in a *.class file. Within each class that you develop, you code one class declaration as
shown in figure 2-3.
In the syntax for declaring a class, the boldfaced words are Java keywords, and the words that aren’t
boldfaced represent code that the programmer supplies. The bar (|) in this syntax means that you have
a choice between the two items that the bar separates. In this case, the bar means that you can start
the declaration with either the word public or the word private.
The words public and private are access modifiers that control the scope of a class. Usually, a class is
declared public, which means that other classes can access it. In fact, you must declare one (and only
one) public class for every *.java file. Later in this book, though, you’ll learn when and how to use
private classes.
After the keywords public and class, you code the name of the class using the basic rules for creating
an identifier. In addition, though, it’s a common Java coding convention to start a class name with a
capital letter and to use letters and digits only. Beyond that, I recommend that you use a noun or a noun
that’s preceded by one or more adjectives for each class, and I recommend that you start every word
within the name with a capital letter. In this figure, all four class names adhere to these rules and
guidelines.

After the class name, the syntax summary shows a left brace, the statements that make up the class,
and a right brace. It’s a good coding practice, though, to type your ending brace right after you type the
starting brace, and then type your code between the two braces. That prevents missing braces, which is
a common compile-time error.
This figure also shows a complete class named InvoiceApp with the class declaration shaded. The
portion of the code that’s between the braces for this class is called the class definition. In this simple
example, the class definition contains three lines of code, and you’ll learn more about them in the next
figure.
When you save your class on disk, you save it with a name that consists of the public class name and
the java extension. As a result, you save the class in this figure with the name InvoiceApp.java.

Murach’s Beginning Java 2

 page 31

Figure 2-3: How to declare a class
The syntax for declaring a class

public|private class ClassName{
 statements}

Typical class declarations

public class InvoiceApp{}

public class BookOrderApp{}

public class Book{}

public class BookOrder{}

A public class named InvoiceApp

public class InvoiceApp{ // begin class

 public static void main(String[] args){

 System.out.println("Invoice application");

 }

} // end class

The rules for naming a class
 Start the name with a capital letter.
 Use letters and digits only.
 Follow the other rules for naming an identifier.

Naming recommendations
 Start every word within a class name with an initial cap.
 Each class name should be a noun or a noun that’s preceded by one or more

adjectives.
Description

 When you develop a Java application, you code one or more classes for it. Within
each class, you code one class declaration.

 The words public and private are access modifiers that control what parts of the
program can use the class. If a class is public, the class can be used by all parts of
the program.

 Most classes are declared public, and each file must contain one and only one public
class. The file name for a class is the same as the class name with java as the
extension.

 The statements between the braces in a class declaration are the class definition.

How to declare a main method
Every Java application contains one or more methods, which are pieces of code that perform tasks
(they’re similar to functions in some other programming languages). The main method is a special kind
of method that’s automatically executed when the class that holds it is run. All Java applications contain
a main method that starts the program.
To start the coding for the main method, you code a main method declaration as shown in figure 2-4.
For now, you can code every main method declaration using the code exactly as it’s shown, even if you
don’t completely understand what each keyword means. Although this figure gives a partial explanation
for each keyword, you can skip that if you like. We included it for those who are already familiar with
object-oriented programming. As you go through this book, of course, you’ll much more about each term
in a method declaration.

Murach’s Beginning Java 2

 page 32

The complete class shows how the main method declaration is coded within the class declaration. Here,
the main method is indented so that it’s easy to match its starting brace with its ending brace. Between
the braces, you can see the one statement that this main method performs.

Figure 2-4: How to declare a main method
The syntax for declaring a main method

public static void main(String[] args){
 statements
}

The main method of the InvoiceApp class

public class InvoiceApp{

 public static void main(String[] args){ // begin main method

 System.out.println("Invoice application");

 } // end main method

}

Description
 A method is a block of code that performs a task.
 Every Java application contains one main method that’s declared just the way it’s

shown above. This is called the main method declaration.
 The statements between the braces in a main method declaration are run when the

program is executed.
Partial explanation of the terms in the main method declaration

 The public keyword in the declaration means that other classes can access the main
method. The static keyword means that the method can be called directly from the
other classes without first creating an object. And the void keyword means that the
method won’t return any values.

 The main identifier is the name of the method. When you code a method, always
include parentheses after the name of the method.

 The code in the parentheses lists the arguments that the method uses, and every
main method receives an argument named args, which is defined as an array of
strings. You’ll learn more about arguments and strings later in this chapter, and
you’ll learn more about arrays in chapter 9.

How to work with the primitive data types
In this topic, you’ll learn about the primitive data types of the Java language. Then, you’ll learn how to
use variables to store data that can change during the execution of a program, and you’ll learn how to
use constants to store data that doesn’t change during the execution of a program. In addition, you’ll
learn how to perform calculations on the numeric data types.

The eight primitive data types
Figure 2-5 shows the eight primitive data types provided by Java. You can use the first four data types
to store integers, which are numbers that don’t contain decimal places (whole numbers). When you use
one of the integer types, you should select an appropriate size. Most of the time, you can use the int
type for working with integers. However, you may need to use the long type if the value is too big for the
int type. Although the use of the short and byte types is less common, you can use them when you’re
working with smaller integers and you need to save system resources.
You can use the next two primitive types to store floating-point numbers, which are numbers that
contain decimal places. Since the double type has more significant digits than the float type, you’ll
probably want to use the double type for most floating-point numbers.
To express the value of a floating-point number, you can use scientific notation. This lets you express
very large and very small numbers in a sort of shorthand. To use this notation, you type the letter e or E
followed by a power of 10. For instance, 3.65e+9 is equal to 3.65 times 109 (or 3,650,000,000), and
3.65e-9 is equal to 3.65 times 10-9 (or .00000000365). If you have a scientific or mathematical
background, of course, you’re already familiar with this notation. And if you don’t, you probably won’t
need it for business programs.

Murach’s Beginning Java 2

 page 33

You can use the char type to store one character. Since Java uses the two-byte Unicode character set,
it can store practically any character from any language. As a result, you can use Java to create
programs that read and print Greek or Chinese characters. In practice, though, you’ll usually work with
the characters that are stored in the older one-byte ASCII character set. These characters are the first
256 characters of the Unicode character set.
Last, you can use the boolean type to store a true value or a false value. This can also be thought of as
a binary digit (bit) that has a value of either 1 (on) or 0 (off).

Figure 2-5: The eight primitive data types
The eight primitive data types

Description

 A bit is a binary digit that can have a value of one or zero. A byte is a group of eight
bits. As a result, the number of bits for each data type is the number of bytes
multiplied by 8.

 Integers are whole numbers, and the first four data types above provide for integers
of various sizes.

 Floating-point numbers provide for very large and very small numbers that require
decimal positions, but with a limited number of significant digits. A single-precision
number provides for numbers with up to 7 significant digits. A double-precision
number provides for numbers with up to 15 significant digits. The double data type
is commonly used for business programs because it provides the precision (number
of significant digits) that those programs require.

 To express the value of a floating-point number, you can use scientific notation like
2.382E+5, which means 2.382 times 105 (a value of 238,200), or 3.25E-8, which
means 3.25 times 10-8 (a value of .0000000325). Java will sometimes use this
notation to display the value of a float or double data type.

 The Unicode character set provides for over 65,000 characters with two bytes used
for each character.

 The older ASCII character set that’s used by most operating systems provides for
256 characters with one byte used for each character. In the Unicode character set,
the first 256 characters correspond to the 256 ASCII characters.

 A boolean data type holds a true or false value. This is often stored internally as a 1
(for true) or a 0 (for false).

How to initialize variables
A variable is used to store a data type that can change as the program executes. In figure 2-6, you can
learn how to initialize a variable. To do that, you create a name (identifier) for the variable, declare its
data type, and assign an initial value to it.
As this figure shows, you can initialize a variable in two different ways. The first way uses a declaration
statement to declare the data type and an assignment statement to assign a value to the variable. The
second way uses a single initialization statement.

Murach’s Beginning Java 2

 page 34

The first one-statement example in this figure does the same task as both statements in the two-
statement example. Then, the second example shows how you can initialize two variables in one
statement. To do this, you just separate the assignments with a comma.

The third one-statement example shows how to initialize a double type. When assigning values to the
double and float types, it’s a good coding practice to include a decimal point. For example, if you want to
assign the number 29 to the variable, you should code the number as 29.0.

The fourth and fifth examples show how to assign values to the float and long types. To do that, you
need to add a letter after the value. For a float type, you add an f or F after the value. For a long type,
you add an L. You can also use a lowercase l, but it’s not a good coding practice since the lowercase L
can easily be mistaken for the number 1. If you omit the letter in one of these assignments, you’ll get a
compile-time error.

The sixth statement shows how you can use scientific notation. The seventh and eighth examples show
that you can assign a character to the char type by enclosing a character in single quotes or by
supplying the integer that corresponds to the character. And the ninth example shows how to initialize a
variable named valid as a boolean type with a false value.

How to initialize constants
A constant is used to store a data type that can’t be changed as the program executes, and many of the
skills for initializing variables also apply to initializing constants. However, you begin the initialization
statement for a constant with the final keyword. As a result, constants are sometimes called final
variables. In addition, it’s a common coding convention to use all uppercase letters for the name of a
constant and to separate the words in a constant name with underscores.

Figure 2-6: How to initialize variables and constants
How to initialize a variable in two statements

Syntax

type variableName;

variableName = value;

Example

int counter; // declaration statement

counter = 1; // assignment statement

How to initialize a variable in one statement
Syntax

type variableName = value;

Examples

int counter = 1; // initialization statement

int x = 0, y = 0; // initialize 2 variables with 1 statement

double price = 14.95;

float interestRate = 8.125F; // F indicates a float type

long numberOfBytes = 20000L; // L indicates a long type

double distance = 3.65e+9; // scientific notation

char letter = ‘A’; // stored as a two-byte Unicode character

char letter = 65; // integer value for a Unicode character

Murach’s Beginning Java 2

 page 35

boolean valid = false; // where false is a keyword
How to initialize a constant

Syntax
final type CONSTANT_NAME = value;
Examples

final int DAYS_IN_NOVEMBER = 30;

final double SALES_TAX = .075;

Description
 A variable stores a value that can change as a program executes, while a constant

stores a value that can’t be changed.
 To initialize a variable or constant, you declare a type and assign an initial value. As

default values, it’s common to initialize integer types to 0, floating-point types to 0.0,
and boolean types to false.

 To initialize more than one variable for a single data type in a single statement, use
commas to separate the assignments.

 To identify float values, you must type an f or F after the number. To identify long
values, you must type an l or L after the number.

Naming guidelines
 Start variable names with a lowercase letter and capitalize the first letter in all words

after the first word.
 Capitalize all of the letters in constants and separate the words with underscores.
 Try to use meaningful names that are easy to remember as you code.

How to code assignment statements
After you initialize a variable, you can change its value. To do that, you code an assignment statement
as summarized in figure 2-7. In a simple assignment statement, you just code the variable name, an
equals sign, and an expression. The expression can be as simple as a numeric literal (or just literal) like
1 or 22.5. It can be the name of another variable. Or, it can be an arithmetic expression.
To create an arithmetic expression, you use the arithmetic operators to indicate what operations are to
be performed on the operands in the expression. An operand can be a literal or a variable. For business
programs, most arithmetic expressions are relatively simple, so you shouldn’t have any trouble coding
them. But you can learn more about coding them in the next figure.
If you study the operators in this figure, you can see that the first five operators work on two operands.
As a result, they’re referred to as binary operators. For example, when you use the subtraction operator
(-), you subtract one operand from another. In contrast, the last four operators work on one operand. As
a result, they’re referred to as unary operators. For example, you can code the negative sign operator (-
) in front of an operand to reverse the value of the operand. And you can code the positive sign operator
in front of a byte, short, or char operand to change its value to the integer type.

Please note in the examples of typical assignment statements that you can code the same variable
name on both sides of the equals sign, as shown by the second and last examples. In the second
example, if month has a value of 7 when the statement starts, it has a value of 8 after the statement has
been executed. In other words, the current value of the variable is used in the arithmetic expression,
and then the result of the expression is stored in the variable. This works the same in the last example.
If index has a starting value of 5, it has a value of 6 after the statement has been executed.
Besides the equals sign, Java provides for the other assignment operators shown in this figure. Here
again, if you study the examples, you shouldn’t have any trouble using them. Although these operators
don’t provide any new functionality, you can use them to write shorter code. This can be useful when
you’re working with variables that have long names.

Figure 2-7: How to code assignment statements
The syntax for a simple assignment statement

variableName = expression;
Typical assignment statements

month = 1;

Murach’s Beginning Java 2

 page 36

month = month + 1;

discountAmount = orderTotal * .2;

invoiceTotal = orderTotal – discountAmount;

salesChange = thisYearSales – lastYearSales;

changePercent = salesChange / lastYearSales * 100;

changePercent = (thisYearSales – lastYearSales) / lastYearSales * 100;

index = index++;

Arithmetic operators

Other assignment operators (assume int c = 13)

Description

 A simple assignment statement consists of a variable, an equals sign, and an
expression. When the assignment statement is executed, the value of the
expression is determined and the result is stored in the variable.

 An arithmetic expression consists of one or more operands and arithmetic operators.
The first five operators above are called binary operators because they operate on
two operands. The next four are called unary operators because they operate on
just one operand. In the next figure, you can learn more about the way arithmetic
expressions are evaluated.

 Besides the equals sign, Java provides for the five other assignment operators shown
above. These operators provide a shorthand for coding common operations.

Murach’s Beginning Java 2

 page 37

How to code arithmetic expressions
Figure 2-8 gives the order of precedence of the arithmetic operations. This means that all of the
increment and decrement operations in an expression are done first, followed by all of the positive and
negative operations, and so on. If there is more than one operation at each order of precedence, the
operations are done from left to right.

Because this sequence of operations doesn’t always work the way you want it to, you may need to
override the sequence by using parentheses. Then, the expressions in the innermost sets of
parentheses are done first, followed by the next sets of parentheses, and so on. Within the parentheses,
though, the operations are done left to right by order of precedence. Since you use the parentheses just
as in high school algebra, you shouldn’t have any trouble coding them.

If you study the examples in this figure, you can see how the arithmetic operators work. Since the
addition (+), subtraction (-), and multiplication (*) operators are easy to understand, the first four
examples focus on the division (/) and modulus (%) operators. The first and second examples show
how to use these operators with integers. The third and fourth examples show how to use them with
double values.

Since each char type is a Unicode character that has a numeric code that maps to an integer, you can
perform some integer operations on char types. For instance, the seventh and eighth examples show
how you can use the increment operator to change the numeric value for a char variable from 67 to 68
which changes the character from ‘C’ to ‘D’. (Note that you use single quotation marks to assign
character values to the char data type).
After these examples, this figure shows how to cast one numeric type to another numeric type. To start,
it shows how implicit casts work. In particular, it shows how Java automatically converts less precise
types to more precise types. This will work even when Java evaluates operands connected by
arithmetic operators such as multiplication or addition. First, Java will check if any of the operands in an
expression use the double type (the most precise type). If so, Java will evaluate the entire expression as
a double. If not, Java continues looking for the next most precise type and makes any necessary
conversions. Most of the time, that’s what you want.
However, if you ever need to override an implicit cast, you can use parentheses to perform an explicit
cast as shown in the second part of this figure. In this case, you just code the desired data type in
parentheses before the data type that you want to convert. When you do this, of course, you may lose
some precision as illustrated by the example which converts a value of 93.25 to 93. Note, however, that
if you don’t code an explicit cast in this example, you’ll get a compile-time error because Java doesn’t
automatically cast a more precise data type to a less precise type.

Although you typically cast between numeric data types, you can also cast between the int and char
type. That’s because every char type corresponds to an int value that identifies it in the Unicode
character set.

Figure 2-8: How to code arithmetic expressions
The order of precedence for arithmetic operations

1. Increment and decrement
2. Positive and negative
3. Multiplication, division, and modulus
4. Addition and subtraction

The use of parentheses
 Unless parentheses are used, the operations in an expression take place from left to

right in the order of precedence.
 To clarify or override the sequence of operations, you can use parentheses. Then,

the operations in the innermost sets of parentheses are done first, followed by the
operations in the next sets, and so on.

Examples of arithmetic expressions

int x = 14, y = 8; // assume this for all examples

double a = 8.5, b = 3.4; // assume this for all examples

int result = x / y; // result = 1

Murach’s Beginning Java 2

 page 38

int result = x % y; // result = 6

double result = a / b; // result = 2.5

double result = a % b; // result = 1.7 or 8.5–(3.4*2)

int result = y++; // result = 9 or 8+1

int result = y—; // result = 7 or 8-1

char letter = ‘C’; // letter = ‘C’ Unicode integer is 67

letter++; // letter = ‘D’ Unicode integer is 68

int result = -y; // result = -8

int result = -y + x; // result = 6

How implicit casting affects the results of an arithmetic expression
Description

Java automatically converts less precise data types to more precise data types.

Casting from less precise to more precise data types

byte --> short --> int --> long --> float --> double

char --> int

Example

double a = 95.0; // a is a double

int b = 86, c = 91; // b and c are ints

double average = (a+b+c)/3; // average is 90.666666...

How you can code an explicit cast
Syntax

(type) operand

Example

double average = 93.25;

int gradeInCourse = (int) average; // gradeInCourse is 93

Four classes for working with data
Although the Java language consists of just 50 keywords, Java provides hundreds of classes that you
can use in your programs. These classes provide functions that the language itself doesn’t provide. To
get you started with your use of classes, this chapter now presents four that you’ll use all the time.
These are the first of many Java classes that you’ll learn how to use in this book.

How to use the String class to create a String object
A string can contain any characters in the character set. Although Java doesn’t provide a primitive data
type for strings, it does provide a String class. Then, you use the String class to create a String object
that contains a string, and you use that object as a variable. In other words, an object is just a container
for data.

Murach’s Beginning Java 2

 page 39

When you create an object from a class, it can be referred as creating a new instance of the class. This
is standard terminology for object-oriented programming. This process can be referred to as
instantiation.
Figure 2-9 shows two ways to create an object from the String class. First, it shows how to use the new
keyword to create a new instance of the String class with the starting value of the object in parentheses.
This is the standard syntax for creating objects when you use other classes.
When you use the String class, though, it’s more common to use the shortcut syntax in this figure to
create String objects. This syntax is similar to the syntax for initializing a primitive type. However, the
String class begins with an uppercase letter, while a primitive data type begins with a lowercase letter.
In addition, you must enclose any string literal in double quotation marks.
If you look at the examples, you can see that the first statement creates a String object named title that
contains the title of Herman Melville’s classic book, Moby Dick. The second statement creates a String
object named book and sets it equal to the String object created in the previous statement. The third
statement creates a String object and uses an empty set of quotation marks to set the string equal to an
empty string. This means that the variable refers to a String object, but that object doesn’t contain any
characters. And the fourth statement creates a String object that uses the null keyword to set the object
equal to a null value. This means that a variable for working with a String object has been declared, but
it doesn’t refer to any object yet.
When you assign values to String objects, you can use the escape sequences shown in this figure as
part of a string. This lets you put backslashes, quotation marks, and control characters such as new
lines, tabs, and returns in a string. Here, the first example shows how to include a new line character in
a string. The second example shows how to include tab and return characters in a string. The third
example shows how to include a backslash. And the fourth example shows how to include quotation
marks.

Figure 2-9: How to use the String class to create a string variable
Two ways to create a String object

Using the new keyword

String title = new String("War and Peace");

Using a shortcut

String title = "War and Peace";

Examples

String title = "Moby Dick";

String book = title;

String code = "";

String inputValue = null;

Escape sequences

Escape sequence examples

Murach’s Beginning Java 2

 page 40

Description

 A string is a variable that can consist of any characters in the character set including
letters, numbers, and special characters like *, &, and #.

 To work with a string in Java, you create a String object from the String class. Then,
the String object contains the string, and you can use the object as a variable.

 To create a String object, you can use the new keyword. This is the standard way to
create a new instance of an object from a class. However, it’s more common to
create String objects by using the shortcut coding style.

 To specify the value of a string, you can enclose any text in double quotation marks.
This is known as a string literal (or literal string). Within the literal, you can use
escape sequences for special purposes.

 To assign a null value to a String object, you can use the null keyword. This means
that the value of the string is unknown.

 To assign an empty string to a String object, you can code a set of quotation marks
with nothing between them. This usually indicates that the value of the string is
known, but the string doesn’t contain any characters.

How to use two methods of the String class
Once you create an object of a class, you can use the methods of the class to perform operations on
the object. To call a method, you use the syntax shown at the top of figure 2-10. This means that you
code the object name, the dot operator (or just dot), and the method name with the arguments for the
method in parentheses after the method name. This is the syntax that you use for calling the methods of
any object.
To compare two strings, for example, you must call one of the methods shown in this figure. The
difference in these methods is that the equals method is case-sensitive while the equalsIgnoreCase
method is not. For both of these methods, only one argument is required, and that argument must
provide the String object that you want to compare with the current object.

The two examples show how to use these two methods. The first example compares a variable that
refers to a String object with a string literal. In this example, the first statement initializes the choice
variable to the string “X”. Then, since the first if statement uses the equals method to compare the string
literal “x” with this variable, it will return a false value. However, since the second if statement uses the
equalsIgnoreCase method, it will return a true value. This shows that the equals method is case-
sensitive.

The second example is similar to the first example except that it uses two variables in the comparison.
For now, it’s OK if you don’t completely understand the incomplete if statements that are used in these
examples, because you’ll learn how to code them later in this chapter.

How to join two or more strings
This figure also shows how to join, or concatenate, two or more strings because you’ll often need to do
that when working with String objects. As you can see, you use the plus sign to join them. Here, the first
example joins two variables that refer to String objects with a string literal that contains a single space.
The second example joins a string with a variable that refers to a price. And the third example joins
several strings that use the new line character. To improve the readability of the code, this example
splits the message string onto two lines and uses indentation to align the two lines of the string. Note in

Murach’s Beginning Java 2

 page 41

the second and third examples that when a numeric data type is joined in a string, the data type is
converted to a string.

Figure 2-10: How to use two methods of the String class and how to join strings
The syntax for calling a method of an object

object.method(arguments)

Two methods of the String class that can be used to compare strings

Examples

String choice = "X";

if (choice.equals("x")) // returns a false value

if (choice.equalsIgnoreCase("x")) // returns a true value

String code = "Warp";

String bookCode = "warp";

if (code.equalsIgnoreCase(bookCode)) // returns a true value

How to join strings
How to join three strings

String firstName = "Ted"

String lastName = "Steelman"

String name = firstName + " " + lastName // name = "Ted Steelman"

How to join a string and a number

double price = 14.95;

String priceString = "Price: " + price; // priceString = "Price: 14.95"

How to join a string that uses escape sequences

String title = "War and Peace";

double price = 14.95;

String message = "Title: " + title + "\n"

 + "Price: " + price + "\n";

Description
 To call a method of an object, code the object name, followed by a dot operator

(period), followed by the name of the method, followed by a set of parentheses.

Murach’s Beginning Java 2

 page 42

Within the parentheses, you code the arguments that are required by the method. If
a method requires more than one argument, you separate the arguments with
commas.

 To use the two String methods shown above, you code an argument that represents
the field that the object should be compared to. That argument can be a literal string
value or the name of a string variable (another String object).

 To join (or concatenate) a string with another string or a data type, use a plus sign. If
necessary, Java will automatically convert primitive data types so they can be used
as part of the string.

How to use the Integer and Double classes
Figure 2-11 shows how to use the Integer and Double classes to convert String objects to the int and
double types. In addition, it shows how to convert int and double types to String objects. Since the
Integer and Double classes wrap around the primitive types, they are sometimes referred to as wrapper
classes. Wrapper classes also exist for the other six primitive data types.
To convert primitive types to String objects and vice versa, you need to use the static methods of the
Integer and Double classes. Unlike a regular method, which is called from an object, a static method is
called from a class. As a result, static methods are sometimes called class methods.

To call a static method, you use the syntax at the top of this figure. That is, you type the name of the
class, followed by a dot, the name of the method, and a set of parentheses. Within the parentheses, you
code any arguments required by the method. If the method requires more than one argument, you
separate them with commas.

The first two examples show how to convert a String object to a primitive type. In the first example, the
parseInt method of the Integer class converts a String to an integer. Once this statement is executed,
you can use the quantity variable in arithmetic expressions. The second example works the same, but it
uses the Double class and its parseDouble method to convert a String object to a double type.
But what happens if the string contains a non-numeric value like “ten” that can’t be parsed to an int or
double type? In that case, the parseInt or parseDouble method will cause a run-time error. Using Java
terminology, you can say that the method throws an exception. In the next chapter, you’ll learn how to
catch the exception that is thrown by one of these methods.

The third and fourth examples in this figure show how to convert a primitive type to a String object. In
the third example, the toString method of the Integer class converts the int variable named counter to a
string and returns the value to a String object named counterString. In the fourth example, the toString
method of the Double class converts the double variable named price to a string and returns that string
to the String object named priceString.

Figure 2-11: How to use the Integer and Double classes
The syntax for using a static method of a class

class.method(arguments)

Two static methods of the Integer class

Two static methods of the Double class

Murach’s Beginning Java 2

 page 43

How to convert a String object to a primitive type

For an int

int quantity = Integer.parseInt(quantityString);

For a double

double price = Double.parseDouble(priceString);

How to convert a primitive type to a String object
For an int

String counterString = Integer.toString(counter);

For a double

String priceString = Double.toString(price);

Description
 While regular methods are called from objects, static methods are called directly from

a class. To call a static method, code the class name, followed by a dot operator,
followed by the method name, followed by a set of parentheses. Within the
parentheses, you code any arguments that are required by the method.

 If the parseInt and parseDouble methods can’t successfully parse the string, they will
return an error. In Java terminology, this is known as throwing an exception. You’ll
learn how to handle or catch exceptions in the next chapter.

 The Integer and Double classes are known as wrapper classes since they wrap
around a primitive type. Every primitive type has a wrapper class that works like the
two wrapper classes shown here.

How to use two methods of the System.Out object to print data to the console
In figure 2-12, you can learn how to use the println and print methods of the System.out object. As you
can see, these methods print data to the console. Although these are actually methods of the
PrintStream class, you won’t understand how that works until you read chapter 17. So for now, you can
just code them as shown and not worry about what’s happening behind the scene.

If you look at the examples in this figure, you can see that you code System.out.println and
System.out.print to start one of these methods. Then, you code the string that you want printed as the
argument for the method. Although you don’t actually create objects when you use these methods, Java
refers to System.out as an object of the System class so the println and print methods can be thought of
as methods of the System.out object.

If you study the examples, you shouldn’t have any trouble using these methods. For instance, the first
statement for the println method prints the words “Invoice application” to the console. The second
statement prints the string “Order total: ” followed by the value of the orderTotal variable (which is
converted to a string by this join). The third statement prints the value of the variable named x to the
console. And the fourth statement prints the variables named x and y to the console. If x and y are
numbers, these numbers will be added together. If they are strings, the two strings will be joined.

Murach’s Beginning Java 2

 page 44

The print method of the System.out object works like the println method except that it doesn’t
automatically start a new line. As a result, you can use this method to print several data arguments on
the same line. For instance, the three statements in this example use the print method to print “Price: ”,
followed by a double variable that holds the price value, followed by a new line character. Of course,
you can achieve the same result with a single line of code like this:

System.out.print("Price: " + price + "\n");

or like this:
System.out.println("Price: " + price);

This figure also shows an application that uses the println method to print four lines to the console. In
the main method of this application, the first three statements set the values for three variables. Then,
the next four statements print the title of the application followed by the values for the three variables.

Figure 2-12: How to use two methods of the System class to print data to the console
Two methods of the System.out object

How to use the println method

System.out.println("Invoice application");

System.out.println("Order total: " + orderTotal);

System.out.println(x);

System.out.println(x + y);

How to use the print method

System.out.print("Price: ");

System.out.print(price);

System.out.print("\n");

An application that prints data to the console

public class InvoiceApp{

 public static void main(String[] args){

 double orderTotal = 100.0;

 double discountAmount = orderTotal * .2;

 double invoiceTotal = orderTotal - discountAmount;

 System.out.println("Invoice application");

 System.out.println("Order total: " + orderTotal);

 System.out.println("Discount amount: " + discountAmount);

 System.out.println("Invoice total: " + invoiceTotal);

 }

Murach’s Beginning Java 2

 page 45

}

The output of the application shown above

Description

 Although the appearance of a console may differ from one system to another, you
can always use the print and println methods to print data to the console.

Exercise 2-1: Practice what you’ve learned
If you’re new to programming, you may feel a bit overwhelmed at this point. If so, we recommend that
you do this practice exercise. To edit, compile, and run the program for this exercise and the other
exercises in this chapter and book, you can use whatever tools you want. If you are using Windows,
though, we recommend that you use TextPad for Windows as shown in chapter 1.
Create the Practice application

1. Start your text editor and enter the PracticeApp class shown here:
2. public class PracticeApp{
3. public static void main(String[] args){
4. System.out.println("Practice Application");
5. }

}
6. Save the file as “PracticeApp.java” in the c:\java\ch02 directory. Then, compile, fix

any compile-time errors, run the program, and fix any bugs. When the program runs,
it should print the words “Practice Application” to the console. Then, you need to
press any key to continue, and you may need to close the console by clicking on the
exit button in the upper right corner or by pressing Alt+F4.

Initialize and print variables
3. Enter the code that follows at the end of the main method. Before you compile and

run the program, though, try to determine what results the program will produce.
Then, compile and run the program.

4. int quantity = 3;
5. double price = 24.95;
6. float floatNumber = 24.95e+15F;
7. char character = 75;
8. boolean valid = true;
9. System.out.println("Quantity = " + quantity);
10. System.out.println("Price = " + price);
11. System.out.println("FP Number = " + floatNumber);
12. System.out.println("Char = " + character);

System.out.println("Valid = " + valid);
13. If you want to experiment with any of the data types shown in figure 2-5, do that now.

If, for example, you delete the F in the scientific notation for the floating-point
variable above, you’ll see that the statement won’t compile.

Work with arithmetic expressions
5. Enter the code that follows at the end of the main method. Then, try to determine

what results the program will produce before you compile and run it. (Note that this
arithmetic expression as well as some of the ones in later steps use some variables
that were entered in earlier steps.)

Murach’s Beginning Java 2

 page 46

6. double doubleResult = 0.0;
7. doubleResult = quantity * price;
8. System.out.println("Double result = " + doubleResult);

9. The statements that follow illustrate the need for explicit casting. Enter them at the
end of the main method, then compile and test. If you doubt the need for the cast,
remove it to see what happens when you compile.
10. int integerResult = 0;
11. integerResult = (int) doubleResult; // casts a double to an integer

System.out.println("Integer result = " + integerResult);
12. The statements that follow show how data types can be incremented by 1. Enter

these statements at the end of the main method, then compile and test.
13. doubleResult = doubleResult + 1;
14. integerResult++;
15. character++;
16. System.out.println("Double result = " + doubleResult);
17. System.out.println("Integer result = " + integerResult);

System.out.println("Character = " + character);
18. The statements that follow illustrate the use of a constant in an arithmetic expression.

That expression is supposed to calculate the sales tax for an order (sales tax percent
times the order total) before adding it to the order total, and thus deriving the invoice
total. If you think parentheses are necessary in this expression, add them as you
enter the statements that follow at the end of the main method. Then, compile and
test.
19. double orderTotal = 1000.0;
20. double invoiceTotal = 0.0;
21. final double SALES_TAX_PERCENT = .0785;
22. invoiceTotal = orderTotal + orderTotal * SALES_TAX_PERCENT;
23. System.out.println("\n\n"
24. + "Order total = " + orderTotal + "\n"

 + "Invoice total = " + invoiceTotal + "\n");
25. If you want to experiment with more complex arithmetic expressions, you can use

figures 2-7 and 2-8 as a guide. Just initialize the variables you need, change the
values of existing variables, code the expressions in assignment statements, and
print the results.

Create a String object and use a Double method
10. The statements that follow show how a String object can be converted to a double

variable. Enter, compile, test, and experiment to see how this works:
11. String stringNumber = "3.146";
12. double parsedDouble = Double.parseDouble(stringNumber);
13. String message = "\n\n"
14. + "String number = " + stringNumber + "\n"
15. + "Parsed number = " + parsedDouble + "\n";

System.out.println(message);
Exit from the program

11. Close the program. Then, keep this program in mind so you can use it whenever you
want to experiment with some code that you don’t quite understand.

How to use the JOptionPane class for input and output
To make it easier for you to write programs, Java provides libraries of classes that contain prewritten
code. These libraries make up the Java Application Programming Interface, or API. After you learn how
the Java API is organized and how to import classes into your programs, this topic shows you how to
use the JOptionPane class to display dialog boxes that get input from a user and display output.

Murach’s Beginning Java 2

 page 47

How to import classes
In the Java language, all code is stored in classes. In the Java API, groups of related classes are
organized into packages. In figure 2-13, you can see a list of some of the commonly used packages.
This figure also shows how to import the classes that are stored within each package.
Since the java.lang package contains the classes that are used in almost every Java program (such as
the String, Integer, Double, and System classes), this package is automatically available to all
programs. To use other packages, though, you usually need to include an import statement at the
beginning of the program. With this statement, you can import a single class by specifying the class
name, or you can import all of the classes in the package by typing an asterisk (*).

If you look at the examples, you can see how to code an import statement. Here, the first three
statements import just one class each, while the fourth statement imports all of the Swing classes with a
single statement.
As the figure shows, Java provides two different technologies for building a graphical user interface
(GUI) that contains text boxes, command buttons, option buttons, and so on. The older technology
known as the Abstract Windows Toolkit (AWT) was used with versions 1.0 and 1.1 of Java. Its classes
are stored in the java.awt package. Since version 1.2 of Java, though, a new technology known as
Swing has been available. The Swing classes are stored in the javax.swing package. In a moment,
you’ll learn how to use the JOptionPane class of the javax.swing package to display dialog boxes.
In addition to the packages provided by the Java API, you can get packages from third party sources,
either as shareware or by purchasing them. To review some of these packages, check the Java web
site. You can also create packages that contain classes that you’ve written. You’ll learn how to do that in
chapter 4.

Figure 2-13: How to import classes
Commonly used packages

The syntax of the import statement

import packagename.ClassName;
 or
import packagename.*;

Examples

import java.text.NumberFormat;

import javax.swing.JOptionPane;

import javax.swing.JFrame;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

Murach’s Beginning Java 2

 page 48

Description
 The Java 2, Standard Edition, v1.3.1 Application Programming Interface, or API,

provides all the classes that are included as part of the SDK. These classes are
organized into packages.

 All classes stored in the java.lang package are automatically available to all Java
programs.

 To use classes that aren’t in the java.lang package, use the import statement as
shown above. To import one class from a package, specify the package name
followed by the class name. To import all classes in a package, specify the package
name followed by an asterisk (*).

 Java provides two technologies for building graphical user interfaces (GUIs). The
older technology is called the Abstract Windows Toolkit (AWT), and the newer
technology is called Swing.

How to use the JOptionPane class to get input
Figure 2-14 shows how to use the static showInputDialog method of the JOptionPane class to display a
dialog box that gets input from a user. To start, this figure describes this method and the exit method of
the System class that’s used with the showInputDialog method. Then, this figure shows the code for a
sample application that displays the two dialog boxes shown in this figure.

The only argument that’s required by this method is a string that contains the text that’s displayed on the
dialog box. To supply this argument, you can type text in quotes or you can type the name of a variable
that refers to a String object.
The code for the sample application shows how to use the two methods described in this figure. To
start, this code uses an import statement to import the JOptionPane class of the javax.swing package.
Then, in the main method of this application, the first statement assigns the String object that’s returned
by the showInputDialog method to a String object named inputString. When this statement is executed,
the first dialog box in this figure is displayed. After the user enters a value in the text box and clicks on
the OK button, that value is stored in the String object. If, on the other hand, the user clicks on the
Cancel button, a null value is stored in the object. In that case, any method that uses the object may
throw an exception if it can’t accept a null value. You’ll learn how to handle this exception in the next
chapter.

The second statement creates a String object named message that contains the string that was entered
by the user plus some additional information. Then, the third statement uses the showInputDialog
method to display this String object. When this statement is executed, the second dialog box in this
figure is displayed. The last statement in the main method is the exit method of the System object, and
you can learn more about that next.

How to use the System.exit method to end a JOptionPane thread
When you use a JOptionPane method to display a dialog box, a thread is started. Then, you need to
terminate that thread before the main method ends. Otherwise, the thread will continue after the
program ends, and you will have to press Ctrl+C to cancel that thread.

To terminate all threads, you can code the System.exit method as shown in the application in this figure.
Here, a zero value is coded as the argument for the method, which means that the application exited
normally.
For now, all you need to know about threads is that some graphical user interface components such as
JOptionPane dialog boxes create threads. In that case, to properly exit the application, you must
terminate the thread. You’ll learn more about threads in chapter 20.

Figure 2-14: How to use the JOptionPane class to get input
A static method of the JOptionPane class

Murach’s Beginning Java 2

 page 49

A static method of the System class

A sample application

import javax.swing.JOptionPane;

public class NameApp{

 public static void main(String[] args){

 String inputString = JOptionPane.showInputDialog(

 "Enter your first name: ");

 String message = "First name: " + inputString + "\n\n"

 + "Press the Enter key to exit.";

 JOptionPane.showInputDialog(message);

 System.exit(0);

 }

}

The first input dialog box displayed by the code above

The second input dialog box displayed by the code above

Description

 When you use the showInputDialog method of the JOptionPane class to get input
data from a user, a thread is started. To terminate this thread before the program
ends, you should use the exit method of the System class.

Murach’s Beginning Java 2

 page 50

 In chapter 20, you’ll learn more about what threads are and how you use them.

How to use two more methods of the JOptionPane class
Figure 2-15 shows two more methods of the JOptionPane class that can be used to display enhanced
JOptionPane dialog boxes. Both of these methods accept four arguments. The first method displays an
input dialog box like the one shown in the previous figure while the second method displays a message
dialog box like the one shown at the bottom of this figure. When you use one of these methods, you can
set the title and icon for the dialog box.
Although the first method has the same name as the showInputDialog method shown in the previous
figure, this method accepts four arguments. In Java terminology, this is another signature of the same
method name, and it’s known as overloading a method. If you supply one String object argument for the
showInputDialog method, this method will display a dialog box like the one shown in the last figure. But
if you supply all four arguments as shown in this figure, you can control the title and icon of the dialog
box.

For the first argument, you can use the null keyword so the dialog box is centered on the screen. For
the second and third arguments, you can specify a string that sets the message and title of the dialog
box. And for the fourth argument, which determines the icon that’s used for the box, you can use one of
the five JOptionPane fields that are summarized in this figure. To use one, you type JOptionPane,
followed by a dot, followed by the name of the field.
When you use Java, the term field can be used to refer to any data item that is stored in a class. This
includes instance variables as well as static fields, which you’ll learn about in chapter 4. In this case, the
fields are static fields that can be used as arguments in the JOptionPane methods.

You can see how these arguments are used in the example in this figure, which displays the dialog box
shown below it. Here, the first statement defines a String object, and the second statement uses the
showMessageDialog method to display the message dialog box. The third and fourth arguments of this
method set the title of the dialog box to “Invoice” and its icon to PLAIN_MESSAGE, which means that
the dialog box doesn’t have an icon.

Figure 2-15: How to use two more methods of the JOptionPane class
Two more static methods of the JOptionPane class

Another method for displaying an input dialog box
showInputDialog(parentComponent, messageString, titleString,
 messageTypeInt);
A method for displaying a message dialog box
showMessageDialog(parentComponent, messageString, titleString,
 messageTypeInt);

The four arguments of the methods shown above

JOptionPane fields that can be used for the messageTypeInt argument

Murach’s Beginning Java 2

 page 51

Code that displays a message dialog box with no icon

String message = "Order total: $100.00\n"

 + "Discount amount: $20.00\n"

 + "Invoice total: $80.00";

JOptionPane.showMessageDialog(null, message,

 "Invoice", JOptionPane.PLAIN_MESSAGE);

The message dialog box that’s displayed by the code shown above

How to code control statements
As you write programs, you need to determine when certain operations should occur. For instance,
you’ll often want to execute one or more statements if a certain condition is true and to execute other
statements if the condition is false. To get you started, this topic will show you how to code conditional
expressions and how to use the two most popular control statements. Then, in chapter 8, you can learn
how to use the other control statements.

How to code conditional expressions
Before you can code control statements, you need to learn how to code conditional expressions like the
ones shown in figure 2-16. A conditional expression evaluates to either true or false and can be used in
control statements like the if and while statements shown in the next two figures. When you code
conditional expressions, you can use the six relational operators and the three logical operators shown
in this figure. However, most expressions require just one relational operator so they’re quite easy to
code.

When you compare primitive data types, for example, you use one of the relational operators as shown
in the first group of examples. Here, the first expression tests to see whether two variables are equal.
The second tests to see whether the first variable is less than or equal to the second one. The third
tests to see whether a variable is less than or equal to the literal value 0. And the fourth tests to see
whether a boolean data type is set to true.

The only trick to coding expressions like these is making sure to use the equals operator (==) for an
equals condition, because the equals sign (=) is only used in an assignment statement. Also, remember
that you can’t use these operators for comparing objects. To compare String objects, for example, you
need to use the String methods as shown by the second group of examples. In the first condition in this
group, the not operator (!) is used so the condition is true only if the value of the choice variable is not
equal to “x”.

Murach’s Beginning Java 2

 page 52

Occasionally, though, you need to code more complex expressions like those in the third group of
examples. Then, Java evaluates the expressions from left to right based on this order of precedence:
arithmetic operations first, followed by relational operations, followed by logical operations. Here again,
though, you can use parentheses if you want to clarify or control this evaluation sequence.
With that as background, you should be able to decipher the expressions in the third group of examples.
For instance, the first two conditions are true if either the first or the second relational expression is true.
The third condition is true only if both the first and the second relational expressions are true. And the
last condition shows how you can use the And and Or operators in the same conditional expression. In
this case, the statement is true if the first and second expressions are true or if the third expression is
true.

Figure 2-16: How to code conditional expressions
Relational operators

Logical operators

Simple conditional expressions with primitive data types

userMonth == systemMonth

onHandQuantity <= reorderPoint

quantity <= 0

switch == true

Simple conditional expressions with strings

!(choice.equals("x"))

code.equalsIgnoreCase(bookCode)

More complex expressions

(timeInService <= 4) || (timeInService >= 12)

(age != 16) || (height < 60)

(percentTaxed >= 0) && (income >= 35000)

((date > startDate) && (date < expirationDate)) || (valid == true)

Description

Murach’s Beginning Java 2

 page 53

 To test two primitive types for equality, make sure to use the equals operator (==),
not the single equals sign (=). The single equals sign is used for assignment
statements.

 To test two strings for equality, use the equals method of the String object, not the
equals operator (==). If you use the equals operator, Java will check to see if the
two String objects are stored in the same location, which doesn’t indicate whether
the strings are equal.

 If you compare two numeric operands that are not of the same type, Java will convert
the less precise operand to the type of the more precise operand. For example, if
you compare an int to a double, Java converts the int to a double before performing
the comparison.

How to code if/else statements
Figure 2-17 shows how to use the if/else statement (or just if statement) to control the logic of your
programs. Here, the brackets in the syntax summary indicate that a clause is optional, and the ellipsis
(…) indicates that the preceding element can be repeated as many times as needed. In other words,
this syntax shows that you can code an if clause with or without else if clauses or an else clause. It also
shows that you can code as many else if clauses as you need.

When an if statement is executed, the condition in the if clause is tested first. If it’s true, the statements
after the condition are executed. Otherwise, the first else if clause (if there is one) is executed. Then, if
its condition is true, the statements after the condition are executed. Otherwise, the next else if clause is
executed. This continues with any remaining else if clauses. Finally, if none of the conditions in the if
clause or else if clauses were true, the statements in the else clause are executed (if there is one).

If you study the examples in this figure, you’ll see the many ways that if statements can be coded. One
point to note is that you need to code braces when two or more statements are supposed to be
executed when a condition is true. But you don’t need to code the braces when just one statement is
executed.

This is illustrated by the first group of examples. Here, the first if statement executes just one statement
if the condition is true so that statement ends with a semicolon. However, the second if statement
executes two statements if the condition is true so those statements need to be coded within a set of
braces. In either if statement, if the condition isn’t true, Java skips to the statement after the if statement
so nothing is done by this statement.
When you code statements within braces, you are coding a block of statements. In this case, any
variables that you declare within the block are only available to the other statements in that block. In
other words, the variables have block scope. That’s one of the reasons why this example declares and
initializes the discountAmount and status variables outside of the if block. That way, they will be
available outside the if block.

The next example shows an if statement with an else clause. Here, if the orderTotal variable is greater
than or equal to 100, the discount amount is calculated by taking 20% of the orderTotal. If the condition
isn’t true, the else clause is executed and its single statement calculates the discount amount by taking
10% of the orderTotal.

The example after that shows an if statement with else if clauses and an else clause. Here, if the
condition in an if or else if clause is true, the statement for that condition is executed. But if none of
those conditions are true, the statement in the else clause is executed.
The last example shows how to code nested if statements. In this example, if the choice variable equals
“x”, Java ignores all of the statements in the nested if statement and executes the last else clause,
which exits from the program. If, on the other hand, the choice string doesn’t equal “x”, Java evaluates
the nested if statement. When you code nested if statements, it’s a good practice to indent the
statements and their clauses to show the nesting structure.

Figure 2-17: How to code if/else statements
The syntax of the if/else statement

if (conditionalExpression) {statements}
[else if (conditionalExpression) {statements}] ...
[else {statements}]

Murach’s Beginning Java 2

 page 54

If statements without else if or else clauses
With a single statement

if (orderTotal >= 100)

 discountAmount = orderTotal * .2;

With a block of statements

if (orderTotal >= 100){

 discountAmount = orderTotal * .2;

 status = "Bulk rate";

}

An if statement with an else clause

if (orderTotal >= 100)

 discountAmount = orderTotal * .2;

else

 discountAmount = orderTotal * .1;

An if statement with else if and else clauses

if (orderTotal >= 100 && orderTotal <= 199)

 discountAmount = orderTotal * .2;

else if (orderTotal >= 200 && orderTotal <= 299)

 discountAmount = orderTotal * .3;

else if (orderTotal >= 300)

 discountAmount = orderTotal * .4;

else

 discountAmount = orderTotal * .1;

Nested if statements

if (!(choice.equals("x"))){

 if (orderTotal >= 100) // begin nested if

 discountAmount = orderTotal * .2;

 else

 discountAmount = orderTotal * .1; // end nested if

}

else

 System.exit(0);

Murach’s Beginning Java 2

 page 55

Description
 An if/else statement, or just if statement, always contains an if clause. In addition, it

can contain one or more else if clauses and a final else clause.
 If a clause requires just one statement, you don’t have to enclose the statement in

braces. You can just end the clause with a semicolon.
 If a clause requires more than one statement, you enclose the block of statements in

braces. Then, any variables or constants that are declared in the block can only be
used by statements in the block. In other words, they have block scope.

How to code while statements
Figure 2-18 shows how to code a while statement to perform repetitive processing. By using this
statement, you can repeat a series of statements while a conditional expression is true. Once the
expression is false, though, even if it’s on the first evaluation, the while statement ends.
Because a while statement loops through the statements in its statement block, the code within a while
statement is often referred to as a while loop. Since you don’t know how many times the loop will be
executed, while loops are sometimes referred to as indeterminate loops. Here again, any variables that
are defined in the block of statements within the braces have block scope, which means that they can’t
be used outside of the block.

The first example in this figure shows how you can use a while loop to calculate the future value of a
one-time investment amount that accumulates interest for a specified number of months. In this
example, the first statement sets a variable named futureValue to the investment amount, and the
second statement initializes an int variable named i to a value of 1. Then, the while statement says that
the while loop should continue to execute while i is less than or equal to the number of months.

Within the while loop, the first statement calculates the interest for one month and adds it to the
futureValue variable. Then, the second statement uses the increment operator (++) to increment the i
variable. As a result, the loop will continue to execute until it has run once for each month. Then, the
condition at the beginning of the while loop will no longer be true and the program will exit the loop.

The second example shows how you can use a while loop to repeat all of the statements in an
application until the user enters “x” or “X”. In this example, the beginning of the while loop is shaded and
the ending brace of the while loop is shaded. Before you enter the loop, this application initializes a
String object named choice and sets it equal to an empty string. As a result, the condition at the
beginning of the loop is true (the choice variable does not equal “x” or “X”), and the application enters
the loop and executes all of its statements. Then, the last statement in the loop resets the value of the
choice object by getting input from the user. That way, the conditional expression at the beginning of the
loop can be evaluated again with a new value. When the user enters “x” or “X”, the application will exit
the loop, which in this case also exits the application.
Of course, if the condition at the start of a while statement never becomes false, the loop will never end.
This can be referred to as an infinite loop. This can happen when the condition at the start of the loop
hasn’t been carefully coded. Then, to end the program, you need to press Ctrl+C. Since this is the type
of problem that you want to avoid, it’s worth taking some extra time to make sure your conditions are
coded properly.

Figure 2-18: How to code while statements
The syntax of the while loop

while (conditionalExpression){
 statements
}

A while loop that calculates the future value of an investment

futureValue = investmentAmount;

int i = 1;

while (i <= months) {

 futureValue = futureValue + (futureValue * monthlyInterestRate);

Murach’s Beginning Java 2

 page 56

 i++;

}

A while loop that ends when a string variable equals “x” or “X”

public class InvoiceApp{

 public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){ // begin while loop

 ...

 code that gets input and performs the calculation
 ...
 String message = "To continue, press Enter.\n"
 + "To exit, enter ‘x’: ";
 choice = JOptionPane.showInputDialog(message);
 } // end while loop
 System.exit(0);
 }
}

Description
 A while statement executes the block of statements within its braces as long as its

conditional expression is true. When the expression is false, the while statement
skips its block of statements.

 Any variables or constants that are declared in the block have block scope so they
can only be used by statements in the block.

 If the condition at the start of a while statement never becomes false, the statement
never ends. Then, the program goes into an infinite loop that you need to cancel.

How to cancel the execution of an infinite loop
 Press Ctrl+C.

The Invoice application
Figure 2-19 shows the dialog boxes and code for an Invoice application. Although this application is
simple, it gets input from a user, it performs calculations that use this input, and it displays the results of
the calculations. It also uses almost all of the statements and methods presented in this chapter.

The dialog boxes for the application

Both of the dialog boxes shown in this figure use the default title of “Input” and the default icon for input
dialog boxes: the question mark icon. Here, the first dialog box allows the user to enter a total for the
order. Then, the second dialog box displays the order total that the user entered plus a discount amount
and an invoice total that are calculated by the application.

The code for the application

By now, you should understand all of the code in this program. If you have any trouble with any of the
statements, please refer back to the related pages for any clarification that you need. Once you do
understand what every line of code in this program does, you’ve learned a lot about Java. Then, you
can practice and reinforce what you’ve learned by doing the exercises at the end of this chapter.
You should realize, though, that this program has a few shortcomings. First, if you don’t enter a number
in the first dialog box, the parseDouble method of the Double class won’t work and the program will end
prematurely with a run-time error. Second, the numbers that are displayed in the second dialog aren’t
formatted properly. In the next chapter, though, you’ll learn how to fix both of these problems.

Figure 2-19: The Invoice application
The first dialog box for the Invoice application

Murach’s Beginning Java 2

 page 57

The second dialog box for the Invoice application

The code for the Invoice application

import javax.swing.*;

public class InvoiceApp{

 public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){ // begin while loop

 String inputString = JOptionPane.showInputDialog(

 "Enter order total: ");

 double orderTotal = Double.parseDouble(inputString);

 double discountAmount = 0;

 if (orderTotal >= 100)

 discountAmount = orderTotal * .2;

 else

 discountAmount = orderTotal * .1;

 double invoiceTotal = orderTotal - discountAmount;

 String message = "Order total: " + orderTotal + "\n"

 + "Discount amount: " + discountAmount + "\n"

 + "Invoice total: " + invoiceTotal + "\n\n"

 + "To continue, press Enter.\n"

 + "To exit, enter ‘x’: ";

 choice = JOptionPane.showInputDialog(message);

Murach’s Beginning Java 2

 page 58

 } // end while loop

 System.exit(0);

 }

}

Perspective
The goal of this chapter has been to get you started with Java programming… and get you started fast.
Now, if you understand how the Invoice application in figure 2-19 works, you’ve learned a lot. You
should also be able to write comparable programs of your own.
In the next chapter, you will add to what you’ve learned by learning more of the Java language
essentials. You will also see how the Java statements are used in two more complete applications.

Summary
 You can use comments to document information about a program.
 You must code at least one public class for every Java program that you write. The

main method of the class is executed when the class is run.
 Java provides eight primitive data types to store integer, floating-point, character, and

boolean values.
 Variables store data that changes as a program runs. Constants store data that doesn’t

change as a program runs. You use assignment statements to assign values to
variables.

 You can use arithmetic operators to form arithmetic expressions, and you can use
assignment operators as a shorthand for arithmetic expressions. If necessary, you can
cast a more precise data type to a less precise type.

 You can create a String object from the String class. Then, you can use two methods to
compare the object with another string. You can also use the methods of the Double
and Integer classes to parse numbers from strings.

 You can call a method from an object, and you can call a static method from a class. If a
method requires arguments, you must enter the arguments between the parentheses of
the method call.

 You can use two methods of the System class to print data to the console.
 The Java Application Programming Interface, or API, is a library of all the available

classes that come as a part of the SDK. This API groups similar classes into packages.
 You can use the static methods of the JOptionPane class of the javax.swing package to

display dialog boxes that get input and display output.
 You can code if statements to control the logic of your program based on the true and

false values of conditional expressions. You can also code while statements to create
while loops that repeat a series of statements until a conditional expression is true.

Terms
comment literal console

statement numeric literal Application Programming
Interface (API)

block comment arithmetic expression package

end-of-line comment arithmetic operator import statement

identifier operand graphical user interface (GUI)

keyword binary operator Abstract Windows Toolkit (AWT)

class unary operator Swing

class declaration assignment operator thread

access modifier order of precedence signature of a method

scope casting overloading a method

class definition implicit cast field

main method explicit cast control statement

Murach’s Beginning Java 2

 page 59

main method
declaration

string conditional expression

primitive data type instance relational operator

data type instantiation logical operator

bit object if/else statement

byte string literal if statement

integer escape sequence if clause

floating-point number null value else if clause

significant digit empty string else clause

single precision method block of statements

double precision call a method block scope

scientific notation dot operator nested if statements

Unicode character set argument while statement

ASCII character set case-sensitive while loop

boolean data type join indeterminate loop

variable concatenate infinite loop

constant wrapper class

initialization statement static method

final variable class method

assignment statement throw an exception

Objectives
 Given the Java code for a program that uses any of the language elements presented in

this chapter, explain what each statement in the program does.
 Given the specifications for a program that requires only the language elements

presented in this chapter, write the program.
 List the rules for creating an identifier and the recommended differences in creating

class, variable, and constant names.
 Describe any one of the eight primitive data types. Then, distinguish between an

integer, a floating-point number, and a boolean value.
 Identify these terms: class, object, instance, method, and static method.
 Explain what “importing a package” means.

Exercise 2-1: Test the Invoice application
In this exercise, you’ll compile and test the Invoice application that’s presented in figure 2-19.

1. Start your text editor and open the file named “InvoiceApp.java” that you should find
in the c:\java\ch02 directory. Then, compile the application, which should compile
without errors.

2. Run the program and test it with simple entries like 100, 200, and 1000 so it’s easy to
see whether or not the calculations are correct. They should be.

3. Enter 233.33 in the first dialog box. This time, the second dialog box will display the
discount amount and invoice total with more than 10 decimal places each. In the
next chapter, you’ll learn how to format numbers so only two decimal places are
displayed.

4. Enter “10k” in the dialog box. This time, the application should crash and display an
error message on the console. Then, you need to press Ctrl+C or close the console
window to terminate the program. Can you tell why this happened? In the next
chapter, you’ll learn how to fix this bug.

Exercise 2-2: Modify the Invoice application

Murach’s Beginning Java 2

 page 60

In this exercise, you’ll modify the Invoice application. This will give you a chance to write some code of
your own.

1. Save the InvoiceApp program as ModifiedInvoiceApp.java in the c:\java\ch02
directory. Then, change the class name to ModifiedInvoiceApp.

2. Modify the code so the second dialog box displays the information icon, has “Invoice
Application” as its title, and prompts the user to enter Y or N to end the program as
shown here:

Next modify the program so it continues if the user enters “Y” or “y”, but ends if the user enters
“n” or “N”. Then, compile and test your changes.

3. Modify the discount calculation so the discount is 20% if the order total is greater than
or equal to $500; 15% if the order total is greater than or equal to $250 but less than
$500; 10% if the order total is greater than or equal to $100 but less than $250; and
zero if the order total is less than $100. Then, compile and test your changes.

Chapter 3: Java language essentials (part 2)
In the last chapter, you learned how to code an application that got input from a user, performed some
calculations, and displayed output to the user. In this chapter, you’ll learn how to enhance a program
like that by formatting the data that’s displayed and by validating the user’s entries. Along the way, you’ll
learn how to use two new classes, how to code two more applications, and how to look up information
about any method in any class of the Java API.

Two more classes for working with numbers
In the last chapter, you learned how to work with the eight primitive data types, how to code arithmetic
expressions, and how to use the methods of the Integer and Double classes. Now, you’re ready to learn
about two more classes for working with numbers.

How to use the Math class
Figure 3-1 shows how to use eight of the static methods of the Math class to perform numeric
operations. To use one of these methods, you supply zero, one, or two arguments. Then, the method
performs its operation on the arguments.
The first example shows how to use the round method to round a double or float data type to an integer
or long data type. Otherwise, the decimal positions are truncated. In the next figure, though, you’ll see
that numbers can also be rounded by using the NumberFormat class to format them.
The second example shows how to use the pow method to raise the first argument to the power of the
second argument. This method returns a double value and accepts two double arguments. However,
since Java automatically converts any arguments of a less precise numeric type to a double, the pow
method accepts all of the numeric types. In this example, the first statement is equal to 22, the second
statement is equal to 23, and the third and fourth statements are equal to 52.

In general, the methods of the Math class work the way you would expect. Sometimes, though, you may
need to cast numeric types to get the methods to work the way you want them to. For example, the pow
method returns a double type. So if you want to return an int type, you need to cast the double type to
an int type as shown in the fourth pow example.
The third example shows how to use the random method to generate random numbers. Since this
method returns a random double value greater than or equal to 0.0 and less than 1.0, you can return
any range of values by multiplying the random number by another number. In this example, the first
statement returns a random double value greater than or equal to 0.0 and less than 100.0. Then, the
second statement casts this double value to a long data type.

Murach’s Beginning Java 2

 page 61

If you have the right mathematical background, you shouldn’t have any trouble using these or any of the
other Math methods. And if you don’t have that background, you probably won’t ever need to use them.

Figure 3-1: How to use the Math class
The Math class

java.lang.Math

Some of its static methods

Examples

Example 1: The round method

long result = Math.round(1.667); // result is 2

int result = Math.round(1.49F); // result is 1

Example 2: The pow method

double result = Math.pow(2, 2); // result is 4.0 (2*2)

double result = Math.pow(2, 3); // result is 8.0 (2*2*2)

double result = Math.pow(5, 2); // result is 25.0 (5 squared)

int result = (int) Math.pow(5, 2); // result is 25 (5 squared)

Example 3: The random method

double x = Math.random() * 100; // result is a value >= 0.0 and < 100.0

long result = (long) x; // converts the result from double to long

Example 4: The max and min methods

int x = 67;

int y = 23;

int max = Math.max(x, y); // max is 67

int min = Math.min(x, y); // min is 23

Example 5: The abs method

double result = Math.abs(-10); // result is 10.0

Description

Murach’s Beginning Java 2

 page 62

 When you use one of the static methods of the Math class, you supply the arguments
that you want the method performed upon.

 In some cases, you need to cast the result to the data type that you want. This is
illustrated by the fourth pow example, which casts a double result to an integer data
type.

How to use the NumberFormat class

When you use numeric values in a program, you’ll often need to format them. For example, you may
want to apply a standard currency format to a double value. To do that, you need to add a dollar sign
and display just two decimal places. Similarly, you may want to display a double value in a standard
percentage format. To do that, you need to add a percent sign and move the decimal point two digits to
the right.
To do this type of formatting, Java provides the NumberFormat class, which is summarized in figure 3-2.
Since this class is part of the java.text package, you must include an import statement for this class
before you can use its methods. Once you import the class, you can create a NumberFormat object by
using a static method of the NumberFormat class. Then, you can use the format method of the
NumberFormat object to return a String object with the appropriate formatting.
To illustrate, the first example shows how to format numbers with the currency format. Here, the second
statement creates a NumberFormat object named currency and assigns it the result of the static
getCurrencyInstance method. Then, the third statement uses the format method of the currency object
to return a string that consists of a dollar sign plus the price variable with two decimal places. Because
the methods of a NumberFormat object automatically provide rounding, this method returns 45.968 as
$45.97 and 1234.572 as $1,234.57. In this format, negative numbers are enclosed in parentheses.
The second example shows how to format numbers with the percent format. The main difference
between the first and second examples is that you use the getPercentInstance method instead of the
getCurrencyInstance method. Then, you can use the format method of the percent object to return a
string with a proper percent value followed by a percent sign. For instance, this method returns 0.624 as
62% and 0.626 as 63%. In this format, negative numbers have a leading minus sign.
The third example shows how to format numbers with the number format, and how to set the number of
decimal places that are returned by any NumberFormat object. Here, the format is changed from the
default of three decimal places to just one decimal place. In this format, negative numbers also have a
leading minus sign.

The fourth example shows how you can use a NumberFormat object more than once after it has been
created. Here, the first statement creates a NumberFormat object. Then, the second statement uses the
format method of the NumberFormat object to format three numbers.

The fifth example shows how you can use one statement to create a NumberFormat object and use its
format method. Although this example accomplishes the same task as the second example, it doesn’t
create a NumberFormat object that you can use later in the program. As a result, you should only use
code like this when you need to format just one number.

Figure 3-2: How to use the NumberFormat class
The NumberFormat class

java.text.NumberFormat

Three static methods of the NumberFormat class

Three methods of a NumberFormat object

Murach’s Beginning Java 2

 page 63

Examples

Example 1: The currency format

double price = 11.575;

NumberFormat currency = NumberFormat.getCurrencyInstance();

String priceString = currency.format(price); // returns $11.58

Example 2: The percent format

double majority = .512;

NumberFormat percent = NumberFormat.getPercentInstance();

String majorityString = percent.format(majority); // returns 51%

Example 3: The number format with three decimal places

double miles = 15341.256;

NumberFormat number = NumberFormat.getNumberInstance();

number.setMaximumFractionDigits(1);

String milesString = number.format(miles); // returns 15,341.3

Example 4: Using the same NumberFormat object three times

NumberFormat currency = NumberFormat.getCurrencyInstance();

String message = "Order total: " + currency.format(orderTotal) + "\n"

 + "Discount amount: " + currency.format(discountAmount) + "\n"

 + "Invoice total: " + currency.format(invoiceTotal);

Example 5: Combining two statements on one line

String majorityString = NumberFormat.getPercentInstance().format(majority);

Description
 Use one of the three static methods to create a NumberFormat object. Then, use the

methods of that object to format a number with automatic rounding if that’s
necessary.

 To change the number of decimal places in the formatted number, use the methods
for setting the minimum and maximum number of digits.

 Since the NumberFormat class is in the java.text package, you need to include an
import statement when you want to use this class.

Murach’s Beginning Java 2

 page 64

How to use try/catch statements
You use try/catch statements to test for errors that will otherwise cause your program to fail. Since you
usually don’t want your program to “crash” in that way, try/catch statements play an important role in
most programs.

How to code try/catch statements
An exception is an error that can cause a program to fail. For instance, the parseInt or parseDouble
method that you learned to use in the last chapter throws an exception if the argument can’t be
converted to an integer or double data type. An exception can also occur when Java can’t perform an
operation like dividing a value by zero.
To prevent your program from failing when an exception occurs, you can code try/catch statements as
summarized in figure 3-3. As you can see, you first code a try block around the statements that may
cause an exception. Then, you code one catch block for each type of exception that may occur in the try
block. These blocks are coded immediately after the try block.

In the first example in this figure, you can see how try/catch statements are used to catch a
NumberFormatException. This type of exception occurs when the parseInt or parseDouble method can’t
convert the string argument to a valid integer or double value. In this example, the catch block displays
an error message and gives the user a chance to enter a valid number.

In the second example, you can see how try/catch statements are used to catch a NullPointerException.
This type of exception occurs when a method attempts to use null where an object is expected. For
instance, if the user presses the Cancel button in the dialog box, the choice object is set to null. When
the equalsIgnoreCase method attempts to compare this object to a string, a NullPointerException is
thrown. In this example, the catch statement simply exits the application.

Another way to handle this second type of exception is to test the return value of the showInputDialog
method to make sure it isn’t null. Then, you don’t have to code a try/catch statement for this purpose.
However, if you’re coding several showInputDialog methods, it may be easier to handle all exceptions in
one try/catch statement. In some cases, you have to use a try/catch statement to prevent program
failure. For instance, there’s no easy way to prevent a NumberFormatException so you have to use a
try/catch statement.

For now, this is all you need to know about handling exceptions with try/catch statements. As you go
through this book, though, you’ll learn about other types of exceptions. And chapter 10 provides a
thorough treatment of this subject.

Figure 3-3: How to code try/catch statements
The syntax for the try/catch statement

try{statements that may throw an exception}
catch(ExceptionType exceptionName){statements}

Two methods that throw an exception

Other types of run-time exceptions

ArrayIndexOutOfBoundsException

StringIndexOutOfBoundsException

NullPointerException

A try/catch statement that catches a NumberFormatException

String inputString = JOptionPane.showInputDialog("Enter order total: ");

Murach’s Beginning Java 2

 page 65

double orderTotal = 0;

try{

 orderTotal = Double.parseDouble(inputString);

}

catch(NumberFormatException e){

 inputString = JOptionPane.showInputDialog(

 "Invalid order total. \n"

 + "Please enter a number: ");

 orderTotal = Double.parseDouble(inputString);

}

A try/catch statement that catches a NullPointerException

String choice = "";

try{

 while(!(choice.equalsIgnoreCase("X"))){

 choice = JOptionPane.showInputDialog(

 "Press Enter to continue or enter ‘x’ to exit.");

 }

}

catch(NullPointerException e){

 System.exit(0);

}

Description
 An exception is an error that can cause a program to fail. However, you can code

try/catch statements to catch an exception and to supply code that handles the
exception.

 When an error occurs at run time, the method throws an exception.
 You can code a try block around any statements that may throw an exception. Then,

you can code one catch block for each type of exception that may occur in the try
block. Catch blocks are only executed when an exception is thrown in the try block.

 Any variables or objects that are used in both the try and catch blocks must be
created before the try and catch blocks so both the try and catch blocks can access
them.

How to use nested while loops to validate input data
Whenever a user enters data, a program should check it to make sure that it is valid. This is referred to
as data validation. As part of data validation, the user should be given a chance to correct each entry so
the program can continue.

Murach’s Beginning Java 2

 page 66

One way to give the user more than one chance to make each entry is to use nested while loops as
shown in figure 3-4. Here, the main loop repeats all of the statements in the main method until the user
exits the application. It starts by displaying a dialog box that asks the user to enter the order total. Then,
an outer nested loop is repeated until the user enters a valid number, and an inner nested loop is
repeated until the user enters a valid number that’s greater than zero. Once that’s done, the main loop
continues by calculating and displaying the discount amount and invoice total.

If you study this code, you should be able to understand how it works. Note that the condition for the
outer nested loop is just
tryAgain

This is shorthand for
tryAgain == true

Note also that the tryAgain variable is set to true before this loop is entered, and it’s set to false only if
the user’s entry parses to a valid number that isn’t less than or equal to zero. If the entry isn’t numeric,
the catch block in the outer nested loop asks the user to enter another number. If the entry is numeric
but isn’t greater than zero, the inner nested loop asks the user to enter a positive number.

In this example, the program has to validate just one user entry. So you can imagine what’s involved if
the program gets several user entries each time through the main loop. Another way to handle this,
though, is to use static methods for data validation, and you’ll learn how to create and use them next.

Figure 3-4: How to use nested while loops to validate input data
Nested while loops that are used to validate input data

public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){ // start outer while loop

 String inputString = JOptionPane.showInputDialog(

 "Enter order total: ");

 double orderTotal = 0;

 boolean tryAgain = true;

 while(tryAgain){ // start outer nested loop

 try{

 orderTotal = Double.parseDouble(inputString);

 while (orderTotal <= 0){ // start inner nested loop

 inputString = JOptionPane.showInputDialog(

 "Invalid order total. \n"

 + "Please enter a positive number: ");

 orderTotal = Double.parseDouble(inputString);

 } // end inner nested loop

 tryAgain = false;

 }

Murach’s Beginning Java 2

 page 67

 catch(NumberFormatException e){

 inputString = JOptionPane.showInputDialog(

 "Invalid order total. \n"

 + "Please enter a number: ");

 }

 } // end outer nested loop

 // code that calculates and displays the discount amount and invoice
 // total and gives the user a chance to end the program by entering ‘x’

 } // end outer while loop
 System.exit(0);
}

Description
 Whenever a user enters data, it usually needs to be checked to make sure that it is

valid. This is referred to as data validation.
 When you use the Integer and Double classes to convert string entries to int or

double data types, you need to use try/catch statements to make sure that the
entries are numeric. Often, though, you also need to check to make sure that the
data is within logical bounds. For example, an order total should be greater than
zero.

 When an entry is invalid, the program needs to display an error message and give
the user another chance to enter valid data. This needs to be repeated until the
entry is valid. One way to code this type of validation routine is to use nested while
loops.

How to create and use static methods
One way to make your programs more manageable is to create your own static methods. Then, you can
call them just as you call the static methods that are available through Java classes.

How to create a static method
Figure 3-5 shows how to create a static method. To start, you code the private and static keywords. The
static keyword means that you can call this method without having to create an object from this class,
while the private keyword means that you can only call this method from within the current class. For
now, that’s what you want.
After the private and static keywords, you must code a return type for the method. Here, you can use
any primitive type and most classes. If, for example, you want the method to return a String object, you
can code “String” as the return type. And if you want the method to return a double value, you can code
“double” as the return type. But if you don’t want the method to return any data, you can use the void
keyword for the return type.
After the return type, you code the method name and any parameters required by the method. Since a
method performs an action, it’s a common coding practice to start the name of a method with a verb.
After the name, you code a set of parentheses followed by a set of braces. Within the parentheses, you
code the data types and names of the parameters, if any are required. Within the braces, you code the
statements that you want the method to perform.
The last statement in the body of the method is the return statement. It specifies the name of the
variable that is returned by the method. If, however, the method doesn’t return a value, you omit this
statement.
If you study the examples in this figure, you can see how the statement that calls the
calculateFutureValue method relates to the complete method. Here, the calling statement supplies three
arguments: monthlyPayment, months, and monthlyInterestRate. Then, these arguments are received by
the method, which uses a while loop to calculate the future value. The last statement in the method is
the return statement, which returns the future value.

Murach’s Beginning Java 2

 page 68

In this case, the names of the arguments that are sent to the method are the same as the parameter
names used by the method. However, that isn’t necessary. As long as the arguments are sent in the
right sequence with the right data types, the method will work properly. You’ll see this illustrated in a
moment.
Did you notice the careful use of the words argument and parameter in the last few paragraphs? To be
precise, a call statement sends arguments to a method, and a method is defined with parameters. The
difference is that parameters are the values received by the method, while arguments are the values
passed by the caller. You’ll see this use of these words throughout this book. In practice, though, these
words are often used interchangeably because they are so similar.

Figure 3-5: How to create a static method
The syntax for declaring a private static method with one parameter

private static returnType methodName(paramType paramName){
 body of method
 return returnTypeVariable;
}

Typical static method declarations
Example 1: A method that doesn’t accept any parameters or return any data

private static void displayErrorMessage1(){}

Example 2: A method that accepts three parameters and returns a double type

private static double calculateFutureValue(double monthlyPayment,

 int months, double monthlyInterestRate){}

A statement that calls the calculateFutureValue method

double futureValue = calculateFutureValue(monthlyPayment,

 months, monthlyInterestRate);

The complete calculateFutureValue method

private static double calculateFutureValue(double monthlyPayment,

 int months, double monthlyInterestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

 i++;

 }

 return futureValue;

}

Description
 To help organize the code within a program, you can create static methods. Then,

you can call these methods from other parts of the program.

Murach’s Beginning Java 2

 page 69

 The private keyword at the start of a method means that the method can only be
used within the current class. The static keyword means that you can call this
method without first creating an object from the class.

 After the private and static keywords, you code a return type for the method. This is
the data type of the result that will be returned by the method. If no result will be
returned, you code void as the return type.

 After the return type, you code the name of the method followed by a set of
parentheses. Within these parentheses, you code a data type and identifier for each
of the parameters that are going to be sent to the method when the method is
called. If the method requires more than one parameter, you separate them with
commas.

 Within the set of braces that follows the parameters, you code the statements that do
the processing of the method. The last statement is a return statement that gives
the name of the variable that contains the result that should be returned. But if a
method doesn’t return a value, you don’t need to code the return statement.

How to use a static method to validate input data
Figure 3-6 shows how to use a static method to validate input data. Here, a method named parseTotal
receives a String variable and returns a valid double variable. In this case, the calling statement sends a
variable named inputString to the method, but the method refers to that variable as totalString.
Nevertheless, the method works correctly.
If you study the code in this method, you can see that it does the same validation processing that the
nested while loops in figure 3-4 do. However, the static method clearly separates the validation code
from the other code. This makes the code easier to read and understand. For a more complicated
program, you can code general-purpose validation methods that can be used to validate more than one
input entry.

Figure 3-6: How to use a static method to validate input data
A static method that’s used to validate a numeric entry

public class EnhancedInvoiceApp{

 public static void main(String[] args){ // the main method

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){

 String inputString = JOptionPane.showInputDialog(

 "Enter order total: ");

 double orderTotal = parseTotal(inputString);

 // code that calculates and displays the discount and new total

 } // end while loop
 System.exit(0);
 }

 private static double parseTotal(String totalString){ // a static method
 double orderTotal = 0;
 boolean tryAgain = true;
 while(tryAgain){
 try{
 orderTotal = Double.parseDouble(totalString);

Murach’s Beginning Java 2

 page 70

 while (orderTotal <= 0){
 totalString = JOptionPane.showInputDialog(
 "Invalid order total. \n"
 + "Please enter a positive number: ");
 orderTotal = Double.parseDouble(totalString);
 }
 tryAgain = false;
 }
 catch(NumberFormatException e){
 totalString = JOptionPane.showInputDialog(
 "Invalid order total. \n"
 + "Please enter a number: ");
 }
 }
 return orderTotal;
 }

}

Description
 The parseTotal method does the same validation processing that’s done by the

nested while loops in figure 3-4.

Two more applications
In the last chapter, you learned how to create an Invoice application that calculates a discount and
invoice total. In this topic, you’ll learn how to code two more applications. First, you’ll learn how to code
an application that calculates the future value of a series of monthly payments. Then, you’ll learn how to
code an application that calculates the total for a book order. By studying these applications, you’ll see
how what you’ve learned so far can be applied to a variety of programming requirements.

The Future Value application
Figure 3-7 shows the dialog boxes for the Future Value application. Here, the first dialog box lets you
enter an amount for a monthly payment. The second dialog box lets you enter the yearly interest rate.
The third dialog box lets you enter the number of years that these monthly payments will be made. And
the fourth dialog box displays the future value of the payments when interest is accumulated each
month. As you can see in the next figure, the code for this application uses a static method to calculate
the future value.

Figure 3-7: The dialog boxes for the Future Value application

The dialog box for entering the yearly interest rate

The dialog box for entering the number of years

Murach’s Beginning Java 2

 page 71

The dialog box that displays the future value

Description

 This program uses the first three dialog boxes to get user entries for monthly
payment, yearly interest rate, and number of years.

 This program calculates the future value of the monthly payments with interest
accumulated monthly for the specified number of years. Then, it displays the future
value in the fourth dialog box.

Figure 3-8 shows the code for the Future Value application. Within the main method, a while loop
displays the first three dialog boxes and converts the user’s entries to numeric values. Then, if
necessary, the program converts each entry to monthly units. Specifically, it divides the yearly interest
rate by 12 and then by 100 so it becomes the monthly interest rate. And it multiplies the number of
years by 12 to get the number of months that the calculation should be based upon.

The program then calls the static method named calculateFutureValue using the variables that hold the
monthly payment, number of months, and monthly interest rate as the parameters. Then, the static
method uses a while loop to calculate the future value for the number of months indicated by the second
parameter. When the static method finishes, it uses the return statement to return the future value to the
statement that called it.

The program then uses two NumberFormat objects to apply the currency and percent formats to the
values that are displayed by the fourth dialog box. If the user enters x or X in this dialog box, the
program ends. Otherwise, the while loop continues by getting the next set of user entries.

Although this code works when the user enters valid numeric data, it will crash if the user enters invalid
data. To prevent possible crashes like this, you can include validation code like the code that’s shown
earlier in this chapter. For instance, you could include one static method for converting a string to a
positive double value and use that method for converting both the monthly payment and interest entries.
You could also include one static method for converting a string to a positive int value and use that
method for converting the years entry.
Please note that you normally wouldn’t use three dialog boxes to get three input entries and a fourth
dialog box to display the results. Instead, you would use a single dialog box to get the user entries and
display the results. That, however, is a complicated undertaking that you’ll learn how to do in section 3
of this book.

Figure 3-8: The code for the Future Value application
The code for the FutureValueApp class

import javax.swing.*;

import java.text.*;

Murach’s Beginning Java 2

 page 72

public class FutureValueApp{

 public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){ // begin while loop

 String paymentString = JOptionPane.showInputDialog(

 "Enter monthly payment: ");

 double monthlyPayment = Double.parseDouble(paymentString);

 String rateString = JOptionPane.showInputDialog(

 "Enter yearly interest rate: ");

 double interestRate = Double.parseDouble(rateString);

 double monthlyInterestRate = interestRate/12/100;

 String yearsString = JOptionPane.showInputDialog(

 "Enter number of years: ");

 int years = Integer.parseInt(yearsString);

 int months = years * 12;

 double futureValue = calculateFutureValue(monthlyPayment,

 months, monthlyInterestRate);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 NumberFormat percent = NumberFormat.getPercentInstance();

 percent.setMinimumFractionDigits(2);

 String message =

 "Monthly payment: " + currency.format(monthlyPayment) + "\n"

 + "Yearly interest rate: " + percent.format(interestRate/100) + "\n"

 + "Number of years: " + years + "\n"

 + "Future value: " + currency.format(futureValue) + "\n\n"

Murach’s Beginning Java 2

 page 73

 + "To continue, press Enter.\n"

 + "To exit, enter ‘x’: ";

 choice = JOptionPane.showInputDialog(null,

 message, "Future Value", JOptionPane.PLAIN_MESSAGE);

 } // end while loop

 System.exit(0);

 }

 private static double calculateFutureValue(double monthlyPayment,

 int months, double interestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + interestRate);

 i++;

 }

 return futureValue;

 }

}

The Book Order application
Figure 3-9 shows the dialog boxes for the Book Order application. Here, the first dialog box lets you
enter a four-character book code that is used to select a book. The second dialog box lets you enter the
number of books that have been ordered. And the third dialog box displays the book’s code, title, and
price along with the quantity ordered and the order total. You can see the code for this application in the
next figure.

Figure 3-9: The dialog boxes for the Book Order application
The dialog box for entering the book code

The dialog box for entering the quantity ordered

Murach’s Beginning Java 2

 page 74

The dialog box for displaying the results

Description

 This program uses the first two dialog boxes to get the code and quantity of the book
the user wants to order.

 This program uses the book code to look up the book’s title and price. Then, it
calculates the total by multiplying quantity by price, and it displays the results in the
third dialog box.

Figure 3-10 shows the code for the Book Order application, which is similar to the code for the Invoice
and Future Value applications. In this case, though, the first dialog box gets an entry that represents a
book code. Then, the program uses if/else statements to set the title and price of the book based on the
book code that’s entered. Although the if/else statements in this example provide book titles and prices
for just two books (War and Peace and Moby Dick), you could easily code more.
In practice, though, you normally get data like this from a file or a database. So in section 4 and chapter
19, you’ll learn how to do that. In the meantime, please accept the fact that this application is unrealistic
in this respect, and imagine that the application is getting data from a file or database. As you will see in
the next chapter, this application is used as the basis for presenting many of the principles of object-
oriented programming.

If you study the code in this figure, you shouldn’t have any trouble understanding it. Here again,
NumberFormat objects are used to format the values that are displayed. And the program doesn’t
validate the user’s entries.

Figure 3-10: The code for the Book Order application
The code for the BookOrderApp class

import javax.swing.JOptionPane;

import java.text.NumberFormat;

public class BookOrderApp{

 public static void main(String[] args){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){

 String code = JOptionPane.showInputDialog(

Murach’s Beginning Java 2

 page 75

 "Enter book code: ");

 String title = "";

 double price = 0.0;

 if (code.equalsIgnoreCase("WARP")){

 title = "War and Peace";

 price = 14.95;

 }

 else if (code.equalsIgnoreCase("MBDK")){

 title = "Moby Dick";

 price = 12.95;

 }

 else{

 title = "Not Found";

 price = 0.0;

 }

 String inputQuantity = JOptionPane.showInputDialog(

 "Enter quantity: ");

 int quantity = Integer.parseInt(inputQuantity);

 double total = quantity * price;

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String message = "Code: " + code + "\n"

 + "Title: " + title + "\n"

 + "Price: " + currency.format(price) + "\n"

 + "Quantity: " + quantity + "\n"

 + "Total: " + currency.format(total) + "\n\n"

 + "Press Enter to continue or enter ‘x’ to exit.";

 choice = JOptionPane.showInputDialog(null,

 message, "Book Order", JOptionPane.PLAIN_MESSAGE);

 }

 System.exit(0);

 }

Murach’s Beginning Java 2

 page 76

}

Description
 Although the code for this program uses if statements to get the title and price for

each book code, a program normally gets data like that from a file or database.
 In the next chapter, you’ll learn how to write an object-oriented version of this

program that uses Book and BookOrder objects. Then, in chapters 18 and 19, you’ll
learn how to get the data for these objects from a file or a database.

How to use the documentation for the Java API
Now that you’ve been introduced to some of the classes in the Java API, you’re ready to learn how to
look up information about these and other Java classes. Since the Java API provides HTML-based
documentation, you can browse this documentation with any web browser to get detailed information
about every method of every class in the Java API.

How to install the API documentation
Although you can view the documentation for the Java API by browsing the Java web site, you will
probably want to install this API documentation on your hard drive so you can get the information more
quickly. To install it, you can use the procedures shown in figure 3-11. Since the documentation comes
in a compressed format called a zip file, you need to use an unzip tool like the Java Archive tool to
extract the HTML pages from the zip file. When you use this tool, it creates a docs directory and its
subdirectories beneath the jdk directory.
If you don’t want to use the Java Archive tool to unzip files, you can use another tool. For example,
WinZip is a popular program for working with zip files. If you use it, you should select the root directory
of your hard drive (c:\) as the unzip directory. That way, all of the directories and files for the
documentation will be stored under the jdk directory. If you don’t already have WinZip installed on your
system, you can download a free evaluation copy from www.winzip.com.

Figure 3-11: How to install the API documentation
How to download the API documentation from the web to your C drive

1. Go to www.java.sun.com.
2. Go to the page for the version of the SDK that you’re using.
3. Go to the download page for the version of the SDK that you’re using and find the

hyperlink for the documentation download.
4. Select the HTML format option and the one bundle option, unless the other options

apply to you. Note the filename and size.
5. Select one of the FTP options. If you can’t use one of the FTP options, use the HTTP

option.
6. Save the file to your hard disk in c:\API_Documentation. Check the filename and size

to make sure that the file wasn’t corrupted during the download.
How to copy the API documentation from the book’s CD to your C drive

1. Find the API_Documentation directory on your CD.
2. Copy the API_Documentation directory from your CD drive to your C drive so it

becomes c:\API_Documentation.
How to use the Java Archive tool to install the API documentation from your C drive

1. Use the command prompt to navigate to the c:\API_Documentation directory.
2. Use the Java Archive (JAR) tool to extract the HTML pages from the zip file. To do

that, enter this command:
jar xvf j2sdk-1_3_1-doc.zip

3. The Java Archive tool creates the docs directory and its subdirectories subordinate to
the c:\API_Documentation directory, and it places the HTML pages for the
documentation in these directories.

4. Move the docs directory that you just created to the c:\jdk1.3.1 directory so it
becomes c:\jdk1.3.1\docs.

Description
 The CD that comes with this book contains the API documentation for version 1.3.1

of the SDK. If you’re using another version of the SDK, you can still use this version
in most cases. However, you may want to download and install the version that
matches your SDK from the Java web site.

Murach’s Beginning Java 2

 page 77

 You can use the Java Archive tool to extract the HTML pages from the zip file for the
API documentation. Or, if you prefer, you can use another tool such as WinZip. To
download a free evaluation copy of WinZip, go to www.winzip.com.

How to navigate the API documentation
Figure 3-12 shows how to look up any class in the documentation for the Java API. This allows you to
get detailed information about a class, such as the arguments that are required by a method. To begin
searching this documentation, point your web browser to the index page. Since you’ll need to access
this page often as you learn about Java, you should use your web browser’s bookmark feature to mark
this page.

To start, you may want to look up some of the classes that you’ve already learned about like the String,
Double, Integer, JOptionPane, Math, and NumberFormat classes. For example, you can look up all the
possible argument combinations for the showInputDialog method of the JOptionPane class.

Conversely, you may want to use the documentation to look up some classes that you aren’t familiar
with. The more you learn about working with classes, the easier it will be for you to learn about other
classes that are similar. For example, if you look up the Long class in the java.lang package, you’ll see
that it’s similar to the Integer class. As a result, once you know how to use the Integer class, you
shouldn’t have much trouble using the Long class.

In this book, you’ll learn about many different classes, and you’ll learn much more about how classes
work. Along the way, you can always use the documentation for the Java API to help clarify the
discussion or further your knowledge.

Figure 3-12: How to navigate the API documentation
The index for the documentation

Description

 If you’ve installed the documentation on your hard drive, you can display an index like
the one shown above by using your web browser to go to the index.html file in the
\jdk1.3.1\docs\api directory. If you haven’t installed the documentation, you can
browse through it on the Java web site.

Murach’s Beginning Java 2

 page 78

 You can use the upper left frame to select a package. When you do, all classes for
that package will be displayed in the lower left frame.

 You can use the lower left frame to select a class. When you do, the documentation
for that class will be displayed in the right frame.

 Once you display the documentation for a class, you can scroll through it or click on a
hyperlink to get more information.

 The documentation for a class usually provides a wide range of information, including
a summary of all of its methods. You’ll learn more about what this information
means throughout this book. For now, you can focus on the summary of the
methods.

 To make it easier to access this documentation, you should bookmark this HTML
page. To do that with the Internet Explorer, select the Add To Favorites command
from the Favorites menu. Then, you can browse this documentation by selecting the
Java 2 Platform SE v1.3.1 command from the Favorites menu.

Perspective
In this chapter, you learned some essential Java skills for formatting and validating data, and you
learned how to get more information about any class in the Java API. In addition, you were introduced
to two new applications, the Future Value application and the Book Order application. In the next
chapter, you’ll learn how to change the Book Order application so that it uses the object-oriented
techniques that are used by professional Java programmers.

Summary
 You can use the Math class to perform basic mathematical calculations such as

exponentiation.
 You can use the NumberFormat class to apply standard currency, percent, and number

formats to any of the numeric primitive types.
 You can code try/catch statements to catch exceptions that are thrown by a class.
 Data validation refers to the process of checking input data to make sure that it’s valid.
 You can use static methods to organize your code. When you code a static method, you

can code one return type and one or more parameters.
 You can get detailed information about any class in the Java API by using a web

browser to browse the HTML-based documentation for the Java API.

Terms
exception call a method

throw return type

try/catch statement parameter

try block return statement

catch block API documentation

data validation zip file

static method Java Archive tool

Objectives
 Use any of the methods of the Math class to perform numeric operations.
 Use the NumberFormat class to format numeric types.
 Write an application that catches exceptions and validates user input.
 Create and use a static method for validating data or performing a calculation.
 Look up information about any method of any class in the API documentation for Java.

Exercise 3-1: Enhance the Invoice application
This exercise guides you through the process of enhancing the Invoice application that you created in
the last chapter.

1. Open the InvoiceApp class that you worked with in the last chapter. It should be
stored in the c:\java\ch02 directory. Then, save this file as EnhancedInvoiceApp.java
in the c:\java\ch03 directory, and change the class name to EnhancedInvoiceApp.

2. Edit the program so it uses the NumberFormat class to apply the currency format to
the three numbers displayed in the second dialog box. Then, compile and run the
class to make sure it’s working properly.

Murach’s Beginning Java 2

 page 79

3. Edit the code so it uses one try/catch statement to catch the exceptions that may be
thrown if the user presses the Cancel button in the dialog boxes.

4. Edit the code so it uses a nested while loop and a try/catch statement to catch the
exception that may be thrown by the parseDouble method of the Double class. When
the exception is caught, the program should display another dialog box so the user
can correct the entry. After you compile and test the program, you shouldn’t be able
to crash the application by entering invalid data. However, you should be able to
enter a negative number.

5. Edit the code so it prevents the user from entering any number that’s less than or
equal to zero. Then, compile and run the application to make sure it’s working
properly.

6. Modify the program so the data validation is done by a static method instead of a
nested while loop. Then, test the program to make sure that it still works correctly.

Exercise 3-2: Enhance the Future Value application

This exercise guides you through the process of enhancing the Future Value application that’s
presented in figures 3-7 and 3-8.

1. Open the FutureValueApp application that’s stored in the c:\java\ch03 directory.
Then, compile and test the application so you can see how it works. Note that it uses
the default input dialog boxes, and it doesn’t catch any exceptions or validate any
data.

2. Edit the code so the input dialog boxes use “Future Value” as the title and so these
dialog boxes don’t display icons. Then, compile and test the application to make sure
it’s working properly.

3. Edit the code so it uses one try/catch statement to catch the exceptions that may be
thrown if the user presses the Cancel button in the dialog boxes.

4. Edit the code so it uses static methods to validate the data that’s entered for the
monthlyPayment, years, and monthlyInterestRate variables. Then, compile and run
the application to make sure it’s working properly.

Exercise 3-3: Enhance the Book Order application

This exercise guides you through the process of enhancing the Book Order application that’s shown in
figures 3-9 and 3-10.

1. Open the BookOrderApp application that’s stored in the c:\java\ch03 directory. Then,
compile and test the application. Note that it doesn’t catch any exceptions or validate
any data.

2. Edit the code so it uses one try/catch statement to catch the exceptions that may be
thrown if the user presses the Cancel button in the dialog boxes.

3. Edit the program so it uses a static method to validate the data that’s entered for the
quantity variable. A quick way to do that is to open the Future Value application that
you enhanced in the last exercise, copy the method that parses the year entry from
that program to this one, and modify the code so it works with the quantity variable.
Then, compile and run the class to make sure it’s working properly.

4. Edit the program so it uses another static method to set the title of the book
depending on the book code. Next, edit the code so it uses a third static method to
set the price of the book depending on the book code. Then, compile and run the
program to make sure it’s working properly.

Exercise 3-4: Browse the Java API documentation

This exercise guides you through the process of using the documentation for the Java API to learn more
about classes.

1. Start your web browser and navigate to the index.html page for the API
documentation. If you’ve installed the documentation on your hard drive, it should be
in the c:\jdk1.3.1\docs\api directory. Otherwise, go to the Java web site.

2. Bookmark this page with your web browser. For the Internet Explorer, select the Add
to Favorites command from the Favorites menu and click OK. When you’re done,
close your web browser.

Murach’s Beginning Java 2

 page 80

3. Start your web browser again. Then, use the bookmark to return to the index.html
page.

4. In the upper left frame, select the java.lang package. In the lower left frame, select
the Math class. Then, information about the Math class should be displayed in the
right frame. Scroll down and skim through the documentation for the Math class.
Notice that the documentation shows four signatures for the max method, one
method per data type.

5. Browse through the documentation for the classes you’ve learned about so far: the
String class, the Double class, the Integer class, the System class, the JOptionPane
class, the Math class, and the NumberFormat class.

6. When you’ve satisfied your curiosity, close your browser.

Chapter 4: How to write object-oriented programs
In the last two chapters, you learned how to use Java classes and objects, which is an essential part of
object-oriented programming. Now, in this chapter, you’ll learn how to create classes for the specific
types of objects and methods that your applications require. That too is an essential part of object-
oriented programming. When you finish this chapter, you’ll begin to see how professional programmers
develop Java programs.

An introduction to object-oriented programming
To illustrate some terms and concepts that apply to object-oriented programming (OOP), the next two
figures use Unified Modeling Language (UML) diagrams. This modeling language is the industry
standard for working with all object-oriented programming languages including Java.

How encapsulation works
Figure 4-1 shows a class diagram for a class named Book. This diagram shows that the class contains
three attributes and five operations. Here, the minus sign (-) identifies attributes and operations that are
available only within the current class, while the plus sign (+) identifies attributes and operations that are
available to other classes.

In this case, all of the operations are available to other classes, but none of the attributes are. However,
some of the operations make the attributes available to other classes. For instance, the getCode
operation gets the code attribute, and the getTitle operation gets the title attribute.
This illustrates encapsulation, which is a fundamental concept of object-oriented programming. This
means that the programmer can hide, or encapsulate, some attributes and operations of a class, while
exposing others. Since the attributes (or data) of a class are typically encapsulated within a class,
encapsulation is sometimes referred to as data hiding. In addition, though, the code that performs the
operations of the class is also hidden from the classes that use the operations.

When you use a class, encapsulation lets you think of it as a black box that provides useful attributes
and operations. When you use the parseInt method of the Integer class, for example, you don’t know
how the method converts a string to an integer, and you don’t need to know. Similarly, if you use the
getPrice operation of the Book class in this figure, you don’t know how the operation works, and you
don’t need to know.

This also means that you can change the internal code for an operation within a class without affecting
the classes that use the class. For instance, you can change the code that gets the price of a book for
the getPrice operation without changing the classes that use that operation. This makes it easier to
upgrade or enhance an application because you only need to change the classes that need upgrading.

Figure 4-1: How encapsulation works
A class diagram for the Book class

Murach’s Beginning Java 2

 page 81

Description

 The attributes of a class store the data of a class.
 The operations of a class define the tasks that a class can perform. Often, these

operations provide a way to work with the attributes of a class.
 Encapsulation is one of the fundamental concepts of object-oriented programming.

This means that the class controls which of its attributes and operations can be
accessed by other classes. As a result, the data in the class can be hidden from
other classes (called data hiding), and the operations in a class can be modified or
improved without changing the way that other classes use them.

Class diagramming notes
 The minus sign (-) in a class diagram marks the attributes and operations that can’t

be accessed by other classes, while the plus sign (+) marks the attributes and
operations that can be accessed by other classes.

 For each attribute, the name is given, followed by a colon, followed by the data type.
For each operation, the name is given followed by a set of parentheses. If an
operation requires parameters, the name and data type of each parameter is listed
in the parentheses. Otherwise, the parentheses are left empty, and the data type of
the value that’s going to be returned is given after the colon.

The relationship between a class and its objects
Figure 4-2 uses one class diagram and two object diagrams to show how objects are created from a
class. Here, the diagrams show only the attributes, not the operations, of the class and its objects. In
this case, two objects named book1 and book2 are created from the Book class.

Although an object diagram is similar to a class diagram, there are two differences. First, the name of
the object is underlined. Second, each attribute in an object diagram contains a value.
Once an object is created, it has an identity and a state. An object’s identity is its name. An object’s
state refers to the values that are stored by the object. For example, book1 is the identity of the first
Book object, and the state of this object is determined by the three values that it holds. As the program
executes, the state of the object may change, but the identity of the object won’t.

Figure 4-2: The relationship between a class and its objects
The relationship between a class and its objects

Murach’s Beginning Java 2

 page 82

Description

 A class can be thought of as a template from which objects are made.
 An object diagram provides the name of the object and the values of the attributes.
 Once an object is created, it has an identity (a unique name) and a state (the values

that it holds). Although an object’s state may change throughout a program, its
identity never does.

How to code a class that defines an object
Now that you’ve learned some of the terms and concepts for working with object-oriented programs,
you’re ready to code a class that defines an object. So to start, you’ll learn how to code a class named
Book. Later, you’ll learn how to create objects from this class.

The code of the Book class
Figure 4-3 presents the code for a class named Book. This code implements the attributes and
operations of the class diagram in figure 4-1. Since you learned how to use most of the statements in
this class in the last chapter, you should be able to understand most of this code right now. In the next
three figures, though, you’ll learn how the rest of this code works.
At the top of the class, the three instance variables define the data that will be used by the objects
created from this class. In UML terms, they define the attributes of the class. Below that, the constructor
creates the objects of the class by assigning values to the three instance variables of the object. And
below that, the five methods of the class provide procedures that you can call from an object of the
class. In UML terms, these methods define the operations of the class.
The private and public access modifiers control which instance variables and methods are available to
other classes. Since all of the instance variables use the private access modifier, they are only available
within the current class. The constructor and the five methods, however, use the public access modifier.
As a result, they are available to all classes.

Figure 4-3: The code of the Book class
The Book class

public class Book{

 private String code; }

 private String title; }-->Instance variables
 private double price; }

 public Book(String bookCode){ }
 code = bookCode; }

Murach’s Beginning Java 2

 page 83

 setTitle(bookCode); }-->Constructor
 setPrice(bookCode); }
 } }

 public void setTitle(String bookCode){ }
 if (bookCode.equalsIgnoreCase("WARP")) }
 title = "War and Peace"; }
 else if (bookCode.equalsIgnoreCase("MBDK")) }
 title = "Moby Dick"; }
 else }
 title = "Not Found"; }
 } }
 }
 public void setPrice(String bookCode){ }
 if (bookCode.equalsIgnoreCase("WARP")) }
 price = 14.95; }
 else if (bookCode.equalsIgnoreCase("MBDK")) }
 price = 12.95; }
 else }-->Method
 price = 0.0; }
 } }
 }
 public String getCode(){ }
 return code; }
 } }
 }
 public String getTitle(){ }
 return title; }
 } }
 }
 public double getPrice(){ }
 return price; }
 } }
 }
} }

Description
 The instance variables of a class hold the attributes, or data, of an object. Each

object created from that class has its own copy of these variables with its own
values.

 The constructor initializes the instance variables and is always called when an object
is created from a class.

 The methods of a class are the operations that can occur on objects. Methods are the
primary way that objects communicate with each other.

How to code instance variables
Figure 4-4 shows how to code the instance variables that define the types of data that are used by a
class. When you declare an instance variable, you should use one of the three access modifiers to
control the scope of the variable. For now, you should declare all instance variables as private to
prevent other classes from directly accessing them. Later in this book, though, you’ll learn more about
using the public and protected modifiers.

This figure shows four examples of declaring an instance variable. The first example declares a variable
of the double type. The second one declares a variable of the int type. The third one declares a variable
that’s an object of the String class. And the last one declares an object from the Book class…the class
that you’re learning how to code right now.

Although instance variables work like regular variables, they must be declared within the class body, but
not inside methods or constructors. That way, they’ll be available throughout the entire class. In this
book, all of the examples show the instance variables at the start of the class. When you read through
code from other sources, though, you may find the instance variables at the end of the class. In
addition, you may find that many programmers place public instance variables at the start of the class
and private instance variables at the end of the class.

Figure 4-4: How to code instance variables

Murach’s Beginning Java 2

 page 84

The syntax for declaring instance variables
public|private|protected primitiveType|ClassName variableName;

Examples

private double price;

private int quantity;

private String title;

private Book bookObject;

Where you can declare instance variables

public class Book{

 //common to code instance variables here
 private String code;
 private String title;
 private double price;

 //the constructors and methods of the class
 public Book(String bookCode){}
 public void setTitle(String bookCode){}
 public void setPrice(String bookCode){}
 public String getCode(){ return code; }
 public String getTitle(){ return title; }
 public double getPrice(){ return price; }

 //also common to code instance variables here
 private int test;

}

Description
 An instance variable may be a primitive data type, an object created from a Java

class such as the String class, or an object created from a programmer-defined
class such as the Book class.

 To prevent other classes from accessing instance variables, use the private access
modifier to declare them as private.

How to code constructors
Figure 4-5 shows how to code a constructor for a class. When you code one, it’s a good coding practice
to assign a value to all of the instance variables of the class as shown in the three examples. In
addition, you can include any additional statements that you want to execute within the constructor. For
instance, the third example ends by calling two methods from the current class.
When you code a constructor, you must use the public access modifier and the same name, including
capitalization, as the class name. Then, if you don’t want to accept arguments, you must code an empty
set of parentheses as shown in the first example. On the other hand, if you want to accept arguments,
you code the parameters for the constructor as shown in the second and third examples. When you
code the parameters for a constructor, you must code a data type and a name for each parameter. For
the data type, you can code a primitive data type or the class name for any class that defines an object.

The second example shows a constructor with three parameters. Here, the first parameter is a String
object named bookCode; the second parameter is a String object named bookTitle; and the third
parameter is a double type named bookPrice. Then, the three statements within the constructor use
these three parameters to initialize the three instance variables of the class.

The third example shows a constructor with one parameter. Here, the first statement assigns this
parameter to the first instance variable of the class. Then, the second and third statements call other
methods within the class to initialize the other two instance variables.

Murach’s Beginning Java 2

 page 85

When you code a constructor, the class name plus the number of parameters and the data type for
each parameter form the signature of the constructor. You can code more than one constructor per
class as long as each constructor has a unique signature. For example, all three of the constructors
shown in this figure have unique signatures so they could be coded within the Book class. This is known
as overloading a constructor.

If you don’t code a constructor, Java will create a default constructor that doesn’t accept any parameters
and initializes all instance variables to null, zero, or false. To avoid confusion, though, it’s a good coding
practice to code all of your own constructors. That way, it’s easy to see which constructors are available
to a class, and it’s easy to check the values that each constructor uses to initialize the instance
variables.

Figure 4-5: How to code constructors
The syntax for coding constructors

public ClassName(parameters){
 statements to initialize instance variables
 other initializing statements (optional)
}

The syntax for coding parameters
([dataType paramName[, dataType paramName]...])

Example 1: A constructor without any parameters

public Book(){

 code = "";

 title = "";

 price = 0.0;

}

Example 2: A constructor with three parameters

public Book(String bookCode, String bookTitle, double bookPrice){

 code = bookCode;

 title = bookTitle;

 price = bookPrice;

}

Example 3: A constructor with one parameter

public Book(String bookCode){

 code = bookCode;

 setTitle(bookCode);

 setPrice(bookCode);

}

Description
 The constructor must use the same name and capitalization as the name of the class,

and it must always use the public access modifier.
 If you don’t code a constructor, Java will create a default constructor that initializes all

objects to null, all numeric types to zero, and all boolean types to false.

Murach’s Beginning Java 2

 page 86

 To code a constructor that has parameters, code a data type and name for each
parameter within the parentheses that follow the class name. A data type can be a
primitive type or the name of a class. If you code more than one parameter, use
commas to separate them.

 The name of the class combined with the parameter list form the signature of the
constructor. Although you can code more than one constructor per class, each
constructor must have a unique signature.

How to code methods
Figure 4-6 shows how to code the methods of a class. To start, this figure shows the syntax for coding a
method. Then, this figure shows four methods that could be included in the Book class.
When you code a method, you begin by coding one of the three access modifiers. Most of the time,
you’ll use the public access modifier when declaring a method so the method can be used by other
classes. After the access modifier, you code the return type for the method, which refers to the data
type that the method returns. After the return type, you code the name of the method followed by any of
the parameters for the method. Last, you code the opening and closing braces that contain the
statements of the method.
When you code the method name and the parameters of a method, you form the signature of a method.
If two methods have the same name but accept a different number or type of parameters, they have
different signatures. As a result, they can be coded in the same class. This is known as overloading a
method, which is similar to overloading a constructor.
Since a method name should describe the action that the method performs, it’s a common coding
practice to start each method name with a verb. Methods that set the value of an instance variable
usually begin with set and are referred to as set methods. Conversely, methods that return the value of
an instance variable usually begin with get and are referred to as get methods.
The first two examples show two ways to code the setTitle method that sets the value of an instance
variable named title. In the first example, the method doesn’t accept parameters and it doesn’t return
any values. To do that, it uses the void keyword for the return type and it ends with a set of empty
parentheses. In the second example, however, the method accepts a String object as a parameter.
Then, it uses this parameter to set the instance variable named title.

The third and fourth examples show how to code methods that return data. In the third example, the
getTitle method returns the value of the instance variable named title. This method uses a return
statement to return the String object that’s referred to by the instance variable named title. In the fourth
example, the getPrice method returns the value of the instance variable named price, which is a double
type.
At this point, you should understand the code for the Book class in figure 4-3. As you can see, the
constructor requires one parameter (bookCode) and uses its setTitle and setPrice methods to set the
title and price for an object based on that code. The last three methods let other classes get the code,
title, and price of a Book object.

Figure 4-6: How to code methods
The syntax for coding a method

public|private|protected returnType methodName(parameters){
 statements
}

Example 1: A set method with no parameters

public void setTitle(){

 if (code.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (code.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

 else

 title = "Not Found";

}

Murach’s Beginning Java 2

 page 87

Example 2: A set method with one parameter

public void setTitle(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (bookCode.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

 else

 title = "Not Found";

}

Example 3: A get method that returns a String object

public String getTitle(){

 return title;

}

Example 4: A get method that returns a double type

public double getPrice(){

 return price;

}

Description
 To allow other classes to access a method, use the public access modifier. To

prevent other classes from accessing a method, use the private modifier. In the next
chapter, you’ll learn how to use the protected modifier.

 To code a method that doesn’t return data, use the void keyword for the return type.
To code a method that returns data, code a return type in the method declaration
and code a return statement in the body of the method as shown in the third and
fourth examples.

 When you name a method, you should start each name with a verb. It’s a common
coding practice to use the verb set for methods that set the values of instance
variables and to use the verb get for methods that return the values of instance
variables.

 The name of the method combined with the parameters form the signature of the
method. Although you can use the same name for more than one method, each
method must have a unique signature.

How to create an object from a class
Now that you understand the code of the Book class, you’re ready to create Book objects from this class
and use its methods. First, you’ll learn how to code a class named BookApp that creates Book objects
from the Book class. Then, you’ll learn how to call methods from those objects.

The code of the BookApp class
Figure 4-7 presents the code of the BookApp class. This class contains the main method for the
application that creates an object from the Book class. This is often referred to as the driver class or
controller class of an object-oriented application.

Murach’s Beginning Java 2

 page 88

To make it easy to tell which class contains the main method that starts an application, it’s a common
naming convention to add a suffix to this class. In this book, we use “App” as the suffix for the class
that’s used to start the application.

When coding classes, it’s a good coding practice to separate the graphical user interface from the rest
of the program. For now, that means that the code that displays dialog boxes should be stored in the
BookApp class, not in the Book class. Later in this book, you’ll learn how to code classes that define a
more complete graphical user interface.

In this figure, the code that uses the Book class is shaded. The first piece of shaded code creates a new
Book object named book. Since the Java compiler is case-sensitive, it’s OK to use the same name as
the class to name the object as long as you use a lowercase letter to start the name of the object. The
next two pieces of shaded code call the getTitle and getPrice methods of the Book object. For now,
don’t worry if you don’t understand this code. The next two figures will explain it in more detail.

Figure 4-7: The code of the BookApp class
The BookApp class

import javax.swing.JOptionPane;

public class BookApp{

 public static void main(String args[]){

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){

 String code = JOptionPane.showInputDialog(

 "Enter a book code:");

 Book book = new Book(code);

 String message = "You have selected:\n"

 + " Title: " + book.getTitle() + "\n"

 + " Price: " + book.getPrice() + "\n\n"

 + "Press Enter to continue or enter ‘x’ to exit:";

 choice = JOptionPane.showInputDialog(null,

 message, "Book", JOptionPane.PLAIN_MESSAGE);

 }//end while

 System.exit(0);

 }

}

The dialog boxes that are displayed by the BookApp class

Murach’s Beginning Java 2

 page 89

Description

 The class that contains the main method of an application can be called the driver or
controller class. It’s a common naming convention to use a suffix such as “App” to
identify this class.

 The BookApp class above contains all of the code that provides the user interface of
the application. It creates an object from the Book class and calls two methods from
that object.

 For now, you should store both the BookApp class and the Book class in the same
directory. That way, the Java compiler will let these classes communicate with each
other. Later in this chapter, you’ll learn how to let user-defined classes communicate
with each other even when they’re stored in different directories.

How to create an object
Figure 4-8 shows how to create an object with one and with two statements. Most of the time, you’ll use
the one-line statement to create objects. However, as you’ll see later in this book, certain types of
coding situations require you to create an object with two statements.
When you use two statements to create an object, the first statement declares the class and the name
of the object. However, an instance of the object isn’t actually created until the second statement is
executed. This statement uses the new keyword to call the constructor for the object, which initializes
the instance variables.

When you send arguments to the constructor of a class, you must make sure that the constructor will be
able to accept the arguments. To do that, you must send the right number of arguments, in the right
sequence, and with data types that match the data types specified in the parameter list of the
constructor. When a class contains more than one constructor, the constructor that matches the
arguments that are sent is the constructor that will be executed.

The two-statement example in this figure creates a new Book object without sending any arguments to
the Book class. The same task is accomplished by the first one-statement example. Then, the second
and third examples show how to send a single argument to the constructor of the Book class. Both of
these statements send a String object, but the second example sends a literal while the third example
sends a variable that refers to a String object. In contrast, the fourth example sends three arguments to
the constructor.

Figure 4-8: How to create an object
How to create an object in two statements

Syntax
ClassName objectName;
objectName = new ClassName(optionalArgumentList);
Example 1: No arguments

Book book;

book = new Book();

How to create an object in one statement
Syntax
ClassName objectName = new ClassName(optionalArgumentList);
Example 1: No arguments

Book book = new Book();

Example 2: One literal argument

Book book = new Book("WARP");

Murach’s Beginning Java 2

 page 90

Example 3: One variable argument

Book book = new Book(code);

Example 4: Three arguments

Book book = new Book(code, title, price);

Description
 To create an object, you use the new keyword to create a new instance of a class.

Each time the new keyword creates an object, Java calls the constructor for the
object, which initializes the instance variables for the object.

 To send arguments to the constructor, code the arguments between the parentheses
after the class name. You don’t need to specify the types, though, because this has
already been done by the parameter list of the constructor.

 When you send arguments to the constructor, the arguments must be in the
sequence and with the data types called for by the constructor.

How to call the methods of an object
Figure 4-9 shows how to call methods from a Book object. By now, you should be familiar with the basic
syntax for calling a method, so this figure should just be review. To start, you type the object name
followed by the dot operator and the method name. Then, if the method requires arguments, you can
code the argument list between the parentheses, separating multiple arguments with commas.
Otherwise, you code an empty set of parentheses.

The first two examples show two ways to call set methods that don’t return any data. The first example
doesn’t send an argument, while the second example sends an argument named bookCode. In this
case, the argument is a variable that represents a String object, but the argument could also be a literal
value like “WARP”. Either way, you need to send the right number of arguments, and you need to match
the data types of the arguments with the data types specified in the parameter list of the method.

The third and fourth examples show how to return a value and assign that value to a variable. In the
third example, the getPrice method doesn’t have any arguments, but it does return a value and assign
that value to a double variable named price. In the fourth example, the getPrice method sends a String
object as an argument, returns a value, and assigns that value to the double variable named price.
Although both methods return a double variable, methods can also return other data types and objects.

The fifth example shows how to call a method from the middle of a statement. Here, the statement calls
the getTitle method to return a String object and uses the plus sign to join this String object with string
literals that include escape sequences. This shows that a method call doesn’t have to come at the end
of a statement.

Figure 4-9: How to call the methods of an object
The syntax for calling a method

objectName.methodName(optionalArgumentList)
Examples of calling a method

Example 1: Sends no arguments and returns no value

book.setTitle();

Example 2: Sends one argument and returns no value

book.setTitle(bookCode);

Example 3: Sends no arguments and returns a double value

double price = book.getPrice();

Example 4: Sends an argument and returns a double value

double price = book.getPrice(bookCode);

Example 5: A method call within a statement

Murach’s Beginning Java 2

 page 91

String message = "Title: " + book.getTitle() + "\n\n"

 + "Press Enter to continue or enter ‘x’ to exit:";

Description
 To call a method that doesn’t accept arguments, type an empty set of parentheses

after the method name.
 To call a method that accepts arguments, enter the arguments between the

parentheses that come after the method name. Here, the data type of each
argument must match the data type that’s specified by the method’s parameters.

 To code more than one argument, type a comma between each argument.
 If a method returns a value, you can code an assignment statement to assign the

return value to a variable. Here, the data type of the return value must match the
data type of the variable that’s used in the assignment statement.

The object-oriented code of the Book Order application
In chapter 3, you reviewed the code for a Book Order application that allowed the user to enter a book
code and order quantity. Now, you’ll see an object-oriented version of that application. It consists of a
driver class, the Book class that you’ve just learned about, and a new class named BookOrder. This
class uses a Book object as an instance variable.

The code of the BookOrder class
Figure 4-10 shows the code of the BookOrder class. To start, it defines three instance variables. The
first instance variable is an object of the Book class; the second one is an int type that stores the
number of books ordered; and the third one is a double type that stores the total for the order.

The constructor of the BookOrder class initializes the three instance variables. The first statement uses
the new keyword to pass the bookCode parameter to the constructor for the Book class. This creates an
instance of the Book object. Since this code calls the Book constructor from within the BookOrder
constructor, creating a BookOrder object also creates a Book object. Then, the second statement
assigns the orderQuantity parameter to the quantity instance variable. And the third statement calls the
setTotal method, which sets the value of the third instance variable.

As you can see, the setTotal method doesn’t have any parameters and it doesn’t return any values.
However, it calculates the total for the order by multiplying the quantity instance variable by the price
that’s stored in the Book object. To get the price, it uses the getPrice method of the Book object.
The getBook, getQuantity, and getTotal methods return the values of the instance variables named
book, quantity, and total. Since the getBook method returns a Book object, you can get more
information on this instance variable by using methods from the Book class. (Incidentally, these
methods aren’t used by the BookOrderApp class in figure 4-11.)

The toString method returns a String object that presents all of the data for a book order. The first
statement in this method creates a NumberFormat object that has the standard currency format, and the
second statement creates the String object that presents the data. To do that, it calls methods from the
Book object, and it uses the NumberFormat object to format the numbers. For the price variable, the
method call that returns the price value is nested within the method call that formats the price value. The
last statement in this method uses the return statement to return the String object.

When you write a class like this that uses another class, you don’t need to know how the code in the
other class works. You just need to know what the name of the class is, what arguments its constructors
require, what the names of its methods are, what the methods do, and what arguments they require.
Everything else is encapsulated in the other class so you don’t need to worry about it.

Figure 4-10: The code of the BookOrder class
The BookOrder class

import java.text.*;

public class BookOrder{

 private Book book;

Murach’s Beginning Java 2

 page 92

 private int quantity;

 private double total;

 public BookOrder(String bookCode, int orderQuantity){

 book = new Book(bookCode);

 quantity = orderQuantity;

 setTotal();

 }

 public void setTotal(){

 total = quantity * book.getPrice();

 }

 public Book getBook(){

 return book;

 }

 public int getQuantity(){

 return quantity;

 }

 public double getTotal(){

 return total;

 }

 public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + book.getCode() + "\n"

 + "Title: " + book.getTitle() + "\n"

 + "Price: " + currency.format(book.getPrice()) + "\n"

 + "Quantity: " + quantity + "\n"

Murach’s Beginning Java 2

 page 93

 + "Total: " + currency.format(total) + "\n";

 return orderString;

 }

}

Description
 The BookOrder class defines three instance variables. The first one is an instance of

the Book class. In other words, the BookOrder class uses the Book class.
 The constructor of the BookOrder class requires two parameters: a book code and an

order quantity. This constructor uses these parameters to initialize the three
instance variables.

 The BookOrder class provides five methods. The setTotal method sets the order total
by multiplying quantity times book price, and it is used by the constructor. The
getBook method returns the current Book object, the getQuantity method returns the
current quantity, and the getTotal method returns the current total. The toString
method returns a string that provides all of the information for the order.

The code of the BookOrderApp class
Figure 4-11 shows the code for the BookOrderApp class. This is the driver class of the application, and
it contains two methods. The first method is the main method that displays the dialog boxes of the
application and creates the BookOrder object. The second method parses the quantity that’s entered by
the user and makes sure that it is valid just like the method in the last chapter.

The main method in this figure is similar to the other ones that you’ve seen. However, if the user clicks
on the Cancel button in one of the dialog boxes, a NullPointerException may be thrown. As a result, the
main method includes a try/catch statement to catch this exception if it occurs and exit properly.

After the main method gets the user entries and calls the parseQuantity method, it creates an object
from the BookOrder class by passing the book code and order quantity to its constructor. This
automatically calculates the total for the BookOrder object. Next, the main method displays a dialog box
that shows the book order that the user has entered. To do that, it calls the toString method from the
BookOrder object, which returns the String object that describes the book order. Then, it joins this string
with some additional text.

Here again, when you write the driver class, you don’t need to know how the code in any class that it
uses works. You just need to know what the name of the class is, what arguments its constructors
require, what the names of its methods are, what the methods do, and what arguments they require.
Everything else is encapsulated in the other class so you don’t have to worry about it.

The benefits and shortcomings of object-oriented programming

This simple application illustrates some of the benefits of object-oriented programming. First, it lets you
divide a large application into smaller classes so the project becomes more manageable. Second, it lets
you create classes that can be used by more than one program. Third, it lets you use classes that were
created by others. And fourth, it lets you change the way a method works without having to change the
classes that use the method.

On the other hand, object-oriented programming also has some shortcomings. First, it requires more
code in the form of instance variables, constructors, and the like. Second, it adds to the complexity of an
application because you have to document or remember what the constructors require, what the
methods require, and so on. You also have to pass variables to the constructors and methods, and use
the values and objects that are returned.
The theory, of course, is that the benefits of object-oriented programming far outweigh the
shortcomings. To get the full value of the benefits, though, you need to take full advantage of the
hundreds of classes that Java provides, and you need to do a good job of designing your own classes.
So in chapter 5, you’ll learn more about using Java classes, and in chapter 6, you’ll learn how to design
object-oriented programs of your own.

Figure 4-11: The code of the BookOrderApp class
The BookOrderApp class

Murach’s Beginning Java 2

 page 94

import javax.swing.JOptionPane;

public class BookOrderApp{

 public static void main(String args[]){

 String choice = "";

 try{

 while (!(choice.equalsIgnoreCase("x"))){

 String code = JOptionPane.showInputDialog(

 "Enter a book code:");

 String inputQuantity = JOptionPane.showInputDialog(

 "Enter a quantity:");

 int quantity = parseQuantity(inputQuantity);

 BookOrder bookOrder = new BookOrder(code, quantity);

 String message = bookOrder.toString() + "\n"

 + "Press Enter to continue or enter ‘x’ to exit:";

 choice = JOptionPane.showInputDialog(null,

 message, "Book Order", JOptionPane.PLAIN_MESSAGE);

 }//end while

 catch(NullPointerException e){

 System.exit(0);

 }

 System.exit(0);

 }

 private static int parseQuantity(String quantityString){

 int quantity = 0;

 boolean tryAgain = true;

 while(tryAgain){

 try{

 quantity = Integer.parseInt(quantityString);

 while (quantity <= 0){

Murach’s Beginning Java 2

 page 95

 quantityString = JOptionPane.showInputDialog(

 "Invalid order total. \n"

 + "Please enter a positive number: ");

 quantity = Integer.parseInt(quantityString);

 }

 tryAgain = false;

 }

 catch(NumberFormatException e){

 quantityString = JOptionPane.showInputDialog(

 "Invalid quantity. \n"

 + "Please enter an integer.");

 }

 }

 return quantity;

 }

}

Description
 The BookOrderApp class contains two methods. The main method uses a while loop

to display the dialog boxes and control the program. The parseQuantity method is a
static method that gets a valid quantity entry from the user.

How to create and use static fields and methods
In chapter 2, you learned how to call static methods from some of the classes in the Java API, and in
the last chapter, you learned how to code static methods in the driver class. Now, you’ll learn to code
static methods and fields in separate classes, and how to call them from other classes.

How to create static fields and methods
Figure 4-12 shows how to code static fields and static methods. While instance variables and regular
methods belong to an object that’s created from a class, static fields and static methods belong to the
class itself. As a result, they’re sometimes called class fields and class methods.
The top of this figure shows how to code static fields. In short, you use a syntax that’s similar to the
syntax for a regular variable or constant. However, you use the static keyword so the variable or
constant belongs to the class, not the object. Then, you supply an initial value for the variable or
constant. Typically, the static variables of a class are declared with private access, but the static
constants of a class are declared with public access. That way, other classes can access and use these
constants.

The first example shows how to code a class that contains static constants. In the next figure, you’ll see
how you can call these constants from another class. Since this class doesn’t contain any instance
variables, you don’t need to code a constructor for this class.
The second example shows how to code a class that contains a static method that calculates the future
value of a series of payments and returns the result as a double value. Here, the method has three
parameters that accept the amount of the monthly payment, the number of months, and the monthly

Murach’s Beginning Java 2

 page 96

interest rate. Then, the method uses a while loop to calculate the future value of the payments. In the
last chapter, you saw this method in a driver class, but here it is in a separate class.

The third example shows how you can add a static variable and a static method to the BookOrder class.
In this example, the static variable named orderObjectCount counts the number of BookOrder objects
that are created from the BookOrder class. First, the variable is declared as private. That way, no other
class can manipulate the variable. Then, the constructor increments the variable. Since the constructor
is only called when a new instance of an object is created, the class will increment the static variable
each time it creates a new object. Then, the static getOrderObjectCount method can be used to return
the static orderObjectCount variable.

When you code a class that mixes regular data and methods with static data and methods, you should
do your best to keep your data and methods organized. Usually, this means that you group your
variables and methods by type (instance or static) and by access modifier (public, protected, or private).

Figure 4-12: How to create static fields and methods
How to declare static fields

private static int numberOfObjects = 0;

private static double majorityPercent = .51;

public static final int DAYS_IN_JANUARY = 31;

public static final float EARTH_MASS_IN_KG = 5.972e24F;

Example 1: A class that contains static constants

public class DateConstants{

 public static final int DAYS_IN_JANUARY = 31;

 public static final int DAYS_IN_FEBRUARY = 28;

 ...

}

Example 2: A class that contains a static method that makes a calculation

public class FinancialCalculations{

 public static double calculateFutureValue(double monthlyPayment,

 int months, double monthlyInterestRate){

 int i = 1;

 double futureValue = 0;

 while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

 i++;

 }

 return futureValue;

Murach’s Beginning Java 2

 page 97

 }

}

Example 3: A class that contains a static variable and a static method

public class BookOrder{

 private Book book;

 private int quantity;

 private double total;

 private static int orderObjectCount = 0;

 public BookOrder(String bookCode, int orderQuantity){

 book = new Book(bookCode);

 quantity = orderQuantity;

 setTotal();

 orderObjectCount++;

 }

 public static int getOrderObjectCount(){

 return orderObjectCount;

 }

 ...

Description
 You can use the static keyword to code static variables and static methods. Since

static variables and static methods belong to the class, not an object created from
the class, they are sometimes called class variables and class methods.

 When you code a static method, you can only use static variables and variables that
are defined in the class. You can’t use instance variables in a static method
because they belong to an instance of the class, not to the class as a whole.

How to call static fields and methods
Figure 4-13 shows how to call static fields and methods. To start, this figure shows how to call static
constants…the most common type of static field. Then, this figure shows how to call static methods. As
you would expect, you use the same syntax that you use to call static fields and methods from the Java
classes. That is, you code the class name, dot operator, and field or method name.

If you look at the first example of calling a static method from a user-defined class, you can see how this
works with the class that’s shown in the second example of the previous figure. Here, the class name is
FinancialCalculations and the method name is calculateFutureValue. Since the method has three
parameters, the call statement sends three arguments. Then, the method returns the future value that’s
derived from those arguments.

Figure 4-13: How to call static fields and methods
The syntax for calling a static field or method

Murach’s Beginning Java 2

 page 98

ClassName.fieldName
ClassName.methodName(optionalArgumentList)

How to call static fields
From the Java API

Math.PI

Math.E

JOptionPane.INFORMATION_MESSAGE

JOptionPane.PLAIN_MESSAGE

From a user-defined class

DateConstants.DAYS_IN_JANUARY

How to call static methods
From Java classes

String inputQuantity = JOptionPane.showInputDialog("Enter a quantity:");

int quantity = Integer.parseInt(inputQuantity);

From user-defined classes

double futureValue =

 FinancialCalculations.calculateFutureValue(

 monthlyPayment, months, monthlyInterestRate);

int orderCount = BookOrder.getOrderObjectCount();

Description
 To call a static field or method, type the name of the class, followed by the dot

operator, followed by the name of the static field or method. If you call a static
method, you need to include the parentheses after the method name and any
arguments that the method requires.

How to code a static initialization block
When it takes more than one statement to initialize a static field, you can use a static initialization block
to initialize the field as shown in figure 4-14. To start, you just code the static keyword followed by
braces. Then, you code the statements of the block within the braces. Later, when a method of the class
is called for the first time, all of the statements in the static initialization block are executed.

In the example in this figure, the BookDB class contains a static initialization block that executes several
statements that initialize the static Connection object, which is used by the other static methods in the
class. Since a static initialization block runs as soon as any method of the class is called, this ensures
that the Connection object will be available to the rest of the methods in the class.

When to use static fields and methods

Now that you know how to code static fields and methods, you may wonder when to use them and
when to use regular fields and methods. In general, when you need to create multiple objects from a
class, you should use regular classes and methods. That way, you can create several objects from a
class, and each object has its own data in its own instance variables. Then, you can use the methods of
each object to process that data.

In contrast, if you just need to perform a single task like a calculation, you can use a static method.
Then, you send the method the arguments it needs, and it returns the result that you need without ever

Murach’s Beginning Java 2

 page 99

creating an object. As you progress through this book, you’ll see many examples that will give you a
better idea of when static fields and methods are appropriate.

Figure 4-14: How to code a static initialization block
The syntax for coding a static initialization block

public class ClassName{
 any field declarations

 static{
 any initialization statements
 }

 the rest of the class

A class that uses a static initialization block

public class BookDB{

 private static Connection connection; // static variable

 // the static initialization block

 static{

 try{

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 String url = "jdbc:odbc:MurachBooks";

 String user = "Admin";

 String password = "";

 connection = DriverManager.getConnection(url, user, password);

 }

 catch (ClassNotFoundException e){

 System.err.println("Driver not found.");

 }

 catch (SQLException e){

 System.err.println("Error connecting to database.");

 }

 // other static methods that use the Connection object

 public static void close(){}

 public static void addRecord(Book book){}

 public static void updateRecord(Book book){}

 public static void deleteRecord(String bookCode){}

Murach’s Beginning Java 2

 page 100

 public static Book findOnCode(String bookCode){}

}

Description
 To initialize the static variables of a class, you typically code the values in the

declarations. If, however, a variable can’t be initialized in a single statement, you
can code a static initialization block that’s executed when another class first calls
any method of the class.

 When a method of a class is first called by an application, Java initializes all static
variables and constants of the class. Then, it executes all static initialization blocks
in the order in which they appear.

How to work with packages
In chapter 2, you learned how the Java API uses packages to organize its classes. Now, you’ll learn
how to use packages to organize your own classes. Then, you’ll learn how to make the classes in these
packages available to other classes.

How to create and compile packages
Figure 4-15 shows how to create and compile packages. To start, this figure shows a procedure that
you can use to create and compile a package. Then, the figure shows some of the details that you need
to work with the procedure.

When you name a package, you can use any name you wish, but Sun recommends that you use your
Internet domain name in reverse as a prefix. That way, you can be sure that your package will have a
unique name. Even if you don’t follow this convention, you should avoid using a generic name that
might be used by someone else. For example, the name java.text is already used by the Java API.
When you want to include a class as part of a package, you should code a package statement as the
first statement in the class. To do that, you type the package keyword followed by the name of the
package as shown in this figure. Although you can code comments before this statement, the package
statement must be the first statement in the class.

To keep your packages organized, you should create a subdirectory for each package that corresponds
to the package name. Then, you should store all of the *.java and *.class files for each class in the
package in that subdirectory. In other words, the pathname of the *.java and *.class files is the same as
the name of the package.

When you read step 5 in the procedure for creating and compiling a package, you can see that a single
javac command will compile related classes. For instance, compiling BookOrder.java will also compile
Book.java because the Book class is used by the BookOrder class. Although this works okay when
you’re compiling packages, you shouldn’t depend on this feature as you’re developing the classes.
Instead, you should compile each class as you create it to make sure that it doesn’t contain syntax
errors.

If you’re using TextPad, you may have trouble compiling classes that have package statements. To
prevent any errors, you can compile classes with a package statement directly in the DOS window, as
shown in the figure.

Figure 4-15: How to create and compile packages
How to create and compile a package

1. Create a subdirectory for the package. If possible, use the naming conventions
shown below for the subdirectory path.

2. Move all *.java files that you want to include in the package to this subdirectory.
3. Add a package statement that identifies the name of the package to the beginning of

each *.java file. The package name used in this statement must match the
subdirectory name that contains the class.

4. Start the command prompt and navigate to the root directory for your application.
5. Use a javac command like the one shown below to compile the classes. Notice how

the subdirectory path is included in this command. If the classes depend on each
other, this command should compile all of the classes.

Examples of package names

Murach’s Beginning Java 2

 page 101

How to code a package statement

package com.murach.orders;

How to compile the package

Description

 To ensure that each package name is unique, Sun recommends that all companies
preface their package names with a reversed Internet domain name.

 To make the classes in your packages easy to find and manage, you should save all
files in the package in a subdirectory with a path that matches the name of the
package.

 The package statement must be the first statement in the class.

How to make packages available to other classes
When you compile a class that contains a package statement, the class becomes a part of a package
and classes outside the package can’t access it. To make a class within a package available to other
classes, though, you can follow the procedure shown in figure 4-16. Then, you can use an import
statement to import one or more classes from the package.

To allow other classes to access a class that’s stored in a package, you can create a Java Archive
(JAR) file that contains the *.class file for the class or classes. When you do this, you must add the
*.class files with the subdirectory matching the package name. In other words, you can’t just add the
*.class files. Then, you must move this JAR file to the \jre\lib\ext directory of your SDK. Alternatively, you
can put this file in the \lib\classes directory of your SDK. If this directory doesn’t exist, you can create it.

To work with JAR files, you start the command prompt and navigate to the root directory that holds the
classes you want to work with. Then, you can use a jar command like the one shown in this figure to
create a JAR file for all of the *.class files in that directory. If this command is successful, the command
prompt will display some information about the classes that are included in the file as shown in this
figure.

Figure 4-16: How to make packages available to other classes
How to make a package available to any class in your program

1. Start the command prompt and navigate to the root directory that holds your classes.
2. Use the jar command to create a JAR file for the *.class file or files as shown below.

Murach’s Beginning Java 2

 page 102

3. Move the JAR file to the c:\jdk1.3.1\jre\lib\ext directory (where c:\jdk1.3.1 is the
directory that stores the SDK).

The syntax for creating a JAR file for a package
c:\anydirectory>jar cvf JARFilename.jar classDirectory*.class

Example

c:\java>jar cvf orders.jar com\murach\orders*.class

Result

How to import the package created above

import com.murach.orders.*;

Description
 When you compile a class that contains a package statement, the class becomes

part of a package and classes outside the package can’t access it.
 To allow other classes to access a class that’s in a package, you must create a Java

Archive (JAR) file for it and move the JAR file to the ext directory of the SDK.
 To import any classes that are stored in a jar file in the ext directory, you code an

import statement like the one shown above.

How to use javadoc to document a class
Now that you know how to create your own classes, you’re ready to learn how to use the javadoc tool
that comes with the SDK to generate the documentation for your classes. This tool allows you to create
documentation for your classes that other programmers can use to learn about the fields, constructors,
and methods that are available to other classes. This also gives you another way of looking at the
classes that you have created.

How to add javadoc comments to a class
Figure 4-17 shows how to add simple javadoc comments to a class. In particular, it shows how to code
javadoc comments that describe the class and its constructors and methods. For these comments to
work, they must be coded directly above the declaration of the class, constructor, or method that they
describe.
When you code javadoc comments, it’s a common convention to use the HTML tags shown in this
figure to identify the names of classes. Here, for example, these tags are used to identify the Book and
BookOrder classes. In addition to these tags, there are other HTML and javadoc tags that you can use
when you need to create more complete documentation for a class. That, however, is beyond the scope
of this book. For now, you can use simple javadoc comments like the ones shown in this figure to
document your classes.

Figure 4-17: How to add javadoc comments to a class
The Book class with javadoc comments

/**

 * The <code>Book</code> class represents a book and is used

 * by the <code>BookOrder</code> class.

 **/

public class Book{

 private String code;

Murach’s Beginning Java 2

 page 103

 private String title;

 private double price;

/***

 * Constructs a Book object from a book code.

 ***/

 public Book(String bookCode){

 code = bookCode;

 setTitle(bookCode);

 setPrice(bookCode);

 }

/***

 * Sets the title of a Book object depending

 * on the book code.

 ***/

 public void setTitle(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

 else if (bookCode.equalsIgnoreCase("MBDK")){

 title = "Moby Dick";

 else

 title = "Not Found";

 }

/***

 * Sets the price of a Book object depending

 * on the book code.

 ***/

 public void setPrice(String bookCode){

 if (bookCode.equalsIgnoreCase("WARP"))

 price = 14.95;

 else if (bookCode.equalsIgnoreCase("MBDK")){

 price = 12.95;

Murach’s Beginning Java 2

 page 104

 else

 price = 0.0;

 }

Description

 A javadoc comment begins with /** and ends with */, and asterisks within the
comment are ignored. You can use javadoc comments to describe the constructors
and methods of a class as shown above.

 Within a javadoc comment, you can code HTML tags like the one above to identify
the names of classes. You can also use other types of tags for more complete
documentation.

How to generate the documentation for a class
Figure 4-18 shows how to use the javadoc tool to generate the documentation for a class. To start, you
can create a directory to store the documentation. Then, you issue a javadoc command. When you
successfully execute the javadoc command, it generates the HTML pages for the documentation.

When you develop an application that consists of many packages and classes, you can’t always use a
simple javadoc command like the one shown in this figure. That’s why the javadoc command provides
more options than the ones shown here. But that too is beyond the scope of this book. For now, you can
generate the documentation for all of the classes in a directory as shown in this figure.

How to view the documentation for a class

You can use a web browser to view the documentation for user-defined classes the same way that you
view the documentation for the API. The main difference is that the index.html file for user-defined
classes will be stored in a different directory. In this figure, for example, it’s stored in the c:\java\docs
directory.

When you view the documentation for a user-defined class, you can see the constructors and methods
that are available for the class. In this figure, for example, the browser shows the constructors and
methods for the Book class. This lets you focus on the constructor and method declarations of the class
without worrying about the details that are encapsulated within the class.

Figure 4-18: How to generate and view the documentation for a class
How to generate the API documentation for a class

Syntax
c:\programDirectory>javadoc –d documentationDirectory listOfClassNames
Examples

c:\java\com\murach\orders>javadoc –d c:\java\docs Book.java

c:\java\com\murach\orders>javadoc –d c:\java\docs Book.java BookOrder.java

c:\java\com\murach\orders>javadoc –d c:\java\docs *.java

The documentation that’s generated for the Book class

Murach’s Beginning Java 2

 page 105

Description

 To use the javadoc tool to generate the API documentation for a class, create a
directory for the documentation like c:\java\docs. Next, use the command prompt to
change the directory to the one that stores the classes that you want to document.
Then, enter a javadoc command as shown above. This generates the HTML pages
for the documentation.

 To view the documentation that’s generated by the javadoc tool, start your web
browser and point to the index.html file in the directory that stores the
documentation.

Perspective
Now that you’ve finished this chapter, you should be able to code classes that define objects such as
the Book and BookOrder classes. You should be able to use these objects and their methods within an
application. You should be able to create and use classes that contain static fields and methods. And
you should be able to package and document your classes and methods. These are some of the critical
skills of object-oriented programming.
In the next chapter, though, you’ll learn some programming skills that expand on the skills that you’ve
learned in this chapter. In particular, chapter 5 will show you how to get the most from the classes that
are part of the Java API. Then, in chapter 6, you’ll learn how to design and test your own classes, which
is another critical skill for effective object-oriented programming.

Summary
 The Unified Modeling Language (UML) is the standard modeling language for working

with object-oriented programs like Java. You can use UML class diagrams to identify the
attributes and operations of a class.

 When you develop a class, you can hide certain attributes and coding details from other
classes. This is referred to as encapsulation.

Murach’s Beginning Java 2

 page 106

 Every class that creates objects contains instance variables that store the data of an
object and a constructor that initializes those variables. When you create an object from
a class, you are creating an instance of that class.

 When you code the methods of a class, you often code public set and get methods that
provide access to some of the private instance variables.

 If you want to code a method or constructor that accepts arguments, you code a list of
parameters between the parentheses for the constructor or method. For each
parameter, you must include a data type and a name.

 The name of a method or constructor combined with the list of parameters is known as
the signature of the method or constructor. You can overload a method or constructor
by coding different parameter lists for the same name.

 When you use the static fields, static methods, and static initialization blocks of a class,
you don’t create an object from the class. Instead, you call these fields and methods
directly from the class.

 You can organize the classes in your application by using a package statement to add
them to a package. Then, you can use import statements to make the classes in that
package available to other classes.

 You can use javadoc comments to document a class, its constructors, and its methods.
Then, you can use the javadoc command to generate HTML-based documentation for
your class.

Terms
object-oriented programming (OOP) state instance

Unified Modeling Language (UML) instance
variable

static field

class diagram constructor static method

attribute method class field

operation parameter class method

encapsulation signature static initialization block

data hiding overloading package statement

object diagram set method javadoc comment

identity get method HTML tag
 driver class javadoc tool
 controller class javadoc command

Objectives
 Describe the concept of encapsulation and explain its importance to object-oriented

programming.
 Describe a signature of a constructor or method, and explain what overloading means.
 Code the instance variables, constructors, and methods of a class that defines an

object.
 Code a class that creates objects from a user-defined class and then uses the methods

of the objects to accomplish the required tasks.
 Code a class that contains static fields and methods, and call these fields and methods

from other classes.
 Add two or more classes to a package and make the classes in that package available

to other classes.
 Code javadoc comments for a class, and generate the documentation for the class.

Then, use your web browser to view that documentation.

Notification of a TextPad bug

If you’re using TextPad to do the exercises, you may find that your programs don’t end the way they’re
expected to by returning to the console with the “Press any key to continue” message. Instead, a
command prompt is displayed followed by this message: “Batch file missing.” In some cases, the
program will also restart. Then, you can press Ctrl+C or end the program again to get past this bug.

Murach’s Beginning Java 2

 page 107

We’ve found that this is a TextPad bug that deals with programs that take longer than one minute to run.
We just treat this bug as a minor flaw in an otherwise excellent product, and we hope you’ll see it that
way too.

Exercise 4-1: Test the object-oriented Book Order application

This exercise guides you through the process of testing the object-oriented version of the Book Order
application that is presented in this chapter. It consists of three classes: Book, BookOrder, and
BookOrderApp.

1. Open the Book, BookOrder, and BookOrderApp classes that you should find in the
c:\java\ch04 directory. If you would like to print out and review the code in these
classes, print each one.

2. Compile all three classes. Then, run the BookOrderApp class, which is the driver
class for this application. When you enter data to test it, this application should work
the way it did in the last chapter. But note how much more code the three classes
require.

3. Modify the Book class so it provides for one more book. Its code should be “CITR”, its
title should be “Catcher in the Rye”, and its price should be $9.95. Then, compile just
this class, and test the BookOrderApp class again with the new book code. This
shows that you can make a change to a class without affecting the classes that use
it.

4. Add a static field and method to the BookOrder class to keep track of the number of
objects that are created from the class (see example 3 in figure 4-12). Then, compile
that class. Next, modify the BookOrderApp class so it uses the System.out.println
method to display the count of objects when the user enters “X” to end the
application. Then, compile and run that class.

Exercise 4-2: Convert the Future Value application to an object-oriented application

This exercise guides you through the process of modifying the Future Value application so it uses a
class that provides a static method.

1. Open the FutureValueApp class that’s in the c:\java\ch03 directory and save it with
the same name in the c:\java\ch04 directory.

2. Start a new class named FinancialCalculations and save this in the c:\java\ch04
directory.

3. Move the static calculateFutureValue method from the FutureValueApp class to the
FinancialCalculations class, and edit the access modifier so the method is public.
When you’re done, this class should look like the class shown in the second example
in figure 4-12. Then, compile the class.

4. Modify the FutureValueApp class so it uses the static calculateFutureValue method
that’s stored in the FinancialCalculations class. Next, compile and run this class to
make sure that the application still works properly. Then, close both classes.

Exercise 4-3: Convert the Invoice application to an object-oriented application

This exercise guides you through the process of modifying the Invoice application of chapters 2 and 3
so it uses an Invoice class.

1. Open the InvoiceApp class in c:\java\ch02 or the EnhancedInvoiceApp class in
c:\java\ch03, and save it in c:\java\ch04.

2. Start a new class named Invoice and save it in the c:\java\ch04 directory. Then, write
the code for this class so it provides all of the data and operations related to an
Invoice object. Its constructor should require the order total as its only parameter,
and it should initialize instance variables for order total, discount amount, and invoice
total. One of its methods should be the toString method, which returns a string that
contains all of the data for an invoice. As you work, you may want to move code from
the InvoiceApp class to the Invoice class. When you’re done, compile the Invoice
class.

3. Modify the code in the InvoiceApp class so it creates and uses Invoice objects. Then,
compile and test the class to make sure that it works the same way it did before.
When you’re satisfied that it does, close the classes.

Exercise 4-4: Package the Book and BookOrder classes

Murach’s Beginning Java 2

 page 108

This exercise guides you through the process of adding the Book and BookOrder classes to the
com.murach.orders package.

1. Create a directory named c:\java\com\murach\orders. Then, move (don’t copy) the
*.java and *.class files for the Book and BookOrder classes to this directory.

2. Open your text editor and add package statements to the Book and BookOrder
classes as shown in figure 4-15.

3. Start the command prompt and change the current directory to c:\java. Then, use the
javac command shown in figure 4-15 to compile the BookOrder class. This should
compile both the Book and BookOrder classes.

4. From the command prompt, use the jar command to create a JAR file named
orders.jar for the Book and BookOrder classes as shown in figure 4-16. Then, move
the orders.jar file from the c:\java directory to the \jre\lib\ext directory of your SDK.

5. Open the BookOrderApp class that’s stored in the c:\java\ch04 directory, and try to
compile this class. You should get several compile-time errors. That’s because the
BookOrderApp class doesn’t know how to access the com.murach.orders package.

6. Add an import statement for the com.murach.orders package as shown in figure 4-16.
Then, compile and run the BookOrderApp class to make sure it works correctly.

Exercise 4-5: Document the Book class

This exercise guides you through the process of adding javadoc comments to the Book class and using
the javadoc tool to generate the API documentation for the Book class.

1. Start your text editor and open the Book and BookOrder classes that are stored in the
c:\java\com\murach\orders directory.

2. Add javadoc comments for the constructor and methods of these classes as shown in
figure 4-17. Then, compile the classes.

3. Create a directory named c:\java\docs. Then, start your command prompt and use
the javadoc tool to generate the HTML pages for the Book class as shown in figure
4-18. When you’re done, these pages should be stored in the c:\java\docs directory.

4. Start your web browser, navigate to the c:\java\docs directory, and open the
index.html page. Then, review your documentation.

Chapter 5: How to work with inheritance and interfaces
Now that you’ve learned how to code classes that define objects, you’re ready to learn how to work with
inheritance, interfaces, and other object-oriented features of Java. Although these features are difficult
conceptually, they are critical to the effective use of Java. That’s why they can’t be put off until later in
this book.

You don’t, however, have to master everything that’s presented in this difficult chapter in one reading.
Instead, you can focus on the concepts and terms the first time through it. Then, you can refer back to
this chapter whenever you need to refresh your memory about concepts, terms, or coding details.

How to work with inheritance
Inheritance is one of the critical concepts of object-oriented programming and Java programming. It lets
you create a class that inherits fields and methods from another class. These fields and methods can be
referred to as members.

An introduction to inheritance
Figure 5-1 introduces you to inheritance. To use it, you create a subclass that inherits the public and
protected fields and methods from a superclass. In addition, it inherits all superclass members that have
no access modifier as long as the superclass and subclass are in the same package. Then, the objects
that are created from the subclass can use these members of the superclass. In addition, though, the
subclass can define its own methods. It can also define methods with the same names and signatures
of methods in the superclass. In that case, the methods of the subclass override the methods in the
superclass.
This is illustrated by the first diagram in this figure, which shows a subclass named DiscountBookOrder
that inherits the BookOrder class that you were introduced to in the last chapter. Since the
DiscountBookOrder class inherits all of the public methods from the BookOrder class, you can call any
of those methods from an object created from the DiscountBookOrder class. In addition, though, the

Murach’s Beginning Java 2

 page 109

DiscountBookOrder class provides three new methods (setPercentOff, getSubtotal, and getPercentOff).
It also provides two methods that will override the ones with the same signatures in the BookOrder class
(setTotal and getTotal).
The second diagram shows part of an inheritance hierarchy that’s taken from the Java API. Although
this diagram only shows three levels of inheritance, Java provides for an unlimited number. In addition,
this diagram shows that a superclass can have more than one subclass. In this case, the Window
superclass has two subclasses, but here again Java provides for an unlimited number. In the Java API,
for example, some classes have dozens of subclasses.
As you become more familiar with the classes of the Java API, you’ll find that they make widespread
use of inheritance. You’ll also discover that you have to use inheritance when you create a graphical
user interface for an application. In this case, a class that you create inherits the fields and methods
from the Java Frame class. You’ll see this illustrated in figure 5-3.
If you think you need to use inheritance as you plan the classes for an application, you should make
sure that the subclass has an is-a relationship with its superclass. This means that the subclass is a
type of the superclass. For instance, a discount book order is a type of book order, and a frame is a type
of window.
Incidentally, in this book, we’ll primarily use the terms superclass and subclass to refer to the classes in
an inheritance hierarchy. However, a superclass can also be called a base or parent class, and a
subclass can also be called a derived or child class.

Figure 5-1: How inheritance works
How inheritance works

An inheritance hierarchy

Murach’s Beginning Java 2

 page 110

Description

 Inheritance lets you define a class that inherits all of the public and protected fields
and methods of an existing class. Then, the class that inherits the fields and
methods is called a subclass, derived class, or child class, while the class that is
being inherited is called a superclass, base class, or parent class.

 In a subclass, you can define fields and methods that aren’t in the superclass. You
can also define methods that have the same names and signatures as those in the
superclass. In that case, the method in the subclass overrides the method in the
superclass.

 Inheritance is used to model an is-a relationship. In other words, inheritance is used
when a subclass is a type of the superclass.

 Inheritance is commonly used in the classes that are in the Java API, so you often
need to know what the inheritance hierarchy is as you use Java classes.

How to code a class that inherits the BookOrder class
Figure 5-2 shows how to code the DiscountBookOrder subclass that inherits the BookOrder class as
shown in the previous figure. Whenever you create a subclass, you use the extends keyword to indicate
that the subclass extends the superclass. Then, you code the instance variables, constructors, and
methods for the subclass. As you do that, you can use the super keyword to call the constructors and
methods in the superclass.

If you study the code for the DiscountBookOrder class in this figure, you can see that its declaration
extends the BookOrder class. Then, it provides four new instance variables, a constructor, three new
methods, and two methods that will override methods in the superclass (setTotal and getTotal).

Since a subclass can’t inherit constructors, the DiscountBookOrder class must define its own
constructor. The constructor for this subclass has three parameters: the book code that indicates the
book that’s ordered; the quantity of books ordered; and a key code that indicates what (if any) discount
should be taken. After the parameter list, the constructor initializes all of the variables in the superclass
and the subclass. First, it uses the super keyword to call the constructor for the superclass. This
initializes the three instance variables of the superclass. Then, it initializes the three new instance
variables by assigning the third parameter to the discountCode variable and by calling the setPercentOff
and setTotal methods.

The first two methods in the DiscountBookOrder class set the instance variables of the class. The
setPercentOff method sets the percentOff instance variable based on the value of the discountCode
instance variable. Then, the setTotal method sets the subtotal and total instance variables. To do that, it

Murach’s Beginning Java 2

 page 111

uses the super keyword to call the getQuantity and getBook methods of the BookOrder class, and it
uses the getPrice method of the Book class to return the price.

The last three methods in the subclass are get methods that return the subtotal, percentOff, and total
variables. Because they’re so simple, these methods are coded in single lines instead of the expanded
format that you’re used to seeing.

After the code for this subclass, you can see the code for a driver class named OverrideTest that tests
the DiscountBookOrder class. To do that, the driver creates a DiscountBookOrder object and uses its
get methods to return the data for the object into a string variable. To return the title and price for the
order, the code first calls the getBook method, which returns a Book object, then calls the getTitle and
getPrice methods from that object. After all of the data has been returned to the string, the string is
displayed in a dialog box.

Now that you’ve seen how inheritance works, you can ask whether using it makes sense in a case like
this. A simple alternative, for example, is to provide for discounts in the BookOrder class itself. To do
that, you could add a third parameter to the constructor and adjust the code as needed. Or, you could
add a second constructor to that class with a third parameter for the key code. Either way, the coding for
the book order application would be simplified.

Figure 5-2: How to code a class that inherits the BookOrder class
The syntax for declaring a subclass

public class SubclassName extends SuperclassName{}
The syntax for calling superclass constructors and methods

super(optionalArgumentList)// calls superclass constructor
super.methodName(optionalArgumentList) // calls superclass method

Code for the DiscountBookOrder subclass

public class DiscountBookOrder extends BookOrder{

 private String discountCode;

 private double subtotal, percentOff, total;

 public DiscountBookOrder(String bookCode, int bookQuantity, String keyCode){

 super(bookCode, bookQuantity);

 discountCode = keyCode;

 setPercentOff();

 setTotal();

 }

 public void setPercentOff(){

 if (discountCode.equalsIgnoreCase("a10"))

 percentOff = 0.1;

 else

 percentOff = 0.0;

 }

Murach’s Beginning Java 2

 page 112

 public void setTotal(){

 subtotal = super.getQuantity() * super.getBook().getPrice();

 total = subtotal - (subtotal * percentOff);

 }

 public double getSubtotal(){ return subtotal; }

 public double getPercentOff(){ return percentOff; }

 public double getTotal(){ return total; }

}

Code that uses the DiscountBookOrder class

import javax.swing.JOptionPane;

import java.text.*;

public class OverrideTest{

 public static void main(String[] args){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 NumberFormat percent = NumberFormat.getPercentInstance();

 DiscountBookOrder order = new DiscountBookOrder("WARP", 2, "a10");

 String test = "Title: " + order.getBook().getTitle() + "\n"

 + "Price: " + order.getBook().getPrice() + "\n"

 + "Quantity: " + order.getQuantity() + "\n"

 + "Subtotal: " + currency.format(order.getSubtotal()) + "\n"

 + "PercentOff: " + percent.format(order.getPercentOff()) + "\n"

 + "Total: " + currency.format(order.getTotal());

 JOptionPane.showMessageDialog(null, test);

 System.exit(0);

 }

}

Murach’s Beginning Java 2

 page 113

How to code a class that inherits the JFrame class
Whether or not you use inheritance with your own classes, you will need to create classes that inherit
from Java classes. When you use Java to develop a graphical user interface, for example, you need to
use inheritance as you define a frame. To do that, you typically code a class that inherits the JFrame
class of the javax.swing package as shown in figure 5-3.
To use a class from the Java API, you usually need to understand its inheritance chain. In this figure, for
example, you can see that the JFrame class inherits the Frame class, which inherits the Window class,
and so on. As a result, a subclass of the JFrame class can call any of the methods from any of the six
classes shown in this figure.

The code in this figure shows the code for a BookOrderFrame class. To start, this class inherits the
JFrame class. Then, the constructor calls two methods that set some of the properties of this class.
Here, the first method sets the title of the frame while the second method sets the size and position of
the frame. Although you call these methods from the BookOrderFrame class, they’re actually stored in
the Frame and Component classes.
Last, this class contains a main method that creates a BookOrderFrame object and calls the show
method to display the object. Since the BookOrderFrame object is a JFrame object, you can use a
BookOrderFrame object anywhere a JFrame object is expected. For instance, the code in this figure
uses a JFrame type to store a reference to a BookOrderFrame object.

The frame that’s displayed by this code is shown at the bottom of this figure. As you can see, it has a
title and a size, but not much more. In fact, if you click on its close button, it won’t even close properly.
Later in this chapter, though, you’ll learn how to add code that will close the frame.

What you should know about polymorphism
When an object calls an overridden method in an inheritance chain, Java uses polymorphism to decide
which method it should call. In a Book Order application, for example, you can declare a variable of the
BookOrder type. Then, if the user enters a key code, you can create that object as an instance of the
DiscountBookOrder class. But if the user doesn’t enter a key code, you can create that object as an
instance of the BookOrder class. Later, when the setTotal method is called, Java uses polymorphism to
determine which method it should use: the one in the DiscountBookOrder class or the one in the
BookOrder class.
The key to polymorphism is that this decision is based on the inheritance chain at run time. This can be
referred to as late binding. At compile time, the compiler simply recognizes that a method with the
specified signature exists.

As you develop applications, this has little significance as long as you understand how this works. You
just design and code the classes and methods that you need with the skills that you learn in this book.
Later, whenever polymorphism is needed, it takes place automatically. I mention this term only because
polymorphism is a natural result of inheritance.

Figure 5-3: How to code a class that inherits the JFrame class
The inheritance chain for the JFrame class

Murach’s Beginning Java 2

 page 114

Code for the BookOrderFrame subclass

import javax.swing.*;

public class BookOrderFrame extends JFrame{

 public BookOrderFrame(){

 setTitle("Book Order"); // from the Frame class

 setBounds(267, 200, 267, 200); // from the Component class

 }

 public static void main(String[] args){

 JFrame frame = new BookOrderFrame();

 frame.show(); // from the Window class

 }

}

The BookOrderFrame object that’s displayed by the code above

Murach’s Beginning Java 2

 page 115

How to work with the Object class
Every class in Java automatically inherits the Object class that was shown in the inheritance chain in
figure 5-3. In other words, the Object class is the superclass for all Java classes, including all user-
defined classes. This means that you need to know how to work with the Object class. So that’s what
you’ll learn next.

The methods of the Object class
Figure 5-4 summarizes the methods of the Object class. Since every class automatically inherits these
methods, they are available from every object. However, since subclasses often override these
methods, these methods may work slightly differently from class to class. You’ll learn more about
working with these methods later in this chapter.

Perhaps the most-used method of the Object class is the toString method. That’s because the Java
compiler implicitly calls this method when it needs a string representation of an object. For example,
when you supply an object as the argument of the println method, this method implicitly calls the
toString method of the object.
When you code a class, you typically override the toString method of the Object class to provide more
detailed information about the object. Otherwise, the toString method will return the name of the class
and the hash code of the object, which is a hexadecimal number that indicates the object’s location in
memory. Similarly, you typically override the equals method of a class.
Unlike C++ and other languages that require you to manage memory, Java uses a mechanism known
as the garbage collector to automatically manage memory. When the garbage collector determines that
the system is running low on memory and that the system is idle, it frees the memory for any objects
that don’t have any more references to them. Before it does that, though, it calls the finalize method for
each of those objects.

Although you can code a more specific finalize method for an object, that’s generally not a good idea.
Since you can’t tell when the garbage collector will call this method, you can’t be assured that your
finalize method will be executed before the program terminates. Therefore, you shouldn’t rely on the
finalize method to handle any timely tasks.

On the other hand, if you write code for an object that uses non-Java calls to allocate memory, you
should code a method for that object that releases those resources. Otherwise, Java won’t free this
memory, and you will create a “memory leak.” If, for example, you code a method named dispose that
releases all non-Java resources for an object, you can call that method whenever you need to free
those resources.

Figure 5-4: The methods of the Object class
The Object class

java.lang.Object

Methods of the Object class

Murach’s Beginning Java 2

 page 116

Description

 The Object class is the superclass for all classes. As a result, you can call its
methods from any object of any class.

 When coding classes, it’s a common practice to override the toString and equals
methods so they work appropriately for each class.

 The hash code for an object is a hexadecimal number that identifies the object’s
location in memory.

 In general, you don’t need to code a finalize method for an object. That’s because
Java’s garbage collector automatically reclaims the memory of an object when it
needs to. Before it does, it calls the finalize method of the object.

How to cast objects
Many methods accept and return objects of the Object class. For example, the equals method accepts
an Object object as an argument, and the clone method returns an Object object. To use methods like
these, then, you need to cast an object of any class to an Object object, and you need to cast an Object
object back to an object of the original class. Figure 5-5 shows how.

The diagram at the top of the figure shows the inheritance chain for the BookOrder class. Like all
classes, the BookOrder class inherits the Object class. As a result, it can call any of the methods shown
in the previous figure.

The first example in this figure shows how to cast a BookOrder object to an Object object and back
again. Here, the first statement creates the BookOrder object. Then, the second statement casts the
BookOrder object to an Object object. It does this with a simple assignment statement. Since this cast
goes up the inheritance chain (from more data to less), this works without any additional code. In
contrast, the third statement casts the Object object back to a BookOrder object. Since this cast goes
down the inheritance chain (from less data to more), you need to code the class name within
parentheses in the assignment statement before you code the name of the object you’re casting. When
you perform these casts, Java does not lose any of the data that was stored in the original BookOrder
object.

The second example shows how casting affects the methods that are available from an object. Here,
the first statement creates a BookOrder object and converts it to an Object object. At this point, the
object variable can only call methods available to the Object class. As a result, you can’t code the
statement that’s in the comment. The next statement, though, casts the Object object back to the
BookOrder class. Then, you can call any of the methods of the BookOrder class. Keep in mind, though,
that the object and order variables refer to the same object. As a result, calling the toString method from
either variable will execute the toString method that’s stored in the BookOrder class.
The third example shows how to code the start of a method that accepts an Object object as a
parameter. Then, the method can accept any object created from any class. Here, the first statement
uses the instanceof operator to see if the object is an instance of the BookOrder class. If so, the Object

Murach’s Beginning Java 2

 page 117

object is cast to a BookOrder object and the method can continue by processing that type of object.
You’ll see how this type of code is used to override the equals method in figure 5-7.

Figure 5-5: How to cast objects
The inheritance chain for the BookOrder class

How to cast an object

BookOrder order1 = new BookOrder("WARP", 2);

Object object = order1; //cast BookOrder to Object

BookOrder order2 = (BookOrder) object; //cast Object to BookOrder

How casting affects methods

Object object = new BookOrder("WARP", 2);

String orderString = object.toString(); //OK – method in Object class

// double total = object.getTotal(); //not OK – method in BookOrder class

BookOrder order = (BookOrder) object; //cast Object to BookOrder

double total = order.getTotal(); //OK

The start of a method that accepts an Object object as an argument

public boolean equals(Object object){

 if (object instanceof BookOrder){

 BookOrder order2 = (BookOrder) object;

 // the code can continue by processing the BookOrder object

 // as shown in figure 5-7

 }

 return false;

}

Description
 To use some of the methods of the Object class, you need to be able to cast any type

of object to an Object object, and you need to be able to cast an Object object to
any other type of object.

 To cast an object up the inheritance chain (from subclass to superclass), you code a
simple assignment statement.

 To cast an object down the inheritance chain (from superclass to subclass), you need
to code the classname within parentheses to confirm the assignment statement.
This type of cast will only work when the object is an instance of the intended class.

 For some methods, you need to code a parameter that accepts an Object object.
Then, you can pass any type of object to that method, and the method can use the

Murach’s Beginning Java 2

 page 118

instanceof operator to determine what type of object has been passed to the
method.

How to override the toString method
The toString method of the Object class returns a string that includes the class name and the hash code
of the object. Since that’s not usually the behavior you want when converting objects to strings, many
classes in the API override this method. And when you code your own classes, you’ll often want to
override this method too. Figure 5-6 shows how.

The first example shows the output of the toString method of a Book object if the Book class doesn’t
override the toString method. Here, the string that’s returned begins with the class name, followed by
the @ sign, followed by the hash code for the object.

The second example shows how code a toString method in the Book class that overrides the toString
method of the Object class. To start, you declare a public toString method that returns a String object
and accepts no parameters. Then, you create the string that you want to return and code a return
statement for that string. In this figure, the toString method returns a string that includes the three
instance variables of the Book object with currency formatting applied to the price variable.

The third example shows two situations where the compiler will automatically call the toString method.
First, the compiler will automatically call the toString method when an object is supplied as an argument
for the println method of the System.out object. Second, the compiler will automatically call the toString
method when you use a plus sign (+) to concatenate an object with a string.

Figure 5-6: How to override the toString method of the Object class
The output for the toString method of the Object class

Book@4abc9

The toString method of the Book class

public String toString(){

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String orderString = "Code: " + code + "\n"

 + "Title: " + title + "\n"

 + "Price: " + currency.format(price) + "\n";

 return orderString;

}

Code that implicitly calls the toString method of an object

Book book1 = new Book("WARP");

System.out.println(book1);

Book book2 = new Book("MBDK");

String bookString = "Book string: " + book2;

Description
 The toString method of the Object class returns a String object that contains the class

name, followed by the @ symbol, followed by the hash code for this object.
 To override the toString method of the Object class, code a toString method in the

class that you’re coding as shown above.

Murach’s Beginning Java 2

 page 119

 The Java compiler automatically calls the toString method of an object when you
pass any object to the println method of the System.out object or when you use the
plus operator (+) to concatenate an object with a string.

How to override the equals method
Figure 5-7 shows how the equals method of the Object class works. In short, this method checks
whether two variables refer to the same object, not whether two variables hold the same data. Since
that’s not usually the behavior you want when comparing objects for equality, many classes in the API,
such as the String class, override this method. And when you code your own classes, you’ll often want
to override this method too.

The first two examples in this figure show how the equals method of the Object class works when the
Book class doesn’t override the equals method. In the first example, the first two statements create two
variables that refer to the same object. Since both variables point to the same space in memory, the
expression that uses the equals method to compare these variables evaluates to true. In the second
example, the first two statements create two objects that contain the same data. However, since these
objects occupy different spaces in memory, the expression that uses the equals method to compare
these variables evaluates to false. But that’s usually not what you want.

The third example shows how to code an equals method in the Book class that overrides the equals
method of the Object class. To start, this method uses the same signature as the equals method of the
Object class, which returns a boolean value and accepts a parameter of the Object type. Then, an if
statement uses the instanceof operator to make sure that the passed object is an instance of the Book
class. If so, it casts the Object object to a Book object. Then, an if statement compares the three
instance variables stored in the passed object with the instance variables stored in the current object. If
all instance variables are equal, this statement returns true. Otherwise, it returns false. As a result, the
first two examples in this figure will return a true value if the Book class contains this method.

The fourth code example shows how to code an equals method in the BookOrder class that overrides
the equals method of the Object class. The code for this method works the same as the code for the
equals method of the Book class. However, the equals method of the BookOrder class uses the equals
method of the Book class. As a result, you must code an equals method for the Book class before this
method will work.

Figure 5-7: How to override the equals method of the Object class
How the equals method of the Object class works

Both variables refer to the same object

Book book1 = new Book("WARP");

Book book2 = book1;

if (book1.equals(book2)) //expression returns true

Both variables refer to different objects that store the same data

Book book1 = new Book("WARP");

Book book2 = new Book("WARP");

if (book1.equals(book2)) //expression returns false

How to override the equals method of the Object class
The equals method of the Book class

public boolean equals(Object object){

 if (object instanceof Book){

 Book book2 = (Book) object;

Murach’s Beginning Java 2

 page 120

 if (

 code.equals(book2.getCode()) &&

 title.equals(book2.getTitle()) &&

 price == book2.getPrice()

)

 return true;

 }

 return false;

}

The equals method of the BookOrder class

public boolean equals(Object object){

 if (object instanceof BookOrder){

 BookOrder order2 = (BookOrder) object;

 if (

 book.equals(order2.getBook()) &&

 quantity == order2.getQuantity() &&

 total == order2.getTotal()

)

 return true;

 }

 return false;

}

Description
 To test if two objects point to the same space in memory, you can use the equals

method of the Object class.
 To test if two objects store the same data, you can override the equals method in the

subclass so it tests whether all instance variables in the two objects are equal.

How to use the Class class to get information about an Object object
To show you how complex object-oriented programming with Java can get, this chapter now shows you
how to use the Class class to get information about an Object object. Note, however, that you won’t
have to do that when you develop Java applications like the ones in this book. So if you want to, you
can skip this topic for now and return to it when you need it. On the other hand, this topic is a good
introduction to a skill that you do need when you develop web applications.
When Java runs an application, it uses the Class class to keep track of all of the objects that it loads.
This is sometimes referred to as run-time type identification, or RTTI. To illustrate the use of this
information, figure 5-8 shows how to use the getName and getSuperclass methods of the Class class to
get the name of an object’s class or superclass.

Murach’s Beginning Java 2

 page 121

The first two examples show how to get the class name of an object. In the first example, the first
statement uses the getClass method of the Object class to return a Class object. Then, the second
statement uses the getName method of the Class object to return a String object that holds the name of
the class. In the second example, the dot operator connects the getClass and getName methods and
returns the String object in a single statement.

The third example shows how to get the name of the superclass for an object. In this example, the first
statement returns the Class object for the superclass. Then, the second statement uses the getName
method to convert that Class object to a String.
Although the two methods just illustrated are two of the most-commonly used methods of the Class
class, you should know that this class contains over 30 methods that let you get a wide range of run-
time information about objects. In particular, when combined with the classes in the java.lang.reflect
package, the Class class can access detailed information about the fields, constructors, and methods of
an object. This lets Java applications work with JavaBeans, which are component objects that can be
manipulated at run-time. This, however, is well beyond the scope of this book.

Figure 5-8: How to use the Class class to get information about an Object object
The Class class

java.lang.Class

Common methods of the Class class

Examples

Code that gets the class name of an object in two statements

Class classObject = object.getClass(); //returns Class object

String className = classObject.getName(); //returns String object

Code that gets the class name of an object in one statement

String className = object.getClass().getName(); //returns String object

Code that gets the superclass name of an object

Class superclass = object.getClass().getSuperclass();

String className = superclass.getName();

Description
 While a program is running, Java uses run-time type identification (RTTI) to keep

track of the classes that each object belongs to and to store detailed information
about all loaded classes, arrays, and primitive types. You can use the methods of
the Class class to access this information.

 The two methods shown above are only two of the more than 30 methods of the
Class class.

 The methods of the Class class can be used with the classes of the java.lang.reflect
package to get detailed information about the fields, constructors, and methods of
an object. This is the basis for working with JavaBeans, which allow your
applications to dynamically interact with other classes at run-time.

More skills for coding classes and methods
In this topic, you’ll learn other skills for coding classes and methods. To start, you’ll learn how to code a
method that throws an exception. Next, you’ll learn how to work with abstract classes and methods, final
classes and methods, and access modifiers. Then, you’ll learn an easy way to refer to the object that’s

Murach’s Beginning Java 2

 page 122

defined by the current class. Last, you’ll learn more about the difference between coding a method that
accepts a primitive type and a method that accepts an object. When you work with Java, you need all of
these skills.

How to code a method that throws an exception
In chapter 3, you learned how to catch an exception. Now, figure 5-9 shows how to code a method that
throws an exception. To do that, you code a throws clause at the end of the method declaration. This
throws clause specifies the exception or exceptions that the method throws. Then, it’s up to the
programmer who uses the method to decide whether to catch the exception or to throw the exception to
another class.
Although you don’t have to catch all types of exceptions, a checked exception is checked by the
compiler. As a result, you must either catch the exception or throw it. Otherwise, the program won’t
compile.

The example in this figure shows how to throw an IOException, which is a checked exception that’s
used by classes that work with file input and output. Since this exception is thrown by the constructor of
the FileWriter class and by the close method of the PrintWriter object, the addRecord method in this
figure must catch or throw this exception. In this case, the throws clause of the method throws the
exception.

As you read through this book, you’ll learn more about handling the exceptions that are thrown by Java
classes. And chapter 10 provides a more in-depth presentation of exception handling. For now, though,
you just need to know how to throw an exception whenever that’s required.

Figure 5-9: How to code a method that throws an exception
The syntax for coding the throws clause of a method

method declaration throws ExceptionOne[, ExceptionTwo]...{}
A method that throws an exception

public static void addRecord(User user) throws IOException{

 PrintWriter out = new PrintWriter(

 new FileWriter("UserEmail.txt", true)); // throws IOException

 out.println(user.getFirstName() + "\t"

 + user.getLastName() + "\t"

 + user.getEmailAddress());

 out.close(); // throws IOException

}

Description
 When a method includes code that may throw an exception, the method can catch

the exception or throw it to the class that uses the method. However, not all
exceptions need to be caught or thrown.

 A checked exception is a type of exception that’s checked by the compiler. When you
use a method that throws a checked exception, you must supply code that throws or
catches that exception or you won’t be able to compile your program.

 To throw an exception, you use the throws keyword to code a throws clause in the
method declaration.

 The IOException is a type of checked exception that’s thrown by classes that work
with file input and output.

 For more information about catching and throwing exceptions, see chapter 10.

How to work with abstract classes and methods
Figure 5-10 shows how to work with abstract classes and abstract methods. To start, it shows a
diagram of an inheritance hierarchy that shows how four classes inherit an abstract class. Then, it
shows some of the code for the abstract class in this hierarchy. This code shows how to declare an
abstract class and how to declare abstract methods.

Murach’s Beginning Java 2

 page 123

In general, abstract classes are used in the top levels of an inheritance hierarchy to provide code that
can be used by the subclasses and to ensure that certain methods are implemented by the subclasses.
In other words, abstract classes are templates for other classes. Although abstract classes are used
throughout the Java API, they’re rarely used in the classes of a business application.

The diagram in this figure shows five classes in the inheritance hierarchy for the Writer class. As you
can see, the Writer class is an abstract class. This means that you can’t create an object directly from
the Writer class. However, you can create objects from the subclasses of the Writer class.
The code in this figure shows the declaration for the Writer class and the declarations for seven of its
methods. Here, the abstract keyword is used in the declaration for the class. Then, the first four
methods are regular methods that can contain code, while the last three methods are abstract methods.
As a result, any subclasses of the Writer class must implement these methods. Otherwise, they won’t
compile.

Figure 5-10: How to work with abstract classes
The inheritance hierarchy for an abstract class

Some of the code for the abstract Writer class

public abstract class Writer {

 //regular method declarations

 public void write(int c) throws IOException {}

 public void write(char cbuf[]) throws IOException {}

 public void write(String str) throws IOException {}

 public void write(String str, int off, int len) throws IOException {}

 //abstract method declarations

 public abstract void write(char cbuf[], int off, int len) throws IOException;

 public abstract void flush() throws IOException;

Murach’s Beginning Java 2

 page 124

 public abstract void close() throws IOException;

}

Description
 An abstract class serves as a template that can be inherited by subclasses. However,

you can’t create an object directly from an abstract class. To declare an abstract
class, use the abstract keyword in the class declaration.

 When a subclass inherits an abstract class, all abstract methods in the abstract class
must be overridden in the subclass. To declare an abstract method, use the abstract
keyword in the method declaration, don’t include braces, and end the statement with
a semicolon.

 An abstract class may or may not contain abstract methods. However, any class that
contains an abstract method must be declared as abstract.

 All abstract classes and methods must be declared as public.

How to work with final classes and methods
Figure 5-11 shows how to use the final keyword to declare final classes, final methods, and final
parameters. You can use this keyword whenever you want to make sure that no one will override or
change your classes, methods, or parameters. When you declare a final class, other programmers
won’t be able to create a subclass from your class. When you declare a final method, other
programmers won’t be able to override that method. And when you declare a final parameter, other
programmers won’t be able to assign a new value to the parameter.

Why would want to use final classes, methods, or parameters? First, for design reasons, you may not
want other programmers to be able to change the behavior of a method or a class. Second, Java can
execute final classes, methods, and parameters faster than regular methods.

When should you use final classes and methods? For the sake of efficiency, you can use a final class or
method whenever you’re sure that no one else will want to inherit your class or override your methods.
Often, though, it’s hard to know when that’s true. As a result, you should avoid using final classes and
methods unless you’re certain that no one else will benefit by extending your class or by overriding a
method in your class.

The four final class examples in this figure show how to declare final classes. The first two examples are
the class declarations for the String and Math classes in the Java API, while the next two are class
declarations for user-defined classes. When you declare final classes like these, all methods in the
class automatically become final methods.

The two final method examples show how you can declare final methods. Since these methods are in
the BookOrder class, which hasn’t been declared as final, this class can still be inherited by other
classes, such as the DiscountBookOrder class. However, the DiscountBookOrder class won’t be able to
override either of these methods. Since both of these methods shouldn’t do anything but the tasks
shown in this figure, though, declaring them as final methods makes sense.

The two final parameter examples show how you can declare final parameters when you’re coding a
method. Since you would rarely want to assign a new value to the parameter, you can almost always
declare parameters as final. However, the performance gain is slight, and the extra keyword clutters the
code. As a result, you may or may not want to use final parameters, depending on the type of project
that you’re working on.

Figure 5-11: How to work with final classes and methods
Final classes

public final class String{}

public final class Math{}

public final class Book{}

public final class FinancialCalculations{}

Final methods

Murach’s Beginning Java 2

 page 125

public final int getQuantity(){

 return quantity;

}

protected final double getTotal(){

 return total;

}

Final parameters

public void setQuantity(final int qty){

 quantity = qty;

}

public static void incrementQuantity(final BookOrder order){

 int qty = order.getQuantity();

 order.setQuantity(qty+1);

}

Description
 To prevent a class from being inherited, you can create a final class by using the final

keyword in the declaration of the class.
 To prevent subclasses from overriding a method of a superclass, you can create a

final method by using the final keyword in the declaration of the method. In addition,
all methods in a final class are automatically final methods.

 To prevent a method from assigning a new value to a parameter, you can use the
final keyword in the method declaration to declare a final parameter. Then, if a
statement in the method tries to assign a new value to the final parameter, the
compiler will report an error.

How to work with access modifiers
Now that you’ve learned how to work with packages and subclasses, you’re ready for a more complete
discussion of how to work with access modifiers. That’s why figure 5-12 summarizes the four types of
access modifiers.
By now, you should be familiar with the private and public access modifiers. To review, you can use the
private keyword for any fields or methods that you only want to be available within the current class. In
contrast, you can use the public keyword for any fields or methods that you want to be available to all
other classes.
Beyond that, you may occasionally want to use the protected keyword for a field or for a method. Then,
classes in the same package as well as subclasses will be able to access the field or method. This
keyword is typically used to provide access to a method that might be helpful to programmers who are
developing classes that inherit your class.

Similarly, there may be times when you don’t want to code any access modifier at all for a field or
method in a class. Then, the classes in the same package will be able to access the field or method, but
subclasses in other packages won’t be able to access the field or method.

To encapsulate the data in your classes, you should declare all instance variables with private access.
Then, you can use other access modifiers to code methods that provide access to these variables.
Although you may be tempted to allow other classes to have direct access to your variables, this
defeats the purpose of encapsulation, and it can lead to run-time errors when another class modifies an
instance variable in a way that’s unexpected.

Murach’s Beginning Java 2

 page 126

In general, you should set the scope of the fields and methods of your application as small as possible.
For instance variables, that almost always means declaring them with private access. However, it’s a
common coding practice to declare static constants with public access. That way, you can easily access
constants that are stored in other classes.

Figure 5-12: How to work with access modifiers
Access modifiers

Description

 To encapsulate the data in your classes, you code private instance variables. Then,
you code public set and get methods that set and return the values of the private
instance variables.

 You can use the public keyword to code static constants. That way, other classes can
call those constants from the class.

 You can use the private keyword to code methods that are used only within the
current class.

 You can use the protected keyword to code fields and methods that can be accessed
only by other classes in the same package and by any subclasses.

 If you don’t code an access modifier, your fields and methods will be available only to
other classes in the same package.

How to use the this keyword
When you’re coding the methods of a class, you sometimes need to refer to the object that’s defined by
the current class. To do that, you can use the this keyword as shown in figure 5-13. You can use this
keyword to refer to instance variables, to call methods, or to pass the current object to another method.
In addition, you can use this keyword to call a constructor of the current class, which can be useful
when you’re overloading constructors.

The first line of the syntax summary shows how to refer to an instance variable of the current object.
The second and third lines show how to call a method of the current object or a constructor of the same
class. And the fourth and fifth lines show how to use the this keyword to pass the current object to a
method.

Since Java implicitly supplies the this keyword for all instance variables and methods, you don’t usually
need to explicitly code it when referring to instance variables or methods. However, the first example is
an exception to this rule. Here, the quantity parameter in the constructor has the same name as the
quantity instance variable. As a result, you need to use the this keyword to explicitly identify the instance
variable. Of course, another approach would be to change the parameter name so it isn’t the same as
the instance variable name.

The second example in this figure shows how to use the this keyword to call a method of the current
object. As the comments indicate, neither use of this keyword is necessary in this example. However,
this does point out that the setTime and getTime methods used in the printTimeToConsole method are
actually methods of the current object. They aren’t static methods.

The third example shows how to use the this keyword to call another constructor in the same class.
Here, two constructors have been added to the BookOrder class. The first constructor doesn’t accept
any arguments. Instead, it passes two default values to the third BookOrder constructor. Similarly, the
second constructor accepts one parameter and passes that parameter and a default value to the third
BookOrder constructor. This is an easy way to overload a constructor so it provides default values for
missing parameters.

The fourth example shows how to use the this keyword to pass the current object to a method. In this
example, the print method sends the current object to the println method of the System.out object. Since

Murach’s Beginning Java 2

 page 127

this method will automatically invoke the toString method of the object that’s passed to it, this method
will print a representation of the current object to the console.

Figure 5-13: How to use the this keyword
The syntax for using the this keyword

this.instanceVariab0le //refers to an instance variable of current object

this.methodName(arguments) //calls a method of current object

this(arguments); //calls another constructor of the same class

object.methodName(this) //passes the current object to a method

Class.methodName(this) //passes the current object to a static method

Examples
How to refer to an instance variable when a parameter has the same name

public BookOrder(String code, int quantity){

 book = new Book(code);

 this.quantity = quantity;

 setTotal();

}

How to call a method of the current object

public void printTimeToConsole(){

 this.setTime(); //unnecessary, but clear

 String time = this.getTime(); //unnecessary, but clear

 System.out.println(time);

}

How to call another constructor of the same class

public BookOrder(){

 this("", 1);

}

public BookOrder(String code){

 this(code, 1);

}

public BookOrder(String code, int quantity){

 // code for initializing instance variables

}

How to pass the current object to a method

Murach’s Beginning Java 2

 page 128

public void print(){

 System.out.println(this);

}

Description
 You can use the this keyword to refer to an instance variable or method of the current

object, to call another constructor of the same class, or to pass the current object to
a method.

 Since Java implicitly uses the this keyword for instance variables and methods, you
don’t need to explicitly code it unless a parameter has the same name as an
instance variable.

 If you use the this keyword to call another constructor, the statement must be the first
statement in the constructor.

How primitive types and objects are passed to a method
Figure 5-14 shows that variables with primitive types are passed to a method one way, while objects are
passed in another way. Specifically, primitive types are passed by value, which means that a copy of
the variable’s value is passed, not the variable itself. In contrast, objects are passed by reference, which
means that the method knows where the object’s variables are so it can change them directly.

The first example shows how this works when a primitive data type is passed to a method that is
supposed to increment the value of the variable by one. In this case, the incrementQuantity method
uses a return statement to return the incremented value. Then, the code that calls this method
reassigns the return value to the original variable. In other words, the method works with a copy of the
value of the variable, but it can’t modify the value in the variable itself.

The second example shows how this works when an object is passed to a method. Here, the return type
for the incrementQuantity method is void, so no value is returned by the method. Instead, the
getQuantity and setQuantity methods of the BookOrder class are used to get and set the quantity
variable itself. In other words, the method refers directly to the object and its data so that data is actually
changed by the method.

In practice, you usually don’t need to know how the values are passed, because your methods work the
way you want them to. Occasionally, though, you do need to be aware of the differences in the way that
primitive types and objects are passed. When you do, you can refer back to this figure to refresh your
memory about it.
Curiously, some programmers disagree about what terminology should be used for these examples.
Some agree that Java passes a reference to an object instead of the object itself, so this should be
referred to as “passing by reference.” But others say that Java passes a copy of the reference to the
object, so this should be referred to as “passing by value.” They argue that the copy of the reference
doesn’t change. But since it refers directly to the object, you can invoke methods to change the object.
No matter what terminology you use, you’ll be able to code your methods right if you understand what’s
happening.

* * *

Because this is a long, difficult chapter, we now recommend that you do the exercises that follow. They
will give you a chance to practice and reinforce the most important skills that you’ve learned so far. This
is also a good time to take a break before continuing this chapter.

Figure 5-14: How primitive types and objects are passed to a method
Example 1: Primitive types are passed by value

A method that changes the value of a primitive type

public static int incrementQuantity(int qty){ //returns an int

 return qty+1;

}

Code that passes a primitive type to this method

Murach’s Beginning Java 2

 page 129

int quantity = 2;

quantity = PassTest.incrementQuantity(quantity); //reassignment statement

 // now the quantity variable is 3

Example 2: Objects are passed by reference
A method that changes a value stored in an object

public static void incrementQuantity(BookOrder order){ //no return value

 int qty = order.getQuantity();

 order.setQuantity(qty+1);

}

Code that passes an object to this method

BookOrder order = new BookOrder("WARP", 2);

PassTest.incrementQuantity(order);

 //now the quantity variable in the BookOrder object is 3

Description
 When a variable with a primitive type is passed to a method, it is passed by value.

That means the method can’t change the value of the variable itself. Instead, the
method must return a new value that gets stored in the variable.

 When an object is passed to a method, it is passed by reference. That means that the
method can change the data in the object itself so a new value doesn’t need to be
returned by the method.

Exercise 5-1: Use the DiscountBookOrder class

This exercise guides you through the process of using the DiscountBookOrder class that inherits the
BookOrder class.

1. Open the DiscountBookOrder class that’s in the c:\java\ch05\inherit directory. It
contains the code shown in figure 5-2.

2. Add a toString method to this class that returns all of the information about a book
order including subtotal, discount percent, discount amount, and total. This should be
formatted so it’s ready for display in a dialog box. Then, compile the class.

3. Open the Book, BookOrder, and BookOrderApp classes that are in the
c:\java\ch05\inherit directory. This is code that you used for the book order
application in the last chapter. For now, compile just the Book and BookOrder
classes.

4. Modify the BookOrderApp class so (1) it uses another dialog box to get the key code
entry from the user; (2) it uses the DiscountBookOrder class instead of the
BookOrder class to create order objects and to get the data for a book order; and (3)
it displays all of the order data that is returned. Then, compile this class and test the
application.

Exercise 5-2: Use alternatives to the DiscountBookOrder class

Just because you can use inheritance doesn’t mean that you have to use it. In fact, using inheritance
may not be the best way to implement discount book orders. In this exercise, then, you’ll get a chance
to consider the alternatives.

1. Open the Book, BookOrder, and BookOrderApp classes in the c:\java\ch05\disinherit
directory. These are the original classes that you used for the book order application
in chapter 4.

2. Modify the BookOrder class so it accepts a third parameter and so its toString
method provides for discount orders. To do that, you can (1) create three new

Murach’s Beginning Java 2

 page 130

instance variables, (2) add a setPercentOff method, and (3) modify the getTotal
method. Then, compile this class.

3. Modify the BookOrderApp class so it (1) gets the key code from the user; (2) uses the
modified BookOrder class; and (3) displays all of the order data. Then, compile this
class and test the application.

4. (Optional) Modify the BookOrder class so it has two constructors: one with two
parameters (book code and quantity) for regular orders, and one with three
parameters for discount orders. Next, modify the BookOrderApp class so it uses the
first constructor for regular orders (no key code) and the second constructor for
discount orders. Then, compile these classes and test the application.

Exercise 5-3: Inherit the JFrame class

This exercise guides you through the process of creating the BookOrderFrame class by extending the
JFrame class.

1. Create the BookOrderFrame class in figure 5-3. Then, save it in the
c:\java\ch05\frame directory.

2. Compile and run this class, which should display a frame. When you click on its close
button, the frame should close, but that won’t terminate the program. To terminate
the program, you’re going to have to press Ctrl+C or close the console window. Later
in this chapter, though, you’ll learn how to fix this problem.

Exercise 5-4: Practice some of the other skills

This exercise guides you through the process of modifying the Book and BookOrder classes so you can
practice some of the miscellaneous skills presented in this chapter.
Use final classes and methods

1. Open the Book and BookOrder classes in the c:\java\ch05\order directory. Then, edit
the BookOrder class so it’s a final class, and compile the class.

2. Try to compile the DiscountBookOrder class. This should give you an error message
like: “cannot inherit from final BookOrder.”

Use the this keyword to code new constructors

1. Edit the code for the BookOrder class so it uses the this keyword to provide default
values for both of the parameters in the original constructor as shown in figure 5-13.
Then, compile the code for the BookOrder class.

2. Open the code for the ThisTestApp class in the c:\java\ch05\order directory. Then,
compile this code and run the application. It should print three book orders to the
console. Notice how the default values are used for the statements that don’t pass
values to the constructor. Then, close the ThisTestApp class.

Add the equals method (optional)
1. Open the code for the EqualsTestApp1 class in the c:\java\ch05\order directory. Then,

compile this code and run the application. Since no equals method exists in the Book
class, this should print “false” to the console.

2. Edit the code for the Book class so it includes an equals method like the one shown in
figure 5-7. Then, compile the code for the Book class.

3. Run the EqualsTestApp1 class again. This time, this should print “true” to the console.
Then, close this class.

4. Repeat steps 5 through 7 with the EqualsTestApp2 class and the BookOrder class.

How to work with interfaces
In Java, a class can only inherit one other class. In some other object-oriented programming languages
such as C++, though, a class can inherit more than one class. This is known as multiple inheritance.
Although Java doesn’t provide for multiple inheritance, it does provide a special type of coding element
known as an interface that provides many of the advantages of multiple inheritance without some of the
problems that are associated with it. So in this topic, you’ll learn how to work with interfaces. In
particular, you’ll learn how to implement two interfaces that are defined in the Java API: the
WindowListener interface and the Cloneable interface.

Murach’s Beginning Java 2

 page 131

An introduction to interfaces
In some ways, an interface is similar to an abstract class. That’s why figure 5-15 compares the two. The
main similarity is that both abstract classes and interfaces can contain abstract methods. Similarly, both
can contain static constants. However, a class can implement more than one interface but it can inherit
only one abstract class.

If you use your web browser to view the documentation for the Java API, you’ll see that almost every
package uses one or more interfaces. In addition, you’ll see that the Java documentation italicizes
interfaces. That way, it’s easy to differentiate between classes and interfaces.
When will you need to use interfaces that are part of the Java API? As you’ll see later in this chapter,
you need to use interfaces when you want to code a graphical user interface. In particular, you need to
use interfaces to handle events, such as when a user clicks on a button.

When will you need to code your own interfaces? In general, you won’t need to code interfaces for your
business applications, but there may be a few occasions when you will want to. For instance, you may
want to code an interface to make certain constants available to all classes in a package. Or, you may
want to code an interface to force several classes to implement a generic method. As you learn more
about how the Java API uses interfaces, you’ll begin to understand when coding your own interfaces
might be appropriate.

Figure 5-15: An introduction to interfaces
An abstract class compared to an interface

An interface can contain…

 Static constants
 Abstract methods

A class that implements an interface…
 Can use the constants in the interface.
 Must define all methods in the interface (unless the class is declared as an abstract

class).
Advantages of an abstract class

 An abstract class can use instance variables while interfaces can’t.
 An abstract class can define regular methods while interfaces can only define

abstract methods.
 An abstract class can define static methods while interfaces can’t.

Advantages of an interface
 Although a class can only inherit one class, it can implement more than one interface.

This is how Java provides many of the advantages of multiple inheritance.

How to code an interface
Figure 5-16 shows how to code an interface. To start, it shows the inheritance hierarchy for three
interfaces that are defined in the Java API. This shows that interfaces can inherit other interfaces. Then,
this figure shows the syntax for coding an interface. And finally, this figure shows the code for three
interfaces from the Java API. In general, declaring an interface is similar to declaring a class except that
you use the interface keyword instead of the class keyword.

Although you can’t add methods to an existing interface, you can derive new interfaces from existing
ones. In the diagram, the WindowListener and ActionListener interfaces only inherit the EventListener
interface, but they could inherit other interfaces too. In contrast, some interfaces don’t inherit any other

Murach’s Beginning Java 2

 page 132

interfaces. For example, the SwingConstants interface shown in the third example doesn’t inherit any
interface.

The first example shows the code for the ActionListener interface. This interface extends the
EventListener interface and contains a single abstract method, the actionPerformed method. When you
code an abstract method in an interface, you don’t have to use the public and abstract keywords. That’s
because Java automatically supplies these keywords for all methods. Nevertheless, the abstract
methods in this figure use the public keyword, which helps document their scope.

The second example shows the code for the WindowListener interface. Like the ActionListener
interface, this interface extends the EventListener interface. However, this interface contains seven
abstract methods. As with all abstract methods, these methods end with a semicolon instead of braces.

The third example shows how to code an interface that defines constants. When you code constants in
an interface, you don’t have to code the public, static, and final keywords. That’s because Java
automatically supplies these keywords for all constants. Here again, though, the three constants in this
example use all three of these keywords, which is useful as documentation.

Figure 5-16: How to code an interface
An interface hierarchy

The syntax for declaring an interface

public interface InterfaceName{
 dataType CONSTANT_NAME = value; //for constants
 returnType MethodName(optionalParameterList); //for methods
}

The syntax for declaring an interface that inherits other interfaces
public interface InterfaceName
 [extends SuperInterface1[, SuperInterface2]...]{}

Example 1: An interface that defines one abstract method

public interface ActionListener extends EventListener {

 public void actionPerformed(ActionEvent e);

}

Example 2: An interface that defines seven abstract methods

public interface WindowListener extends EventListener {

 public void windowOpened(WindowEvent e);

 public void windowClosing(WindowEvent e);

 public void windowClosed(WindowEvent e);

 public void windowIconified(WindowEvent e);

Murach’s Beginning Java 2

 page 133

 public void windowDeiconified(WindowEvent e);

 public void windowActivated(WindowEvent e);

 public void windowDeactivated(WindowEvent e);

}

Example 3: An interface that defines constants

public interface SwingConstants {

 public static final int CENTER = 0;

 public static final int TOP = 1;

 public static final int LEFT = 2;

 // and so on

}

Description
 Declaring an interface is similar to declaring a class except that you use the interface

keyword instead of the class keyword.
 In an interface, all methods are automatically declared public and abstract, and all

constants are automatically declared public, static, and final. Although you can code
the public, static, and final keywords, they’re optional.

How to implement an interface
Figure 5-17 shows how to code a class that implements an interface. In short, you use the implements
keyword to implement one or more interfaces, separating interfaces with commas as necessary. Then,
the class can use any of the constants contained in any of the interfaces it implements, and it must
implement all of the methods defined by all of the interfaces it implements.

The first example in this figure shows how the BookOrderFrame class implements the WindowListener
interface in the previous figure. In the constructor, you can see that the this keyword is used as an
argument in the addWindowListener method. You’ll learn more about this in the next figure.

Because the BookOrderFrame class implements the WindowListener interface, it must define all seven
methods contained in the WindowListener interface. Otherwise, the compiler will report an error when it
tries to compile this class. So in this first example, all seven methods are defined. Note, however, that
the windowClosing method is the only method that contains any code, and this method contains only a
single statement that terminates all threads when the frame is closed.

The second example shows the declaration for a class that inherits a class and implements two
interfaces. Here, the BookOrderFrame class inherits the JFrame class. Then, it implements the
WindowListener interface and the ActionListener interface.

When a class implements an interface that contains constants, the class can use any of the constants in
the interface. To refer to these constants, you don’t have to type the name of the interface, followed by
the dot operator, followed by the name of the constant. Instead, you can just type the name of the
constant. In addition, if the interface that you’re implementing inherits constants from other interfaces,
you can refer to these constants in the same way.

Figure 5-17: How to implement an interface
The syntax for implementing an interface

public className [extends SuperClass] implements Interface1[, Interface2]...{}
A class that extends another class and implements an interface

import java.awt.event.*;

import javax.swing.*;

Murach’s Beginning Java 2

 page 134

public class BookOrderFrame extends JFrame implements WindowListener{

 public BookOrderFrame(){

 setTitle("Book Order");

 setBounds(267, 200, 267, 200);

 addWindowListener(this);

 }

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 public void windowClosed(WindowEvent e){}

 public void windowActivated(WindowEvent e){}

 public void windowDeactivated(WindowEvent e){}

 public void windowDeiconified(WindowEvent e){}

 public void windowIconified(WindowEvent e){}

 public void windowOpened(WindowEvent e){}

 public static void main(String[] args){

 JFrame frame = new BookOrderFrame();

 frame.show();

 }

}

The declaration for a class that implements two interfaces

public class BookOrderFrame extends JFrame

 implements WindowListener, ActionListener{}

Description
 To declare a class that implements an interface, you use the implements keyword.
 To refer to a constant declared in an interface, you don’t need to specify the interface

name as long as the class implements the interface.
 If a class inherits a class that implements interfaces, it also implements those

interfaces, so it can access all constants of those interfaces without coding the class
name and dot operator.

 A class that implements an interface must also implement all methods that the
interface inherits from other interfaces.

Murach’s Beginning Java 2

 page 135

How to use an interface as an argument
Figure 5-18 shows how to use an interface as an argument of a method. That way, the statement that
calls the method can pass any object that implements the interface to the method. When this happens,
the method ends up calling back one of the interface methods defined in that object’s class. This type of
code is known as a callback, and this creates a flexible design that allows you to plug new classes into
various points in your program. In practice, though, you’re most likely to use this type of code when
you’re using classes and methods from the Java API to work with events.

The code in this figure shows how the Java API uses a callback with the WindowListener interface.
First, this figure shows the declaration for the addWindowListener method of the Window class. This
declaration shows that the addWindowListener method accepts any object that implements the
WindowListener interface.

Then, this figure shows the start of the code for the BookOrderFrame class. Here, the third statement in
the constructor calls the addWindowListener method and uses the this keyword to supply the current
BookOrderFrame object as the argument. Since the BookOrderFrame object implements the
WindowListener interface, it’s a valid argument for the addWindowListener method.

Once the addWindowListener method is called, an event will cause this method to call a method in this
object’s class that’s defined in the WindowListener interface. For instance, if the user closes the
window, the addWindowListener method registers this event and makes sure the windowClosing
method in the BookOrderFrame class is called.
Frankly, this is about as difficult as object-oriented programming with Java gets. When you learn how to
develop GUIs in section 3 of this book, you will see this in use and it will make more sense. But for now,
it may seem bewildering. At a time like that, we say that you just have to click on the “I believe” button
and continue.

Figure 5-18: How to use an interface as an argument
A method in the Java API that accepts an interface as an argument

public void addWindowListener(WindowListener l){}

Code that supplies an interface as an argument

public class BookOrderFrame extends JFrame implements WindowListener{

 public BookOrderFrame(){

 setTitle("Book Order");

 setBounds(267, 200, 267, 200);

 addWindowListener(this);

 }

 ...

Description
 The Window class of the Java API contains the addWindowListener method shown

above. Since the JFrame class inherits the Window class, the addWindowListener
method is available to the JFrame class.

 A method that accepts an interface as an argument can accept any object that
implements the interface. Since the BookOrderFrame class implements the
WindowListener interface, the addWindowListener method will accept a
BookOrderFrame object as an argument.

 Although it’s common to use the this keyword to supply the current object as an
argument, you can supply an instance of any object that implements the
WindowListener interface.

 To use an interface dynamically, you can use a callback. That way, you can use any
object that implements the interface as an argument to a method and that method
will call the appropriate method in the argument’s class.

Murach’s Beginning Java 2

 page 136

How to implement the Cloneable interface
Occasionally, you will have to clone an object (make an exact copy of it). Before you can use the clone
method of the Object class, though, you must implement the Cloneable interface. You may also have to
override the clone method of the Object class. Note, however, that you usually won’t have to clone
objects when you develop Java applications like the ones in this book. So if you want to, you can skip
this complex topic for now and return to it when you need it.

Figure 5-19 shows how to clone an object by implementing the Cloneable interface. Since this interface
contains no constants or methods, it is known as a tagging interface. This interface lets you identify
objects that can use the clone method of the Object class. Once you implement this interface for a
class, you can call the clone method of the Object class from that class. However, the clone method of
the Object class has protected access, and it doesn’t work properly when an object contains instance
variables that refer to other mutable objects (objects that can be changed). So when you code a class,
you’ll usually want to override the clone method so it has public access and so it works properly when
the object contains instance variables that refer to other mutable objects.

The first example in this figure shows how to code a Book class that can be cloned. First, the Book
class implements the Cloneable interface so the Book class can use the clone method of the Object
class. Then, the Book class defines a public clone method that overrides the clone method of the Object
class. That way, the clone method for the Book class will have public access. Last, this method uses the
super keyword to call the clone method of the Object class. Since the Book class only contains a
primitive type and an immutable object (a String object), this clone method will work properly for a Book
object.

The second example in this figure shows how to code a BookOrder class that can be cloned. Since this
class contains an instance variable of a mutable object (a Book object), you must clone the BookOrder
object and the Book object. So the first statement in the clone method clones the BookOrder object. At
this point, two BookOrder objects point to the same Book object. Then, the second statement clones the
Book object and assigns it to the book instance variable. At this point, each BookOrder object points to
its own copy of the Book object. As a result, this clone method will work properly for a BookOrder object.

The third example in this figure shows the code that uses the clone method to clone a BookOrder
object. Here, the first statement creates an object from the BookOrder class while the second statement
uses the clone method of the Object class to clone the BookOrder object. Then, the third and fourth
statements set a new Book object and total for the second book order. And the fifth and sixth
statements print both objects to the console so you can verify that the clone method has worked
properly.

When you write a method that overrides the clone method of the Object class, your method returns an
Object type and throws a checked exception of the CloneNotSupportedException type. As a result, you
will often need to cast the object that’s returned to another object type. This is illustrated by the second
statement in example 3. You will also have to throw the checked exception or catch it. In all three
examples, this exception is thrown.

Figure 5-19: How to implement the Cloneable interface
The Cloneable interface defined in the API

public interface Cloneable{}

Example 1: How the Book class implements the Cloneable interface

public class Book implements Cloneable{

 private String code;

 private String title;

 private double price;

 //body of Book class
 public Object clone() throws CloneNotSupportedException{
 return super.clone();
 }

Murach’s Beginning Java 2

 page 137

}
Example 2: How the BookOrder class implements the Cloneable interface

public class BookOrder implements Cloneable{

 private Book book;

 private int quantity;

 private double total;

 //body of BookOrder class
 public Object clone() throws CloneNotSupportedException{
 BookOrder bookOrder = (BookOrder) super.clone();
 book = (Book) book.clone();
 return bookOrder;
 }
}

Example 3: Code that uses the clone method

public static void main(String[] args) throws CloneNotSupportedException{

 BookOrder order1 = new BookOrder("WARP", 4);

 BookOrder order2 = (BookOrder) order1.clone();

 order2.setBook(new Book("MBDK"));

 order2.setTotal();

 System.out.println(order1);

 System.out.println(order2);

}

Description
 To use the clone method of the Object class, you must implement the Cloneable

interface. Since the Cloneable interface doesn’t require you to implement any
methods, it’s known as a tagging interface.

 The clone method of the Object class has protected access. As a result, it’s a
common coding practice to override this method with a clone method that has public
access.

 The clone method of the Object class doesn’t work properly when the class contains
an instance variable of a mutable object (such as a Book object). As a result, it’s a
common coding practice to override the clone method of the Object class with a
clone method that will clone any instance variables that refer to mutable objects.

 When you override the clone method of the Object class, the method returns an
Object type and throws a CloneNotSupportedException. Since this is a checked
exception, you either have to throw it or catch it.

How to code classes that are closely related
So far, all of the applications in this book have declared one class per file. But now, you’ll learn when
and how to code more than one class per file.

How to code more than one class per file

For most applications, it makes sense to code one class per file. However, there are some coding
situations in which two classes are so closely related that it makes sense to store them in the same file.

Murach’s Beginning Java 2

 page 138

When you work with graphical user interfaces, for example, it often makes sense to code two or more
classes within one file.

Figure 5-20 shows how to code more than one class per file. Here, the BookOrder class is declared as
the public class so it must be stored in a file named BookOrder.java. However, the Book class can also
be stored in this file since it isn’t declared as a public class.

The advantage of coding classes in the same file is that you have fewer files to keep track of. In this
case, since the Book and BookOrder classes are closely related, it makes sense to store both of them in
the same file. When you compile this class, the compiler will generate the class files for both the
BookOrder and Book classes.

Figure 5-20: How to code more than one class per file
Two classes declared within the same file

public class BookOrder{
 //body of BookOrder class
}
class Book{
 //body of Book class
}

The class files that are generated when the code above is compiled

BookOrder.class

Book.class

Description
 When two classes are closely related, it sometimes makes sense to code them in the

same file.
 When you code two or more classes in the same file, you can only have one public

class in the file, and that class should be declared first.

An introduction to nested classes
You can code nested classes whenever you need to code a class that only makes sense within the
context of another class. In practice, though, you may only need to use nested classes when you
develop graphical user interfaces.
Figure 5-21 shows the syntax and principles for coding nested classes. After you code the outer class,
you can code inner classes and static inner classes. Since these types of classes are members of the
outer class, they’re sometimes called member classes.

The outer class in the first example in this figure works the same as the rest of the classes that you’ve
been working with throughout this book. It must be declared public, and it must be stored in a file that
has the same name as the class. Then, it can contain instance variables, static variables, constructors,
methods, and static methods.

The first nested class shows the types of data that you can use in an inner class. Since an inner class
has direct access to all private variables and methods of the outer class, you may want to use an inner
class for some closely related classes. However, an inner class can’t contain any static variables or
methods.

The second nested class shows the types of data that you can use in a static inner class. Unlike regular
inner classes, static inner classes are independent of the outer class. In fact, you can create an object
of the static inner class without referring to the outer class. As a result, static inner classes can’t access
any of the instance variables or methods of the outer class. However, they can access the static
variables and methods of the outer class.
The second example in this figure shows how you can nest a class within a method. In this case, the
class is known as a local class because it can only be called from within the method. In chapter 11, you
will see a typical example of a local class.

If you compile the code for the first example in this figure, the compiler will generate the three classes
shown. Here, a dollar sign ($) separates the outer class and the inner class. This clearly shows that the
inner classes are nested within the outer class.

Figure 5-21: An introduction to nested classes

Murach’s Beginning Java 2

 page 139

Example 1: Classes nested within other classes
public class OuterClassName{
 //Can contain instance variables and methods
 //Can contain static variables and methods

 class InnerClassName{
 //Can contain instance variables and methods
 //Can’t contain static variables or methods
 //Can access all variables and methods of OuterClass
 }
 static class StaticInnerClassName{
 //Can contain instance variables and methods
 //Can contain static variables and methods
 //Can access static data from OuterClass
 //Can’t access instance variables or methods from OuterClass
 }
}

Example 2: A class nested within a method
public class ClassName{
 //body of class
 methodName(){
 class InnerClassName{
 //body of class
 }
 //code of method
 }
}

The class files generated when the code for the first example is compiled

OuterClassName.class

OuterClassName$InnerClassName.class

OuterClassName$StaticInnerClassName.class

Description
 Java has provided support for nested classes since version 1.1.
 When you nest classes, the outer class must be declared public and must have the

same name as the filename of the class.
 Within an outer class, you can nest inner classes and static inner classes. Since the

inner classes are members of the outer class, they are sometimes called member
classes.

 A class can also be nested inside a method or any other type of block. These types of
classes are sometimes called local classes.

 Nested classes are often used when developing graphical user interfaces.

Perspective
From a conceptual point of view, at least, this is the most difficult chapter in this book...by far. In
practice, though, you actually have to understand these concepts as you work with the Java API. In fact,
you’ll encounter almost all of these concepts again as you progress through this book.

The good news is that you aren’t expected to have a complete understanding of everything in this
chapter right now. That will come as you get more experience with Java. For now, if you understand the
major concepts of inheritance and interfaces, you’re ready to continue. Then, you can refer back to this
chapter whenever you need more detailed information.

Summary
 You can use inheritance to create a subclass (also called a derived class or child class)

that inherits fields and methods from a superclass (also called a base class or parent
class).

Murach’s Beginning Java 2

 page 140

 If a method in a subclass has the same signature as a method in its superclass, the
method in the subclass will override the method in the superclass.

 When a subclass object calls an inherited method, Java doesn’t decide which method it
will call until run time. This is referred to as polymorphism.

 The Object class is the superclass for all classes in Java. As a result, the methods in the
Object class are always available, though they are often overridden in the subclasses.

 You can cast an object up and down its inheritance chain without losing any of the data
that’s stored in the original object.

 When coding method declarations, you can code a throws clause to throw an exception.
Since the compiler checks for checked exceptions, they must be thrown or caught or the
code won’t compile.

 Abstract classes provide code that can be used by subclasses. In addition, they can
specify abstract methods that must be implemented by subclasses.

 You can use the final keyword to declare final classes, final methods, and final
parameters. No class can inherit a final class, no method can override a final method,
and no statement can assign a new value to a final parameter.

 When coding a class, you can use the this keyword to refer to the current object and to
call constructors of the current class.

 When Java passes a primitive type to a method, it passes a copy of the value. This is
known as passing by value. When Java passes an object to a method, it passes a
reference to the object. This is known as passing by reference.

 An interface is a special type of coding element that can contain static constants and
abstract methods. Although a class can only inherit one other class, it can implement
more than one interface.

 If a method accepts an interface as an argument, you can supply any object that
implements the interface as an argument.

 Before you can use the clone method of the Object class, you need to implement the
Cloneable interface. Then, you can override the clone method so it is public and so it
lets you clone mutable objects.

 When two or more classes are closely related, it sometimes makes sense to store them
all in one file or nest them.

Terms
inheritance cast an object pass by reference

member instanceof operator multiple inheritance

subclass run-time type identification (RTTI) interface

superclass JavaBean implement an
interfaceevent

override a method throws clause callback

inheritance hierarchy checked exception clone

is-a relationship abstract class tagging interface

base class abstract method mutable object

parent class final class immutable object

derived class final method nested classes

child classframe final parameter outer class

inheritance chain access modifierprotected inner class

polymorphism scope static inner class

late binding pass by value member class

hash code local class

garbage collector

Objectives
 Describe how inheritance is used in the Java API. When necessary, use inheritance in

your own classes.

Murach’s Beginning Java 2

 page 141

 Describe how the Object class interacts with other classes in the API. When necessary,
override the toString and equals methods in your own classes, or write code that casts
an object up or down the inheritance chain.

 Code the following: (1) a method that throws an exception; (2) an abstract class with
abstract methods; (3) final classes, methods, and parameters; (4) the this keyword to
call constructors and to refer to the current object.

 Explain the difference between passing primitive types to a method and passing objects
to a method.

 Describe how interfaces are used in the Java API. When necessary, implement
interfaces in your own classes.

 Code more than one class per file. When necessary, use nested classes.
Exercise 5-5: Implement the WindowListener interface

In this exercise, you’ll implement the WindowListener interface in the BookOrderFrame class that you
created in exercise 5-3.

1. Open the BookOrderFrame class in the c:\java\ch05\frame directory. Then,
implement the WindowListener interface as shown in figure 5-17. In the constructor
for the class, be sure to add the addWindowListener method.

2. Compile and run the BookOrderFrame class. When you click on the frame’s close
button, the frame should close and the program should terminate.

Exercise 5-6: Code more than one class per file

1. Open the code for the Book and BookOrder classes that are stored in the
c:\java\ch05\classes directory. Next, cut and paste the code for the Book class after
the last brace of the BookOrder class. Then, delete the public modifier from the
declaration of the Book class, and save the file.

2. View the files in the c:\java\ch05\classes directory. At this point, there shouldn’t be
any *.class files in this directory. Then, compile the code for the BookOrder class,
and view the files in this directory. Now, there should be *.class files for the Book and
BookOrder classes.

3. Open the code for the BookOrderApp class in the c:\java\ch05\classes directory.
Then, compile the code for this class and run the application. It should work the
same as it did earlier in this chapter. This shows that the BookOrderApp uses the
*.class files, not the *.java files.

Exercise 5-7: Review the Java API documentation

Now that you know how inheritance and interfaces work, the API documentation will be more
meaningful to you. To demonstrate that, do this exercise.

1. Start your web browser and navigate to the index.html page for the API
documentation (it should be bookmarked). In the lower left frame, select the JFrame
class so you can see its inheritance chain and implemented interfaces in the right
frame. Next, scroll through the inner class and field summaries to see the inherited
classes and fields. Then scroll through the methods. After that, you can see the
methods that this class inherits from other classes.

2. Go to the methods inherited from the Frame class and find the setTitle method. Click
on this link to see a description for the method in the Frame class documentation.
Then, go back to the inherited methods summary and skim through the methods
inherited from the Window and Component classes. Here, you’ll see the
addWindowListener, show, and setBounds methods.

3. In the lower left frame, select the WindowListener interface. Since it’s an interface, its
name is italicized. In its documentation, note that just two classes implement this
interface, although you will frequently implement it when working with GUIs. Then,
scroll through the documentation and review its seven methods.

Chapter 6: How to design and test object-oriented
programs
Now that you know how to code an object-oriented program, you need to know how to design an object-
oriented program. That, of course, is what you need to do before you start coding your programs.

Murach’s Beginning Java 2

 page 142

Although this chapter doesn’t presume to show you how to design complete business systems, it will get
you started with the design of simple applications. This chapter also shows you how you can test some
of the classes in an object-oriented program before all of the other classes are finished.

An introduction to object-oriented design
The Rational Software Corporation has developed or helped to develop many of the standards and tools
that have become industry standards for software development. This corporation helped develop the
Unified Modeling Language (UML); it developed an object-oriented design methodology known as the
Rational Unified Process; and it developed one of the world’s leading object-oriented design tools,
Rational Rose. To learn more about Rational’s development methods and tools, you can visit their web
site at www.rational.com.

For a beginning Java programmer, though, the Rational Unified Process can be overwhelming. That’s
why this topic presents a simplified version of the Rational Unified Process that’s appropriate for
beginning Java programmers. But first, this topic shows how an object-oriented program is typically
divided into three packages, and it shows how to work with class diagrams.

A common architecture for object-oriented programs
Figure 6-1 shows the architecture for a typical object-oriented program. This architecture divides the
program into three packages, which helps to organize related classes and minimize unnecessary
communication between classes in different packages.
The user interface package holds the classes that define the graphical user interface of the application.
To create a user interface, for example, you need to code a class that defines a window and you need
to add labels, text boxes, buttons, and other controls to that window. In section 3 of this book, you’ll
learn more about coding user interfaces.
The business objects package holds the classes for the business objects of the program. The Book and
BookOrder classes that you’ve seen so far are examples of business objects. Since these classes
define the logic that’s used to solve problems, they can be referred to as the problem-domain classes or
logical classes. They can also be referred to as business classes.
The database package holds the classes that save business objects to databases or files. If, for
example, you want to make Book objects available to your system, you need to store the data for the
Book objects in a database or a file. You also need to be able to create Book objects from that stored
data, and you need to be able to save new and modified Book objects to that database or file. In other
words, the database package makes your business objects persistent from one use of an application to
another. In section 4, you’ll learn how to work with file input and output, and you’ll learn how to work with
databases in chapter 19.

Figure 6-1: A common architecture for object-oriented programs
A common architecture for object-oriented programs

Description

 In 1994, the Rational Software Corporation and the Object Management Group
(OMG) helped create a set of standard graphical notations for object-oriented
design known as the Unified Modeling Language (UML).

 The package symbol shown above is a standard UML symbol. Sometimes, the
classes within each package are also shown in this type of diagram.

 The user interface package holds the classes that define the graphical user interface
for the application.

 The business objects package holds the classes for the business objects of the
application. These business classes can also be referred to as problem-domain
classes or logical classes.

 The database package holds the classes that save and retrieve the data for business
objects to or from databases or files. This gives the business objects persistence.

 In contrast to the business classes, the user interface and database classes can be
referred to as technical classes.

Since the classes in the user interface and database packages implement the technical details of an
application, they are sometimes referred to as the technical classes. In contrast, the business classes
should provide most, if not all, of the business logic of an application. In practice, though, the user

Murach’s Beginning Java 2

 page 143

interface and database classes are likely to provide some business logic like validating input data in an
interface class.

How to work with class diagrams
In chapter 4, you learned how to use a class diagram to show the attributes and operations of a single
class. Now, figure 6-2 shows how to use a class diagram to show the relationships between the five
business classes in an application that allows a customer to enter invoices. Here, all five classes define
business objects.
The lines that connect the classes in a class diagram show the relationships between classes, and the
numbers on each line show the cardinality of each relationship (the numerical relationship). For
example, a Customer object in this diagram can relate to more than one Invoice object while an Invoice
object must relate to just one Customer object. In addition, a line that ends with a diamond symbol
shows that one class can contain one or more objects of another class. This is known as an aggregate
relationship. For example, an Invoice object can contain one or more LineItem objects, and a LineItem
object can contain one or more Item objects.

The class diagram at the top of this figure shows an object-oriented program in the early stages of
development. That’s why it doesn’t show any classes from the user interface or database package. And
that’s why it doesn’t show any of the attributes or operations of the classes.

As your work on the design of a program progresses, though, you add the attributes and operations for
each class in the business objects package. You also add the classes in the user interface and
database packages to the class diagram. When you’re done with that, you convert your class diagrams
into Java code that describes the classes, fields, and methods that you’ve diagrammed. In fact, some of
the software tools that you can use to develop class diagrams can also be used to automatically
generate Java code from your class diagrams. These tools can also update your class diagrams when
you modify the Java code. One such tool is Rational Rose.
If you study the diagram at the top of this figure and if you’re familiar with the components of an invoice,
you should see how the diagram relates to an invoice. In the heading of an invoice, you find customer
data, which includes billing and shipping addresses. So for each Invoice object, there’s one Customer
object, and there’s one or more Address objects. Similarly, in the body of an invoice, you find one line
for each item ordered (called a line item). So each Invoice object has an aggregate relationship with one
or more LineItem objects, which have one-to-one aggregate relationships with Item objects.

Figure 6-2: How to work with class diagrams
A class diagram for five business objects

Cardinality

A class diagram that has attributes and operations

Murach’s Beginning Java 2

 page 144

Description
 A class diagram is a type of UML diagram that shows the relationships between

classes.
 In a class diagram, the lines between the classes indicate the relationships between

the classes, and the cardinality symbols indicate the cardinality (or numerical
relationships). A diamond symbol at the end of a line indicates an aggregate
relationship, which means that one class can contain one or more instances of the
other class.

 In the early phases of analysis and design, you don’t need to show the attributes and
operations of the class. By the final design phase, though, you should include
almost all of the attributes and operations of each class.

A procedure for developing object-orientedprograms
Figure 6-3 shows a nine-step procedure that you can use to develop object-oriented programs. When
you use this procedure, you will find that the process is iterative. In other words, you often have to
repeat one or more of the previous steps as you learn more about the requirements and technical
details of the program.
In the analysis phase, you gather the requirements, start to identify the business objects, and sketch out
the user interface. Often, in fact, it helps to prototype the user interface. In this phase, you will be
communicating with the people who are going to use the program (the end users).

In the design phase, you start by refining the diagrams for the business objects that you identified in
step 2. You also add any other business objects that are necessary to the diagram. When you feel that
these diagrams are complete, you can begin the diagrams for the classes in the user interface package
and the database package.

In the implementation phase, you begin by planning the coding and testing sequence. Then, you can
code and test each class. When you use a tool like Rational Rose to design your classes, you can use
that tool to generate the starting code for the fields, constructors, and methods of the class. Then, you
can code statements within the constructors and methods so they will accomplish the tasks that are
specified in the requirements for the program.
In the deployment phase, you begin by documenting the application. To do that, you can use javadoc
comments to document your classes. In addition, you may need to prepare the final documentation for
the program, which may include class diagrams, and you may need to create a user manual for end
users. Then, in step 9, you deploy the program, which means to make the program available to the end
users.

How to design the classes for a program
As figure 6-3 points out, you identify and design the business classes for an application in steps 2 and
4, and you design the technical classes in step 5. To do those steps, you can follow this general
approach.

To identify the business classes, you look for the nouns of the application. For an invoice application, for
example, these could be customers, addresses, invoices, line items, items, and the like. For a payroll
application, these could be departments, employees, paychecks, W-2 statements, and the like.

Once you’ve identified the business classes, you try to list the primary attributes and operations (verbs)
for each class. The operations can include the set and get methods that let you set and get the
attributes of an object, but they should also include the major processing operations (if any). As the
design starts to take shape, you can create a class diagram that shows the relationships between the
classes as well as the attributes and operations of each class.

Figure 6-3: A procedure for developing object-oriented programs
A procedure for developing object-oriented programs
Analysis

1. Gather the requirements.
2. Identify the business objects.
3. Diagram or prototype the user interface.

Design
4. Design the classes for the business objects.
5. Design the classes for the user interface and the database packages.

Implementation
6. Plan the coding and testing sequence of the classes.

Murach’s Beginning Java 2

 page 145

7. Code and test the classes.
Deployment

8. Document the application.
9. Deploy the application.

Description
 When you use the procedure shown above, you should realize that the process is

iterative. In other words, you will often have to go back to a previous step as you
discover new information in the next step.

 The steps above are an abbreviated version of a process known as the Rational
Unified Process. For more information about this methodology as well as for
information about tools that you can use to analyze and design object-oriented
programs, check out the Rational web site at www.rational.com.

 To prototype a user interface means to quickly develop a working model that
illustrates what the interface is going to look like and how it’s going to work, even
though most (or all) of the functions aren’t actually coded.

 To deploy an application means that you make it available to the people who are
going to use it. For Java programs, this means that you make the class files
available to the end users, and you make sure that they have the right version of the
Java virtual machine on their systems.

Once you have a firm design for the business classes, you can design the technical classes by adding
them to the class diagram. Before you can do that, though, you need to know how to code user
interfaces and database operations, which you’ll learn more about in a moment.

The trouble is that there is no “right” way to design the classes for a business application. For all but the
simplest applications, this means that two designers are likely to come up with different designs for the
same application, and both approaches will work when you develop the classes in Java. To complicate
this problem, the technical classes often conflict with any theory of design so the theory has to be
compromised for those classes.

With that as background, this book isn’t going to try to present a theory or methodology for the design of
object-oriented programs. Instead, it is going to show you examples of how simple object-oriented
programs can be designed and coded. Once you understand how these programs work, you’ll be able
to develop your own techniques for object-oriented design. You’ll also have the background you need
for learning more about object-oriented design.

How to test an object-oriented program
When you develop an application that consists of several classes, you may want to test some classes
before the classes that use them are done. In addition, you may want to use methods before they have
been written. That’s why this topic presents two skills that you can use for these situations.

How to code a main method that tests a class
Figure 6-4 shows how to code a main method that tests the business class that it’s in. That way, you
can test the class by running it and checking the information that’s printed to the console. Then, when
you’re satisfied that the class works the way you want it to, you can remove the main method.

In the example in this figure, the assumption is that the BookOrder class is fully developed so it has
more than one constructor, get and set methods for all of its instance variables, and a toString method.
Then, the main method that’s used for testing this class begins by using one of the constructors to
create a BookOrder object, after which it prints the data in that object. (Remember that when an object
is joined in a string or printed by the System.out.println method, the object’s toString method is implicitly
called.)

After that, the main method uses the set methods of the BookOrder class to change the values stored in
the BookOrder object. This includes using the setBook method to create a new Book object. Last, the
main method uses the get methods of the BookOrder object to display new values that are stored in the
BookOrder object. By checking the values that the main method prints to the console, you should be
able to tell whether or not the BookOrder class works properly.

Figure 6-4: How to code a main method that tests a class
A class that contains a main method that tests the object

Murach’s Beginning Java 2

 page 146

public class BookOrder{

 // body of class

 public static void main(String[] args){

 BookOrder bookOrder1 = new BookOrder();

 System.out.println("CONSTRUCTOR 1: \n" + bookOrder1);

 System.out.println("SET METHODS");

 bookOrder1.setBook(new Book("MBDK"));

 System.out.println("setBook method sets book code to MBDK");

 bookOrder1.setQuantity(3);

 System.out.println("setQuantity method sets quantity to 3");

 bookOrder1.setTotal();

 System.out.println("setTotal method calculates total");

 System.out.println();

 System.out.println("GET METHODS");

 System.out.println("getBook method returns: \n"

 + bookOrder1.getBook());

 System.out.println("getQuantity method returns: "

 + bookOrder1.getQuantity());

 System.out.println("getTotal method returns: "

 + bookOrder1.getTotal());

 }

}

Output of the main method

Murach’s Beginning Java 2

 page 147

Description

 When you want to test a class before the classes that are going to use it are finished,
you can write a main method in the same class. The main method can then test the
other methods of the class by sending typical arguments to them and printing the
results on the console.

 The main method in the example above works because the BookOrder class has set
and get methods for all instance variables and a toString method that overrides the
one in the Object class.

When and how to code method stubs
When you code a class that calls methods in a class that hasn’t been written yet, it sometimes makes
sense to code a quick version of that class with method stubs instead of the complete methods. Then,
your testing can continue. Figure 6-5 shows some examples of how this can work.

If the method stub doesn’t have to do anything for a test run, you can code an empty method as shown
in the first example. If you just want to check whether a method has been run, you can enter code that
prints a message to the console as shown in the second example. And if you need to simulate user
input or create an object, you can code a method stub that initializes variables and uses them to create
an object as shown in the third example. How you code your methods stubs, of course, is limited only by
your ingenuity.

As you create method stubs, though, you must remember that the goal is to get the testing done with a
minimum of extra work. In most cases, you can code simple stubs that require little extra work, even for
methods that are going to require extensive coding later on. But when a method stub starts getting too
elaborate, you’re usually better off coding the entire method the way it’s supposed to work.

Figure 6-5: When and how to code method stubs
Guidelines for coding stubs

 If a method doesn’t have to do anything for the successful completion of a test run,
you can code a method stub that doesn’t contain any statements.

 If you want to see whether a method gets executed during a test run, you can code a
method stub that prints a line to the console.

 If necessary, you can simulate user input by coding test data into a method stub.
Example 1: A method that doesn’t contain any statements

public void selectCustomer(){}

Example 2: A method that displays information

public void selectCustomer(){

 System.out.println("The selectCustomer method has been executed.");

}

Example 3: A method that simulates user input

public void selectCustomer(){

Murach’s Beginning Java 2

 page 148

 JOptionPane.showMessageDialog(null,

 "The Select Customer dialog box is under construction. \n"

 + "For testing purposes, ‘John Smith’ will be the \n"

 + "selected customer.");

 int customerID = 1;

 String customerName = "John Smith";

 customer = new Customer(customerID, customerName);

}

Description
 When you’re writing a class or method that calls another method that hasn’t been

coded yet, it sometimes makes sense to quickly write a method stub for that
method. Then, you can complete the method that you’re working on.

 A method stub can be written at any of the levels shown above. But when the stub
gets too elaborate, it’s often best to write and test the entire method instead of a
stub.

The User Email application
To help you understand how to design an object-oriented program, this topic presents the class diagram
and code for a simple application. By studying this application, you will see how the classes for a
program work together. You’ll also see how the Java code relates to the classes in the class diagram.
That will give you a much better idea of what you need to do when you design and code your own
programs.

The user interface
Figure 6-6 shows the user interface for the User Email application. As you can see, it requires three
user entries: first name, last name, and email address. After these entries are made, the user clicks on
the Add button to add this data to a record at the end of a file of email records. Otherwise, the user can
click on the Exit button at any time to end the application. Although this is about as simple as a real
program can be, it illustrates many of the design and coding considerations of much larger programs.

The class diagram
Figure 6-6 also shows the class diagram for this application. Here, the one business class is the User
class, which has the three attributes that are entered for each object. This class also has three get
methods that make these attributes available to other classes.
In contrast, the UserEmailFrame and UserEmailPanel classes are user interface classes that are used
to build the graphical user interface. First, the UserEmailFrame class defines the frame or window that
the application runs in. It contains a single method that’s executed when the window closes. Then, the
UserEmailPanel class defines the panel that contains the labels, text fields, and buttons of the
application. This panel is displayed within the frame of this application, and its lone method contains the
code that’s executed when the user clicks on any of the buttons in the panel.

Last, the UserIO class contains the methods that provide the input and output (I/O) that lets the
application permanently store objects that are created from the User class. For this application, the
UserIO class contains a single method that saves the User data in a file or database, but it could also
contain methods that retrieve the data for a User object.

From this introduction, you can see that you can’t do an adequate job of designing the technical classes
for an application until you know how they work. That’s why this chapter now introduces the code for all
four of the classes in this figure plus the code for the driver class.

Figure 6-6: The user interface and class diagram for the User Email application
The user interface for the User Email application

Murach’s Beginning Java 2

 page 149

The class diagram for the User Email application

Description

 The UserEmailFrame class defines the JFrame object. This object includes a
windowClosing method that’s executed whenever the frame is closed.

 The UserEmailPanel class defines the JPanel object that’s displayed within the
JFrame. This object includes an actionPerformed method that’s executed whenever
a button on the frame is clicked. If the Add button is clicked, this method creates a
new User object from the User class and calls the addRecord method of the UserIO
class to add the data in the User object to the end of a file.

 The User class defines the User object.
 The UserIO class contains a static addRecord method that adds the data in a User

object to the end of a file.

The code
Figure 6-7 presents the code for all of the classes of the User Email application. As you read through
this code, you should begin to get an idea of what it takes to design and code a Java program. Of
course, you won’t understand most of the code for the user interface and I/O classes, but you should at
least understand the shaded code that shows how the classes interact with each other.

Murach’s Beginning Java 2

 page 150

This figure starts with the code for the UserEmailApp class, which is the driver class. This class, of
course, contains the main method that starts the application. Within the main method, the first statement
creates the UserEmailFrame object. Then, the second statement calls the show method of this object to
display the frame object.

If you look at the code for the UserEmailFrame class, though, you won’t find a show method in it. That’s
because the show method is in the JFrame class that’s inherited by the UserEmailFrame class.

The constructor for the UserEmailFrame class contains the code that defines the frame object. Here,
the first seven statements set the title and size of the frame and center the frame on the user’s screen.
Then, the constructor contains the code that’s executed when the frame is closed. The last three
statements of this class get the content pane of the frame, create a UserEmailPanel object, and add
that object to the pane.

In the code for the UserEmailPanel class, you can see that this class extends the JPanel class and
implements the ActionListener interface. It also has instance variables for the three labels, the three text
boxes, and the two buttons that make up the user interface. These use the JLabel, JTextField, and
JButton classes that Java provides.

Figure 6-7: The code for the User Email application (part 1 of 3)
The code for the UserEmailApp class

import javax.swing.*;

public class UserEmailApp{

 public static void main(String[] args){

 UserEmailFrame frame = new UserEmailFrame();

 frame.show();

 }

}

The code for the UserEmailFrame class

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class UserEmailFrame extends JFrame{

 public UserEmailFrame(){

 setTitle("User Email");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 300;

 int height = 170;

Murach’s Beginning Java 2

 page 151

 setBounds((d.width - width)/2, (d.height-height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 UserEmailPanel panel = new UserEmailPanel();

 contentPane.add(panel);

 }

}

The UserEmailPanel class

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

public class UserEmailPanel extends JPanel implements ActionListener{

 private JLabel firstNameLabel, lastNameLabel, emailLabel;

 private JTextField firstNameTextField, lastNameTextField, emailTextField;

 private JButton addButton, exitButton;

The constructor for the UserEmailPanel class creates two panels. The first one, named textFieldPanel,
contains the three labels and three text fields. The second one, named buttonPanel, contains the two
buttons. Then, the constructor adds these panels to the UserEmailPanel.

Within the constructor for the UserEmailPanel class, you can see that ActionListeners are created for
the Add and Exit buttons of the interface. This means that the actionPerformed method will be executed
when the user clicks on either button. As a result, the coding for this method determines how the user
interface works.

Within the actionPerformed method, you can see that the program exits if the user clicked on the Exit
button. However, if the user clicked on the Add button, the code creates a User object from the data that
has been entered by the user. Then, it calls the static addRecord method of the UserIO class to add the
data in the User object to a file or database. After that, it displays a message dialog box that says that
the record has been added. It also sets the text fields in the interface to empty strings.

Murach’s Beginning Java 2

 page 152

Note here that you don’t need to know how the code in the User or UserIO classes works as you code
the actionPerformed method. You just need to know what arguments the User class and addRecord
methods require. That’s one of the benefits of encapsulation. In fact, when you use a method of the
UserIO class, you don’t even need to know whether the method uses a file or a database.

Figure 6-7: The code for the User Email application (part 2 of 3)
The UserEmailPanel class (continued)

 public UserEmailPanel(){

 JPanel textFieldPanel = new JPanel();

 textFieldPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 firstNameLabel = new JLabel("First name:");

 firstNameTextField = new JTextField(15);

 lastNameLabel = new JLabel("Last name:");

 lastNameTextField = new JTextField(15);

 emailLabel = new JLabel("Email address:");

 emailTextField = new JTextField(15);

 textFieldPanel.add(firstNameLabel);

 textFieldPanel.add(firstNameTextField);

 textFieldPanel.add(lastNameLabel);

 textFieldPanel.add(lastNameTextField);

 textFieldPanel.add(emailLabel);

 textFieldPanel.add(emailTextField);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 addButton = new JButton("Add");

 addButton.addActionListener(this);

 exitButton = new JButton("Exit");

 exitButton.addActionListener(this);

 buttonPanel.add(addButton);

 buttonPanel.add(exitButton);

 setLayout(new BorderLayout());

 add(textFieldPanel, BorderLayout.CENTER);

Murach’s Beginning Java 2

 page 153

 add(buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source == exitButton)

 System.exit(0);

 else if (source == addButton){

 User newUser = new User(

 firstNameTextField.getText(),

 lastNameTextField.getText(),

 emailTextField.getText());

 UserIO.addRecord(newUser);

 JOptionPane.showMessageDialog(this,

 "Your email address has been added to the file.");

 firstNameTextField.setText("");

 lastNameTextField.setText("");

 emailTextField.setText("");

 }

 }

 catch(IOException ioe){

 JOptionPane.showMessageDialog(this, ioe);

 }

 }

}

When you look at the code for the User and UserIO classes, you can see that they’re quite simple. The
User class creates a User object with three fields and provides get methods that make that data
available to other classes. The UserIO class provides one static method that uses those get methods to
add that data to a record at the end of file named UserEmail.txt that’s in the current directory.

Remember that the point of going through this code is to give you some idea of how the classes in an
application are related. That way, you’ll have a better idea of what you have to do when you design a
program. So you may want to take a few minutes now to review the relationships.
Keep in mind, though, that you aren’t expected to understand the coding details because that’s what
you’ll learn in the rest of this book. In section 3, you’ll learn how to develop graphical user interfaces. In

Murach’s Beginning Java 2

 page 154

section 4, you’ll learn how to work with file input and output. And in chapter 19, you’ll learn how to work
with databases.

Figure 6-7:The code for the User Email application (part 3 of 3)
The code for the User class

public class User{

 private String firstName;

 private String lastName;

 private String emailAddress;

 public User(String first, String last, String email){

 firstName = first;

 lastName = last;

 emailAddress = email;

 }

 public String getFirstName(){ return firstName; }

 public String getLastName(){ return lastName; }

 public String getEmailAddress(){ return emailAddress; }

}

The code for the UserIO class

import java.io.*;

public class UserIO{

 public static void addRecord(User user) throws IOException{

 PrintWriter out = new PrintWriter(

 new FileWriter("UserEmail.txt", true));

 out.println(user.getEmailAddress() + " ("

 + user.getFirstName() + " "

 + user.getLastName() + ")");

 out.close();

 }

Murach’s Beginning Java 2

 page 155

}

The User Email application
To help you understand how to design an object-oriented program, this topic presents the class diagram
and code for a simple application. By studying this application, you will see how the classes for a
program work together. You’ll also see how the Java code relates to the classes in the class diagram.
That will give you a much better idea of what you need to do when you design and code your own
programs.

The user interface
Figure 6-6 shows the user interface for the User Email application. As you can see, it requires three
user entries: first name, last name, and email address. After these entries are made, the user clicks on
the Add button to add this data to a record at the end of a file of email records. Otherwise, the user can
click on the Exit button at any time to end the application. Although this is about as simple as a real
program can be, it illustrates many of the design and coding considerations of much larger programs.

The class diagram
Figure 6-6 also shows the class diagram for this application. Here, the one business class is the User
class, which has the three attributes that are entered for each object. This class also has three get
methods that make these attributes available to other classes.
In contrast, the UserEmailFrame and UserEmailPanel classes are user interface classes that are used
to build the graphical user interface. First, the UserEmailFrame class defines the frame or window that
the application runs in. It contains a single method that’s executed when the window closes. Then, the
UserEmailPanel class defines the panel that contains the labels, text fields, and buttons of the
application. This panel is displayed within the frame of this application, and its lone method contains the
code that’s executed when the user clicks on any of the buttons in the panel.

Last, the UserIO class contains the methods that provide the input and output (I/O) that lets the
application permanently store objects that are created from the User class. For this application, the
UserIO class contains a single method that saves the User data in a file or database, but it could also
contain methods that retrieve the data for a User object.

From this introduction, you can see that you can’t do an adequate job of designing the technical classes
for an application until you know how they work. That’s why this chapter now introduces the code for all
four of the classes in this figure plus the code for the driver class.

Figure 6-6: The user interface and class diagram for the User Email application
The user interface for the User Email application

The class diagram for the User Email application

Murach’s Beginning Java 2

 page 156

Description

 The UserEmailFrame class defines the JFrame object. This object includes a
windowClosing method that’s executed whenever the frame is closed.

 The UserEmailPanel class defines the JPanel object that’s displayed within the
JFrame. This object includes an actionPerformed method that’s executed whenever
a button on the frame is clicked. If the Add button is clicked, this method creates a
new User object from the User class and calls the addRecord method of the UserIO
class to add the data in the User object to the end of a file.

 The User class defines the User object.
 The UserIO class contains a static addRecord method that adds the data in a User

object to the end of a file.

The code
Figure 6-7 presents the code for all of the classes of the User Email application. As you read through
this code, you should begin to get an idea of what it takes to design and code a Java program. Of
course, you won’t understand most of the code for the user interface and I/O classes, but you should at
least understand the shaded code that shows how the classes interact with each other.

This figure starts with the code for the UserEmailApp class, which is the driver class. This class, of
course, contains the main method that starts the application. Within the main method, the first statement
creates the UserEmailFrame object. Then, the second statement calls the show method of this object to
display the frame object.

If you look at the code for the UserEmailFrame class, though, you won’t find a show method in it. That’s
because the show method is in the JFrame class that’s inherited by the UserEmailFrame class.

The constructor for the UserEmailFrame class contains the code that defines the frame object. Here,
the first seven statements set the title and size of the frame and center the frame on the user’s screen.
Then, the constructor contains the code that’s executed when the frame is closed. The last three
statements of this class get the content pane of the frame, create a UserEmailPanel object, and add
that object to the pane.

In the code for the UserEmailPanel class, you can see that this class extends the JPanel class and
implements the ActionListener interface. It also has instance variables for the three labels, the three text

Murach’s Beginning Java 2

 page 157

boxes, and the two buttons that make up the user interface. These use the JLabel, JTextField, and
JButton classes that Java provides.

Figure 6-7: The code for the User Email application (part 1 of 3)
The code for the UserEmailApp class

import javax.swing.*;

public class UserEmailApp{

 public static void main(String[] args){

 UserEmailFrame frame = new UserEmailFrame();

 frame.show();

 }

}

The code for the UserEmailFrame class

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class UserEmailFrame extends JFrame{

 public UserEmailFrame(){

 setTitle("User Email");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 300;

 int height = 170;

 setBounds((d.width - width)/2, (d.height-height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

Murach’s Beginning Java 2

 page 158

 UserEmailPanel panel = new UserEmailPanel();

 contentPane.add(panel);

 }

}

The UserEmailPanel class

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

public class UserEmailPanel extends JPanel implements ActionListener{

 private JLabel firstNameLabel, lastNameLabel, emailLabel;

 private JTextField firstNameTextField, lastNameTextField, emailTextField;

 private JButton addButton, exitButton;

The constructor for the UserEmailPanel class creates two panels. The first one, named textFieldPanel,
contains the three labels and three text fields. The second one, named buttonPanel, contains the two
buttons. Then, the constructor adds these panels to the UserEmailPanel.

Within the constructor for the UserEmailPanel class, you can see that ActionListeners are created for
the Add and Exit buttons of the interface. This means that the actionPerformed method will be executed
when the user clicks on either button. As a result, the coding for this method determines how the user
interface works.

Within the actionPerformed method, you can see that the program exits if the user clicked on the Exit
button. However, if the user clicked on the Add button, the code creates a User object from the data that
has been entered by the user. Then, it calls the static addRecord method of the UserIO class to add the
data in the User object to a file or database. After that, it displays a message dialog box that says that
the record has been added. It also sets the text fields in the interface to empty strings.

Note here that you don’t need to know how the code in the User or UserIO classes works as you code
the actionPerformed method. You just need to know what arguments the User class and addRecord
methods require. That’s one of the benefits of encapsulation. In fact, when you use a method of the
UserIO class, you don’t even need to know whether the method uses a file or a database.

Figure 6-7: The code for the User Email application (part 2 of 3)
The UserEmailPanel class (continued)

 public UserEmailPanel(){

 JPanel textFieldPanel = new JPanel();

 textFieldPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 firstNameLabel = new JLabel("First name:");

 firstNameTextField = new JTextField(15);

Murach’s Beginning Java 2

 page 159

 lastNameLabel = new JLabel("Last name:");

 lastNameTextField = new JTextField(15);

 emailLabel = new JLabel("Email address:");

 emailTextField = new JTextField(15);

 textFieldPanel.add(firstNameLabel);

 textFieldPanel.add(firstNameTextField);

 textFieldPanel.add(lastNameLabel);

 textFieldPanel.add(lastNameTextField);

 textFieldPanel.add(emailLabel);

 textFieldPanel.add(emailTextField);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 addButton = new JButton("Add");

 addButton.addActionListener(this);

 exitButton = new JButton("Exit");

 exitButton.addActionListener(this);

 buttonPanel.add(addButton);

 buttonPanel.add(exitButton);

 setLayout(new BorderLayout());

 add(textFieldPanel, BorderLayout.CENTER);

 add(buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source == exitButton)

 System.exit(0);

 else if (source == addButton){

Murach’s Beginning Java 2

 page 160

 User newUser = new User(

 firstNameTextField.getText(),

 lastNameTextField.getText(),

 emailTextField.getText());

 UserIO.addRecord(newUser);

 JOptionPane.showMessageDialog(this,

 "Your email address has been added to the file.");

 firstNameTextField.setText("");

 lastNameTextField.setText("");

 emailTextField.setText("");

 }

 }

 catch(IOException ioe){

 JOptionPane.showMessageDialog(this, ioe);

 }

 }

}

When you look at the code for the User and UserIO classes, you can see that they’re quite simple. The
User class creates a User object with three fields and provides get methods that make that data
available to other classes. The UserIO class provides one static method that uses those get methods to
add that data to a record at the end of file named UserEmail.txt that’s in the current directory.

Remember that the point of going through this code is to give you some idea of how the classes in an
application are related. That way, you’ll have a better idea of what you have to do when you design a
program. So you may want to take a few minutes now to review the relationships.
Keep in mind, though, that you aren’t expected to understand the coding details because that’s what
you’ll learn in the rest of this book. In section 3, you’ll learn how to develop graphical user interfaces. In
section 4, you’ll learn how to work with file input and output. And in chapter 19, you’ll learn how to work
with databases.

Figure 6-7:The code for the User Email application (part 3 of 3)
The code for the User class

public class User{

 private String firstName;

 private String lastName;

 private String emailAddress;

 public User(String first, String last, String email){

Murach’s Beginning Java 2

 page 161

 firstName = first;

 lastName = last;

 emailAddress = email;

 }

 public String getFirstName(){ return firstName; }

 public String getLastName(){ return lastName; }

 public String getEmailAddress(){ return emailAddress; }

}

The code for the UserIO class

import java.io.*;

public class UserIO{

 public static void addRecord(User user) throws IOException{

 PrintWriter out = new PrintWriter(

 new FileWriter("UserEmail.txt", true));

 out.println(user.getEmailAddress() + " ("

 + user.getFirstName() + " "

 + user.getLastName() + ")");

 out.close();

 }

}

An introduction to the Book Maintenance application
This topic introduces the Book Maintenance application that you’ll learn how to code later in this book. It
lets a user maintain the records in a file or database that contains the data for Book objects. Although
the user interface and database classes for this application are more complex than those for the User
Email application, the design and coding concepts are the same.

The user interface
Figure 6-8 shows the graphical user interface for this application. To scroll through the records in the file
or database, the user can click on the First, Prev (Previous), Next, and Last buttons. To delete the
record that’s shown, the user can click on the Delete button. To update a record, the user can change
the data, which enables the Update button, and click on that button. And to add a record, the user can
click on the Add button, enter the data for a new record, and click on the Update button.

Murach’s Beginning Java 2

 page 162

The class diagram

This figure also shows the class diagram for this application. Here again, there’s one business class,
two user interface classes, and one file or database class. This time, though, a database class is
assumed, and it provides methods for all of the operations that may need to be performed.

If you look at the arguments for the methods in the BookDB class, you can see that the first seven don’t
require any. For instance, the moveNext method moves to the next record in the database. In contrast,
the addRecord and updateRecord methods require Book objects as arguments. They use the data in
those objects as they add new records or update old records. Finally, the deleteRecord and findOnCode
methods require book codes as arguments. Then, they delete or find the records indicated by the book
codes.
With this as background, you’re ready to learn how to create a user interface by reading section 3. In
particular, chapter 12 shows how to create the GUI for this application. As you read, you should keep in
mind that you don’t need to know how the methods in the file or database class work. You just need to
know what their names are, what arguments they require, and what they do.
Then, in chapter 18, you’ll learn how to create a class named BookIO that stores the data for this
application in a random-access file. And in chapter 19, you’ll learn how to create a class named BookDB
that uses a database to store the data for this application. In terms of method names, the only difference
in these classes is that the BookDB class has a connect method. As a result, it’s easy to change this
application from a file to a database. Within the methods, though, the coding in these classes is
significantly different.

Figure 6-8: The Book Maintenance application
The user interface for the Book Maintenance application

The class diagram for the Book Maintenance application

Murach’s Beginning Java 2

 page 163

Perspective
The goal of this chapter has been to give you a solid idea of how object-oriented applications are
designed and tested. Because you need to see how the code for an object-oriented application works
before you’re ready to design an object-oriented program, this chapter has also presented the code for
a simple application. With that as background, you should now be ready to learn how to code the user
interface classes and database classes that your applications require.

Summary
 The Unified Modeling Language (UML) is a set of graphical notations for describing

software that has become the industry standard.
 The Rational Unified Process is an object-oriented software design methodology

developed by the Rational Software Corporation.
 The classes in a Java application are typically divided into three packages: a user

interface package, a business objects package, and a database package.
 To design the classes of an object-oriented program, you can use a UML diagram

known as a class diagram. A class diagram shows the relationships between the
classes in the application.

 When you design an object-oriented program, you usually go through four phases:
analysis, design, implementation, and deployment.

 To design the classes in a program, you start by identifying and designing the business
classes. Then, you add the user interface and database classes to the design.

 To test a class that defines an object, you can code a main method that tests all of the
constructors and methods of the class. To test related methods, you can code method
stubs that provide incomplete code that’s used for testing purposes only.

Murach’s Beginning Java 2

 page 164

 Within the user interface classes of an application, a frame displays the window for the
application while a panel within the frame typically holds the controls of the application
such as labels, text fields, buttons, and so on.

 The database classes of an application can store and retrieve data from a file or a
database depending on the type of application.

Terms
Unified Modeling Language (UML) class diagram

Rational Unified Process cardinality

user interface package aggregate relationship

business objects package line item

database package iterative

business object prototype

business class end user

problem-domain class deploy

logical class method stub

technical class frame

persistence panel

Objectives
 Describe the three packages of a typical object-oriented program.
 Given a class diagram for an application, describe the relationships between the classes

that are shown.
 Describe a general procedure for designing the classes of an application.
 Use a main method to test a class, or use a method stub to temporarily implement a

method.
 Describe the primary functions of the five classes of the User Email application that was

presented in this chapter.
 Given the specifications for an application that requires one business object, a user

interface, and database operations that save and retrieve the business object’s data,
use a class diagram to design its classes.

Exercise 6-1: Test the BookOrder class

This exercise guides you through the process of testing the BookOrder class by itself.
1. Start your text editor and open the BookOrder class that’s in the c:\java\ch06\order

directory. Note that the Book class is also in this directory.
2. Code a main method within the BookOrder class that tests just the constructor of this

class by using code that’s similar to the first two lines in the main method in figure 6-
4. Note, however, that you will need to pass arguments to the constructor.

3. Add code to the main method that tests the methods in the BookOrder class.
4. When you’re done experimenting, close the class.

Exercise 6-2: Test the User Email application

This exercise guides you through the process of running the User Email application so you understand
how it works.

1. Start your text editor and open the five classes that are stored in the
c:\java\ch06\useremail directory. Then, compile all of them by compiling the
UserEmailApp class.

2. Run the UserEmailApp class and enter two or more names and email addresses.
Then, use a text editor to view the text file that’s created by this application. This file
should be named “UserEmail.txt” and it should be stored in the
c:\java\ch06\useremail directory. When you open this file, you should see the user
email addresses that you entered.

3. If you’re going to do exercise 6-3, leave all of the classes open. Otherwise, close all
of the open classes.

Murach’s Beginning Java 2

 page 165

Exercise 6-3: Write an addRecord method stub

Suppose you want to save the data for the User Email application in a database instead of file. To do
that, you want to use a static method named addRecord in a new class named UserDB. Although you
haven’t even learned how to do database operations yet, you can simulate this change by writing the
UserDB class with a method stub for the addRecord method. Then, you can figure out how to write the
actual method later on.

1. Start a new class named UserDB that is going to contain one static method named
addRecord. The quickest way to do that is to save the UserIO class as UserDB.
Then, change UserIO to UserDB in the new class, delete the throws clause, and
delete all of the statements in the addRecord method.

2. Write a method stub for the addRecord method and compile the UserDB class. The
stub can simply display a line on the console that says the data has been added to
the database.

3. Change the code in the UserEmailPanel class so it uses the addRecord method in
the UserDB class instead of the UserIO class. Be sure to delete the try/catch
statement because the new addRecord method won’t throw an IOException. Then,
compile this class.

4. Run the UserEmailApp class to see how the method stub works.
5. Enhance the addRecord method stub so it receives the User object and displays the

data for it. Then, compile and test again.
6. When you’re through experimenting, close all of the open classes.

Section II: More Java essentials
This section consists of four chapters that show you how to use specific types of Java features. Chapter
7 presents all of the operators that Java provides plus the skills you need for working with dates.
Chapter 8 presents all of the control statements that Java provides. Chapter 9 shows you how to work
with arrays, strings, and vectors. And chapter 10 gives you more information about handling exceptions
and debugging.
Since each chapter in this section is treated as an independent unit, you don’t have to read these
chapters in sequence. If, for example, you want to learn more about handling exceptions, you can read
chapter 10 next. Or, if you want to learn about the other Java control statements, you can read chapter
8 next. We do, however, recommend that you read chapter 8 before you read chapter 9 because
chapter 9 uses for loops, which are presented in chapter 8.
Remember, too, that you don’t have to read the chapters in this section right after you read the chapters
in section 1. If you prefer, you can skip to section 3 to learn how to develop a graphical user interface or
to section 4 to learn how to work with file input and output.

Chapter List
Chapter 7: How to work with operators and dates
Chapter 8: How to code control statements
Chapter 9: How to work with arrays, strings, and vectors
Chapter10: How to handle exceptions and debug code

Chapter 7: How to work with operators and dates
In chapter 2, you learned how to use operators in arithmetic and conditional expressions. You also
learned how to use the eight primitive data types and strings. Now, in this chapter, you’ll learn more
about operators. You’ll also learn how to work with dates, which are important to most business
programs.

Operators, order of precedence, and associativity
This topic begins by reviewing the operators that were presented in chapter 2. Then, it presents the rest
of the Java operators and explains how Java evaluates these operators when they’re used in
expressions.

Murach’s Beginning Java 2

 page 166

A review of operators
In chapter 2, you learned how to work with the operators presented in figure 7-1. In particular, you
learned how to use arithmetic operators to code arithmetic expressions that performed calculations on
the numeric data types. You learned how to cast one data type to another. You learned how to use
assignment operators to assign values to variables. And you learned how to use the relational and
logical operators to code conditional expressions that were used in if statements and while loops.
Along the way, you learned the difference between binary and unary operators. In short, binary
operators work on two operands while a unary operator works on one operand. For example, since the
subtraction operator (-) works on two operands by subtracting one number from another, it’s a binary
operator. In contrast, since the negative sign operator (-) works on a single operand by reversing the
value of the number to its right, it’s a unary operator.

Figure 7-1: A review of operators
Arithmetic operators

The cast operator

Assignment operators

Relational operators

Murach’s Beginning Java 2

 page 167

Logical operators

How to work with the incrementand decrement operators
Figure 7-2 shows how to work with the increment and decrement operators. In particular, it shows how
to use the prefix and postfix forms of the increment and decrement operators. Although all of the
examples in this figure use the increment operator, the same concepts apply to the decrement operator.

When working with the increment and decrement operators, you should realize that the prefix and
postfix forms work the same unless they’re used in an expression. For instance, in the first example, if
the postfix form were used instead of the prefix form, the value displayed would still be 11. However, the
next two examples show how you can use the prefix and postfix forms to control when the operand is
updated.

The second example shows how to use the prefix form of the increment operator in an expression. In
this example, x is initialized to 10. Then, Java increments the operand before it executes the println
method. As a result, both println methods display 11.

The third example is the same as the second example, but it uses the postfix form of the increment
operator. In this example, Java executes the println method before it increments the operand. As a
result, the first println method displays 10 while the second println method displays 11.

Figure 7-2: How to work with the increment and decrement operators
Two forms of the increment operator

Examples

Example 1: The prefix form when it’s not in an expression

int x = 10;

++x;

System.out.println(x); // displays 11

Example 2: The prefix form used in an expression that prints a number

Murach’s Beginning Java 2

 page 168

int x = 10;

System.out.println(++x); // displays 11

System.out.println(x); // displays 11

Example 3: The postfix form used in an expression that prints a number

int x = 10;

System.out.println(x++); // displays 10

System.out.println(x); // displays 11

Description
 • The prefix and postfix forms of the increment and decrement operators work the

same unless they are in an expression. In an expression, though, the prefix form is
evaluated before the expression is used; the postfix form is evaluated after the
expression is used.

How to work with the shortcut if/else operator
In chapter 2, you learned how to code if/else statements. Now, figure 7-3 shows you how to use the
shortcut if/else operator to code a simple if/else statement. When you use this operator, the first
operand must be a conditional expression that evaluates to true or false. If it evaluates to true, the
second operand is returned. Otherwise, the third operand is returned.
Since the shortcut if/else operator uses three operands, it’s often referred to as the ternary operator.
And since the shortcut if/else operator begins with a conditional expression, it’s sometimes called the
conditional ternary operator.

The examples in this figure show how the shortcut if/else operator can be used to duplicate the logic of
a standard if/else statement. Note, however, that the standard if/else statement is easier to read and
maintain, even though it requires five lines of code. That’s why you should use it for normal if/else logic.
In contrast, the shortcut if/else operator is occasionally useful when you need to use if/else logic within
an expression as illustrated by the third example.

How to work with the instanceof operator
This figure also shows how to use the instanceof operator in a conditional expression. To use this
operator, the first operand must be an object, and the second operand must be a class. If the object is
an instance of the class or any of its subclasses, it returns a true value. Otherwise, it returns a false
value.

The example shows how to use the instanceof operator within the equals method of the BookOrder
class. Here, the equals method contains a parameter that accepts any object. Then, the first statement
uses an if statement to check whether the object that has been passed to the method is an instance of
the BookOrder class or any of its subclasses. If so, the expression returns a true value and the
statements within the if block are executed. Otherwise, the method returns a false value.

Figure 7-3: How to work with the shortcut if/else and instanceof operators
The shortcut if/else operator

Expression
operand1 ? operand2 : operand3
Description

If operand1 is true, return operand2. Otherwise, return operand3.

Example 1: A regular if statement

double discountPercent = 0;

if (orderTotal >= 100)

 discountPercent = .2;

Murach’s Beginning Java 2

 page 169

else

 discountPercent = .1;

Example 2: The same statement using the shortcut if/else operator

double discountPercent = (orderTotal >= 100) ? .2 : .1;

Example 3: The shortcut if/else operator within an expression

double discountAmount = orderTotal * ((orderTotal >= 100) ? .2 : .1);

The instanceof operator
Expression
operand1 instanceof operand2
Description
If operand1 (an object) is an instance of operand2 (a class), return a true value. Otherwise, return a
false value. An object is considered an instance of a class if it has been created from a class or any
subclass of that class.
Example

public boolean equals(Object object){

 if (object instanceof BookOrder){

 // this if block is executed when the object
 // is an instance of the BookOrder class
 }
 return false;
}

How to work with the bitwise and shift operators
For the sake of completeness, figure 7-4 summarizes all of the operators that you can use to work with
the bits in the binary numbers that are stored in Java’s four integer data types: byte, short, int, or long.
Although you may never need to work with bits, it’s worth taking a moment to familiarize yourself with
these operators in case you ever do need them.
This figure starts by showing the formula that’s used to convert binary values to decimal values. This
shows how each bit can hold a one or a zero and how Java calculates the decimal values from the bits.
Here, the first four examples use four bits while the fifth example uses eight bits, or one byte.
The first four operators in this figure are known as the bitwise operators. Of these, the first three
operators are binary operators that compare two binary values and return a new binary value. The first
is the and operator; the second is the or operator; and the third is the xor operator, which can be
referred to as the exclusive or operator. The fourth bitwise operator is the not operator, which is a unary
operator that reverses the values of the bits in a single operand.
The next three operators in this figure are known as the shift operators. They shift the bits left or right by
the specified number of bits. However, there is a subtle difference between the shift right and shift right
unsigned operators. The shift right operator fills in the bits on the left with the sign bit, which is 1 for a
negative number or 0 for a positive number. The shift right unsigned operator fills in the bits on the left
with zeros. For positive numbers, of course, these operators work the same.

The bitwise assignment operators work similarly to the assignment operators you reviewed earlier in this
chapter. Although they don’t provide any additional functionality, they do provide a shorter way to code
an expression for comparing bit values.

Figure 7-4: How to work with the bitwise and shift operators
How binary works

Murach’s Beginning Java 2

 page 170

Bitwise operators and shift operators

Examples

For each example: byte x = 14; // binary value = 1110
 byte y = 6; // binary value = 0110

Bitwise assignment operators

For each example: byte c = 12; // binary value: 1100

 9 (literal) // binary value: 1001

Murach’s Beginning Java 2

 page 171

How to work with order of precedence and associativity
Figure 7-5 summarizes the order of precedence for the operators, and it describes how Java uses the
order of precedence when it evaluates expressions that contain the operators summarized in this figure.
Most of the time, Java follows rules that you’re probably already familiar with. For example,
multiplication is performed before addition. However, you can always use parentheses to override the
order of precedence. As a result, you don’t need to memorize the order of precedence. When in doubt,
use parentheses.

This figure lists the operators from the greatest to least precedence. In other words, the first operator to
be executed in any expression is the increment or decrement operator; followed by the positive sign,
negative sign, the not operator, or the bitwise not operator; followed by the casting operator; and so on.
As you would expect, this list shows that multiplication and division are performed before addition and
subtraction.

But what if you have both a multiplication and division operator in an expression? Since they both have
the same precedence, you need to know which operator will be executed first. To determine this, you
use the rules of associativity. Associativity tells you the direction to perform the operations. For instance,
if you look at the associativity of the multiplication and division operators, you see that its associativity is
from left to right. This means that whatever sign Java finds first when reading an equation from left to
right will be performed first. Most of the time, the associativity for binary operators is from left to right
while the associativity for unary operators is from right to left.

When you use parentheses to control the order of precedence, Java works from the expressions in the
innermost sets of parentheses to the expressions in the outer sets of parentheses. When all the
expressions in parentheses have been evaluated, the evaluation continues using the order of
precedence and associativity rules.

The examples show how to use parentheses to control the order of evaluation. The first and second
examples show how to use parentheses to override the order of precedence. The third and fourth
examples show how to use parentheses to override the rules of associativity. And the fifth and sixth
examples show how to use multiple sets of parentheses to clarify an expression. When you apply the
rules of associativity to this expression, the division will be evaluated before the multiplication. As a
result, both expressions will yield the same value. However, the parentheses in the sixth example make
the order of evaluation absolutely clear.

The last example in this figure shows the Java expression for the formula for computing the monthly
payment for a loan based on the loan amount, monthly interest rate, and number of months. Here,
parentheses are used only when necessary. Otherwise, this expression relies on the order of
precedence and the rules of associativity. Note, however, that more sets of parentheses could be used
to further clarify the order of evaluation.

Figure 7-5: How to work with order of precedence and associativity
Order of precedence

Murach’s Beginning Java 2

 page 172

How to use parentheses to control the order of evaluation

10 + 10 * 2 // result is 30

(10 + 10) * 2 // result is 40

10 / 10 * 2 // result is 2

10 / (10 * 2) // result is 0.5

(salesThisYTD – salesLastYTD) / salesLastYTD * 100;

((salesThisYTD – salesLastYTD) / salesLastYTD) * 100;

A formula that computes the monthly payment of a loan

The arithmetic expression for the formula

double monthlyPayment = loanAmount * monthlyInterestRate/

 (1 - 1/Math.pow(1+monthlyInterestRate, months));

Description
 You can use parentheses to control the order in which Java performs arithmetic

operations. Then, Java works from the inner sets of parentheses outward.
 • Java uses the order of precedence when evaluating expressions. When two or

more operations have equal precedence, Java uses the rules of associativity to
evaluate the expression from left to right or right to left.

Murach’s Beginning Java 2

 page 173

How to work with dates and times
Although Java doesn’t have a primitive data type for working with dates and times, it does have several
classes that you can use to work with dates and times. In this topic, you’ll learn how to create objects
that store dates and times, how to manipulate the values stored in those objects, and how to format
those objects.

How to use the GregorianCalendar class to set dates and times
When you create dates and times, you usually use the GregorianCalendar class as shown in figure 7-6.
Although you might think that a class named after a calendar would work mainly with dates, this class
actually represents a point in time down to the millisecond.

This figure starts by showing four constructors for the GregorianCalendar class. The first constructor
creates an object that contains the current date and time. The next three constructors create objects
that contain values for a date and time that you specify. For instance, the second constructor creates a
date and time using integer values for year, month, and day. In this case, Java sets the hours, minutes,
and seconds to 00. However, you can use the third or fourth constructors to set these values.

The first example shows how to get the current date and time. When you call this constructor, it sets the
GregorianCalendar object equal to the current date and time. Java gets this date from your computer’s
internal clock. As a result, the date and time should be set correctly for your time zone.

The five examples in the next group show how to set the values for dates and times. Although setting
the year and the day works as you would expect, setting the month isn’t as intuitive. To code a month,
you enter an integer between 0 to 11 where 0 equals January and 11 equals December. As a result, the
first two examples set the date to January, 30, 1998, while the next three examples set the date to
December 31, 2005.

When setting times, any values that you don’t set will default to 0. In addition, to set the hour, you must
enter an integer between 0 and 23 where 0 is equal to midnight and 23 is equal to 11 PM. As a result,
the first three examples in the second group set the time to midnight (12:00:00 AM). Here, the first and
third examples default to midnight while the second example explicitly sets the time to midnight. The last
two examples in this group set the time to 7:30:00 AM and 7:30:30 PM.

In practice, you usually pass variables to the GregorianCalendar constructor when you want to create a
new object. This is illustrated by the last example in this figure. Here, year, month, and day variables are
passed to the constructor.

Figure 7-6: How to use the GregorianCalendar class to set dates and times
The GregorianCalendar class

java.util.GregorianCalendar;

Constructors for the GregorianCalendar class

GregorianCalendar();

GregorianCalendar(intYear, intMonth, intDay);

GregorianCalendar(intYear, intMonth, intDay,

 intHour, intMinute);

GregorianCalendar(intYear, intMonth, intDay,

 intHour, intMinute, intSecond);

Examples
How to get the current date

GregorianCalendar now = new GregorianCalendar();

How to set a date with literals

Murach’s Beginning Java 2

 page 174

GregorianCalendar startDate = new GregorianCalendar(1998,0,30);

GregorianCalendar startDate = new GregorianCalendar(1998,0,30,0,0,0);

GregorianCalendar endDate = new GregorianCalendar(2005,11,31);

GregorianCalendar endDate = new GregorianCalendar(2005,11,31,7,30);

GregorianCalendar endDate = new GregorianCalendar(2005,11,31,19,30,30);

How to set a date with variables

GregorianCalendar birthDate =

 new GregorianCalendar(birthYear, birthMonth, birthDay);

Description
 Year must be a four-digit integer.
 Month must be an integer from 0-11 with 0 being January and 11 being December.
 Day must be an integer from 1-31.
 Hour must be an integer from 0-23, with 0 being 12am (midnight) and 23 being 11pm.
 Minute and second must be integers from 0-59.
 Any time values that aren’t set will default to 0.

How to use the Calendar and GregorianCalendar fields and methods

The GregorianCalendar class is a subclass of the Calendar class. As a result, it inherits all public and
protected fields and methods from the Calendar class. Then, the GregorianCalendar class overrides
some of the methods of the Calendar class.
Once you create an object from the GregorianCalendar class, you can use the fields and methods
shown in figure 7-7 to work with the object. You can also find other fields and methods in the API
documentation for these classes.

This figure starts by summarizing the fields and methods that are available for working with
GregorianCalendar objects. Then, the examples show how to use these fields and methods. Although
these examples show how to work with the date portion of a GregorianCalendar object, you can use the
same skills to work with the time portion.

The first set of examples shows how to use the set, add, and roll methods to change the value that’s
stored in a GregorianCalendar object. The first two examples show how you can use the same
arguments for the set method that you used for the constructors of the GregorianCalendar class. In
addition, you can use fields from the Calendar class, such as JANUARY and FEBRUARY, to set the
month. The rest of the examples show the difference between the add and roll methods. When you use
the add method to add 14 months to the date, the year is also increased. But when you use the roll
method to roll the current month forward by 14 months, the year isn’t affected. As a result, it only
changes the month from August to October.

When you manipulate dates and times, you need to make sure to supply values that make sense. For
example, since there are only 30 days in November, it doesn’t make sense to use 31 as the day
argument. If you do that, Java sets the date to December 1.

The second set of examples shows how to use the get method to return various integer values that are
stored in the GregorianCalendar object. Here, the year is 2000, the month is 1 (February), the day is 4,
the day of the week is 6 (Friday), and the day of the year is 35 (the 31 days of January plus the 4 days
of February).

Note that the last method for the Calendar and GregorianCalendar classes is the getTime method,
which returns a Date object. You’ll learn more about this type of object on the next page.

Figure 7-7: How to use the Calendar and GregorianCalendar fields and methods
The Calendar class

java.util.Calendar;

Murach’s Beginning Java 2

 page 175

Fields of the Calendar class

DATE DAY_OF_MONTH DAY_OF_WEEK DAY_OF_YEAR

HOUR HOUR_OF_DAY MINUTE MONTH

SECOND YEAR MONDAY SUNDAY JANUARY DECEMBER

Methods of the Calendar and GregorianCalendar classes

Examples

How to change the value of a GregorianCalendar object

GregorianCalendar endDate = new

 GregorianCalendar(2000, 0, 1); // Jan 1, 2000

endDate.set(2000, 2, 30); // Mar 30, 2000

endDate.set(2000, Calendar.MARCH, 30); // Mar 30, 2000

endDate.set(Calendar.MONTH, Calendar.JANUARY); // Jan 30, 2000

endDate.add(Calendar.MONTH, 5); // June 30, 2000

endDate.add(Calendar.MONTH, 14); // Aug 30, 2001

endDate.roll(Calendar.MONTH, 14); // Oct 30, 2001

endDate.roll(Calendar.MONTH, true); // Nov 30, 2001

endDate.roll(Calendar.DAY_OF_MONTH, false); // Nov 29, 2001

How to return values from a GregorianCalendar object

GregorianCalendar birthday = new

 GregorianCalendar(2000, Calendar.FEBRUARY, 4); // Fri, Feb 4, 2000

int year = birthday.get(Calendar.YEAR); // year is 2000

int month = birthday.get(Calendar.MONTH); // month is 1

int day = birthday.get(Calendar.DAY_OF_MONTH); // day is 4

int dayOfWeek = birthday.get(Calendar.DAY_OF_WEEK); // dayOfWeek is 6

Murach’s Beginning Java 2

 page 176

int dayOfYear = birthday.get(Calendar.DAY_OF_YEAR); // dayOfYear is 35

Note
Note For more information about these and other fields and classes, look up the
Calendar and GregorianCalendar classes in the documentation for the Java API.

How to use the Date class
Figure 7-8 shows how to use the Date class. Unlike the GregorianCalendar class, the Date class
doesn’t have fields that represent the year, month, day, and so on. Instead, the Date class represents a
point in time by the number of milliseconds since January 1, 1970 00:00:00 Greenwich Mean Time
(GMT). You need to use Date objects when you want to format a date as shown in the next figure. You
may also find Date objects useful when you want to perform arithmetic operations on dates like
subtracting one date from another.

Most of the time, you’ll create a Date object by invoking the getTime method of a GregorianCalendar
object as shown in the first example in this figure. Since the getTime method returns a Date object, you
don’t need to call either of the Date constructors. However, you can also use either of the constructors
in this figure to create a Date object. The first constructor creates a Date object for the current date and
time while the second constructor creates a Date object based on the number of milliseconds that are
passed to it.

Although you won’t need the two methods summarized in this figure very often, they’re easy to use if
you ever need them. The toString method returns a readable string that displays the day of week,
month, date, time, time zone, and year. The getTime method returns a long integer that represents the
number of milliseconds since January 1, 1970 00:00:00 GMT.

The last example in this figure shows how Date objects can be useful when you want to calculate the
elapsed time between two dates. First, two GregorianCalendar dates are converted to Date objects.
Next, the Date objects are converted to milliseconds. Then, the starting date in milliseconds is
subtracted from the ending date in milliseconds to get the elapsed milliseconds, and that result is
divided by the number of milliseconds in a day to get the elapsed days. This type of routine is useful in
many business programs.

Figure 7-8: How to use the Date class
The Date class

java.util.Date;

Constructors

Methods

Examples

How to convert a GregorianCalendar object to a Date object

Date endDate = gregEndDate.getTime();

How to get a Date object for the current date/time

Murach’s Beginning Java 2

 page 177

Date now = new Date();

How to convert Date objects to string and long variables

String nowAsString = now.toString(); // converts to a string

long nowInMS = now.getTime(); // converts to milliseconds

How to calculate the number of days between two GregorianCalendar dates

Date startDate = gregStartDate.getTime();

Date endDate = gregEndDate.getTime();

long startDateMS = startDate.getTime();

long endDateMS = endDate.getTime();

long elapsedMS = endDateMS – startDateMS;

long elapsedDays = elapsedMS / (24 * 60 * 60 * 1000);

Description
 A Date object carries a date and time as the number of milliseconds since January 1,

1970 00:00:00 GMT (Greenwich Mean Time).
 You need to convert GregorianCalendar objects to Date objects when you want to

use the DateFormat class to format them as shown in the next figure.
 Date objects are also useful when you want to calculate the number of milliseconds

(or days) between two dates.

How to use the DateFormat class to format dates and times
Figure 7-9 shows how to use the DateFormat class to convert a Date object into a string that you can
use to display dates and times. In addition, it shows how to control the format of these strings. Since this
class works similarly to the NumberFormat class, you shouldn’t have much trouble using it.

Before you can format a date, you need to use one of the static methods of the DateFormat class to
create a DateFormat object that has a particular format. When you do that, you can choose to return the
date only, the time only, or the date and time. If you don’t specify a format, the DateFormat object will
use the default format. However, you can use one of the four DateFormat fields to override the default
date format as shown by the last set of examples. Once you’ve created a DateFormat object that has
the format that you want, you can use its format method to convert a Date object into a string with the
specified format.

The first example shows how to format a Date object with the default format. Here, the
getDateTimeInstance method is used to return both date and time. Since no arguments are supplied for
this method, it will return a string that contains the current date and time with the default format, which
should look something like this: Jan 30, 2001 12:10:10 PM.

The second example shows how to format a GregorianCalendar object with the default date format.
Here, you can see that you start by using the getTime method to convert the GregorianCalendar object
to a Date object. Then, you use the getDateInstance method to return the date only. Since no
arguments are supplied for this method, it will return a string that contains this date: Dec 31, 2005.

The final examples show how you can use the fields of the DateFormat class to override the default
date format. Here, you can see how to use the SHORT field of the DateFormat class, but the same
skills apply to the other three fields. If you use the getDateTimeInstance method, you need to supply the
first argument for the date and the second argument for the time. Since both of the arguments are
specified as short in this example, they will return a date with a format something like this: 12/31/05
7:30:00 AM.

When you use the LONG and FULL fields, the time portion of the date will end with an abbreviation for
the current time zone. In this figure, the examples use the Pacific Standard Time (PST) time zone.

Murach’s Beginning Java 2

 page 178

Figure 7-9: How to use the DateFormat class to format dates and times
The DateFormat class

java.text.DateFormat;

Static methods

Fields

Common method

Examples

How to format a Date object with the default date/time format

Date now = new Date();

DateFormat defaultDate = DateFormat.getDateTimeInstance();

String nowString = defaultDate.format(now);

How to format a GregorianCalendar object with the default date format

GregorianCalendar gregEndDate = new GregorianCalendar(2005,11,31,7,30);

Date endDate = gregEndDate.getTime();

DateFormat defaultDate = DateFormat.getDateInstance();

String endDateString = defaultDate.format(endDate);

How to change the default formats

DateFormat shortDate = DateFormat.getDateInstance(DateFormat.SHORT);

Murach’s Beginning Java 2

 page 179

DateFormat shortTime = DateFormat.getTimeInstance(DateFormat.SHORT);

DateFormat shortDateTime =

 DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT);

Code that adds the current date to the Book Order application
To show how you can use some of these date skills in a program, figure 7-10 shows how to add a date
to the BookOrder class. When this code creates a BookOrder object, it sets the date for the object to the
current date. Then, you can call the getDate method or the toString method from another class to return
a string representation of this date. Although this example uses an instance variable of the String type, it
could also use an instance variable of the GregorianCalendar type. Then, the getDate method could
return a GregorianCalendar object instead of a String object.

The import statements at the beginning of the file allow the BookOrder class to use the
GregorianCalendar, Calendar, Date, and DateFormat classes. Then, the fourth instance variable
declares a String object that represents the date, and the constructor calls the setDate method so it sets
this instance variable every time it creates a BookOrder object. Last, the getDate method returns a
string that represents the date, and the toString method returns a string that begins by displaying the
date.

Figure 7-10: Code that adds the current date to the BookOrder application
Code that adds the current date to the BookOrder class

import java.util.*;

import java.text.*;

public class BookOrder{

 private Book book;

 private int quantity;

 private double total;

 private String date;

 public BookOrder(String bookCode, int orderQuantity){

 book = new Book(bookCode);

 quantity = orderQuantity;

 setTotal();

 setDate();
 }

 public void setTotal(){
 total = quantity * book.getPrice();
 }

 public void setDate(){
 GregorianCalendar gregNow = new GregorianCalendar();
 Date now = gregNow.getTime();
 DateFormat shortDate = DateFormat.getDateInstance(DateFormat.SHORT);
 date = shortDate.format(now); // format the Date object

Murach’s Beginning Java 2

 page 180

 }

 public String getDate(){
 return date;
 }

 public Book getBook(){
 return book;
 }

 public int getQuantity(){
 return quantity;
 }

 public double getTotal(){
 return total;
 }

 public String toString(){
 NumberFormat currency = NumberFormat.getCurrencyInstance();
 String orderString = "Date: " + date + "\n\n"
 + "Code: " + book.getCode() + "\n"
 + "Title: " + book.getTitle() + "\n"
 + "Price: " + currency.format(book.getPrice()) + "\n"
 + "Quantity: " + quantity + "\n"
 + "Total: " + currency.format(total) + "\n";
 return orderString;
 }

}

Perspective
Now that you’ve finished this chapter, you should be able to use all of the operators that are provided by
Java. You should also be able to work with dates whenever you need to. For most business programs,
you can get by with just a small set of operators, but you need a solid set of date-handling skills.

Summary
 You can use the prefix and postfix forms of the increment and decrement operators to

control when a statement increases or decreases the operand.
 You can use the shortcut if/else operator to code if/else logic within an expression.
 You can use the instanceof operator to check whether an object is created from a class

or any of its subclasses.
 You can use bitwise operators, shift operators, and bitwise assignment operators to

work with the bits of the binary numbers that are stored in byte, short, int, or long
variables.

 Java uses order of precedence and associativity to determine the order in which it
evaluates arithmetic expressions. To override or clarify this order, you can use
parentheses.

 You can use the GregorianCalendar, Calendar, Date, and DateFormat classes to
create, manipulate, and format dates and times.

Terms
prefix form instanceof operator exclusive or

postfix form bit shift operator

shortcut if/else operator binary number order of precedence

ternary operator byte associativity

conditional ternary operator bitwise operator order of evaluation

Murach’s Beginning Java 2

 page 181

Objectives
 Use any of the operators provided by Java.
 Explain how the order of precedence and rules of associativity are used for evaluating

expressions.
 Explain how you can use parentheses to override the order of evaluation that’s used by

Java.
 Use the GregorianCalendar, Calendar, Date, and FormatDate classes to get the current

date, to set dates, to calculate elapsed days, and to format dates.
Exercise 7-1: Create the Monthly Payment application

This exercise guides you through the process of creating an application that calculates the monthly
payment that’s due for a loan. It works similarly to the Future Value application that you worked with in
chapters 3 and 4.

1. Navigate to the c:\java\ch07\payment directory. It should contain the FutureValueApp
and FinancialCalculations classes. Then, rename the FutureValueApp.java file to
MonthlyPaymentApp.java.

2. Open the code for the FinancialCalculations class and add a static method named
calculateMonthlyPayment. This method should accept three parameters
(loanAmount, months, and monthlyInterestRate); it should use the formula shown in
figure 7-5 to calculate the monthly payment; and it should return the monthly
payment.

3. Open the code for the MonthlyPaymentApp class (formerly, the FutureValueApp
class). Then, modify this class so (1) it gets the right entries from the user (loan
amount, yearly interest rate, and number of years), (2) it calls the new method to
calculate the monthly payment, and (3) it displays the results in a dialog box like this:

Exercise 7-2: Add a date to the Book Order application

This exercise guides you through the process of adding a date to the Book Order application.
1. Open the Book, BookOrder, and BookOrderApp classes located in the

c:\java\ch07\order directory.
2. Add code to the BookOrder class that will add the current date to the toString method

of the class as shown in figure 7-10, and compile the class.
3. Run the BookOrderApp class and enter a book order. When you do, the dialog box

that displays the book order should also display the current date like this:

Murach’s Beginning Java 2

 page 182

Exercise 7-3: Calculate the elapsed days

Write an application that asks the user to enter the month, day, and year of a date that precedes the
current date. Then, display the number of days that have elapsed from the date that is entered to the
current date.

Chapter 8: How to code control statements
In chapter 2, you learned how to code if/else statements and while loops. Now, in this chapter, you’ll
learn how to code the rest of the control statements that Java provides. Although you can get by without
using most of them, the for loop is commonly used.

How to code if/else and switch statements
In chapter 2, you learned how to code the if/else statement. Now, you’ll review that statement, and you’ll
learn how to code the switch statement, which can be used to provide similar logic in some coding
situations.

How to code if/else statements
Figure 8-1 gives the syntax and examples for if/else statements. Since this is review, you should
understand the examples with no further explanation. Remember, though, that the else clause is only
executed if none of the conditions in the if clause or else if clauses are true. Also, only the first if or else
if clause with a true condition will be executed.
Remember too that if you include more than one statement after a clause, you need to use braces to
create a block of statements called an if block, an else if block, or an else block. In that case, any
variables that you declare within the block will be available only within that block. In other words, the
variables have block scope. That’s one of the reasons why the title and price variables in the first
example are declared outside of the if block. That way, these variables will be available inside and
outside of the if block.

The fourth example shows how to use an if/else statement to let a user enter a number to select a book.
Here, the first three statements display a dialog box and get a number from the user. Then, the fourth
statement declares a variable for a Book object and sets this variable equal to a null value. Last, the
if/else statement assigns a Book object to the variable.

Figure 8-1: How to code if/else statements
The syntax of the if/else statement

if (conditionalExpression){statements}
[else if (conditionalExpression){statements}] ...
[else {statements}]

Example 1: An if statement
With a block of statements

if (bookCode.equalsIgnoreCase("WARP")){

 title = "War and Peace";

 price = 14.95;

}

With a single statement

if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

Example 2: An if/else statement with an else clause

if (bookCode.equalsIgnoreCase("WARP"))

Murach’s Beginning Java 2

 page 183

 title = "War and Peace";

else

 title = "Not Found";

Example 3: An if/else statement with else and else if clauses

if (bookCode.equalsIgnoreCase("WARP"))

 title = "War and Peace";

else if (bookCode.equalsIgnoreCase("MBDK"))

 title = "Moby Dick";

else if (bookCode.equalsIgnoreCase("CITR"))

 title = "Catcher in the Rye";

else

 title = "Not Found";

Example 4: An if/else statement that lets the user select a book by number

String message = "1 - War and Peace ($14.95)\n"

 + "2 - Moby Dick ($12.95)\n\n"

 + "To select a book, enter its number: ";

String bookString = JOptionPane.showInputDialog(message);

int bookNumber = Integer.parseInt(bookString);

Book book = null;

if (bookNumber == 1)

 book = new Book("warp");

else if (bookNumber == 2)

 book = new Book("mbdk");

else

 book = new Book("");

How to code switch statements
Figure 8-2 shows you can use the switch statement to work with expressions that evaluate to the char,
byte, short, or int types. After the expression in this statement, you can code one or more case labels
that represent integer values. Then, when the integer value of the expression matches the case label,
the statements after the label are executed.
You can code the case labels in any sequence, but you should be sure to follow each label with a colon.
Then, after the statements that follow the label, you can code the break statement to skip out of the
switch statement. Otherwise, the execution of the program falls through to the next case label. The
default case label is an optional label that identifies the statements that are to be executed if none of the
other case labels are matched.

Murach’s Beginning Java 2

 page 184

The first example in this figure shows how to code a switch statement that lets the user enter a number
to select a book. Although this example provides the same functionality as the fourth example in the
previous figure, some programmers feel that the switch statement is easier to code and read than an
if/else statement. Here, the first case label creates a new book by sending a book code to the
constructor for the Book class. Then, the break statement exits the switch statement. The second case
label works the same way. However, the third case label is the default case label, so it is executed
whenever the user enters a number that doesn’t match one of the other case labels. Since this label is
the last case label, it isn’t necessary to code a break statement after it.
The second example shows how to code a switch statement that sets the day variable to “weekday” or
“weekend” depending on the current day of the week. If you’ve read the last chapter, you know that the
first two statements get the day of the week as an integer with 1 representing Sunday and 7
representing Saturday. Then, the switch statement sets the string variable named day to “weekday” or
“weekend” based on the integer for the day of the week. Here, the first break statement is coded after
the case labels for 2, 3, 4, 5, and 6. As a result, whenever the dayOfWeek variable equals 2, 3, 4, 5, or
6, program execution falls through these labels and sets the day string to “weekday”. Similarly,
whenever the dayOfWeek variable equals 1 or 7, program execution falls through these labels and sets
the day string to “weekend”.

Figure 8-2: How to code switch statements
The syntax of the switch statement

switch (integerExpression){
 case label1:
 statements
 break;
 case label2:
 statements
 break;
 any other case statements
 default: (optional)
 statements
 break;
}

Example 1: A switch statement that lets a user select a book

String message = "1 - War and Peace ($14.95)\n"

 + "2 - Moby Dick ($12.95)\n\n"

 + "To select a book, enter its number: ";

String bookString = JOptionPane.showInputDialog(message);

int bookNumber = Integer.parseInt(bookString);

Book book = null;

switch (bookNumber){

 case 1:

 book = new Book("warp");

 break;

 case 2:

 book = new Book("mbdk");

 break;

 default:

Murach’s Beginning Java 2

 page 185

 book = new Book("");

}

Example 2: A switch statement that checks if the current day is a weekend

GregorianCalendar today = new GregorianCalendar();

int dayOfWeek = today.get(Calendar.DAY_OF_WEEK);

String day = "";

switch(dayOfWeek){

 case 2:

 case 3:

 case 4:

 case 5:

 case 6:

 day = "weekday";

 break;

 case 1:

 case 7:

 day = "weekend";

}

Description
 The switch statement can only be used with expressions that evaluate to one of these

integer types: char, byte, short, or int. Then, the case labels represent the integer
values of that expression, and these labels can be coded in any sequence.

 The break statement exits from the switch statement.

How to code loops
In chapter 2, you learned how to code while loops. Now, you’ll learn how to code do-while loops and for
loops.

How to code while and do-while loops
Figure 8-3 reviews the code for while loops and shows how to use the do-while statement to code do-
while loops. The difference between these types of loops is that the condition is tested first in a while
loop and last in a do-while loop. As a result, a do-while loop is always executed at least once.

In the first two examples, you can see how these two types of loops can be used to accomplish the
same purpose. In this case, the do-while loop makes sense, because you know that you want to
execute the statements in the loop at least once.

In the third example, you can see how you can use a counter variable to execute the statements in a
loop a certain number of times. In this example, the counter is an int type named i, and this counter is
initialized to 1. Then, the last statement in the while loop increments the counter with each repetition of
the loop. As a result, the first statement in this loop will be executed until the counter variable becomes
greater than or equal to the variable that stores the number of months. Incidentally, it is a common
coding practice to name counters with single letters like i, j, and k.

Murach’s Beginning Java 2

 page 186

The fourth example shows how to code a loop that calculates the monthly payments for varying interest
rates. Here, the loop executes one time for each of these interest rates: 5.0%, 5.5%, 6.0%, 6.5%, 7.0%,
and 7.5%. To make this work, the last statement in the loop increments the counter by .5.

The first two statements within the loop for the fourth example calculate the monthly payment on the
loan for the current interest rate. To do that, the second statement calls the calculateMonthlyPayment
method from the user-defined FinancialCalculations class. Then, the third statement adds the monthly
payment for each interest rate to the end of a message string. When the loop is finished, the message
string that has all the interest rates and monthly payments is printed on the console.

Here again, the code within the braces of a while or do-while loop has block scope. As a result, any
variables that are declared in the block can’t be used outside of the block. That’s why the message
variable in the fourth example is declared outside of the loop.

When you code loops, you should try to avoid infinite loops. If, for example, you forget to code a
statement that increments the counter variable, the loop will never end. Then, you have to press Ctrl+C
to cancel the program so you can debug your code.

Figure 8-3: How to code while and do-while loops
The syntax of the while loop

while (conditionalExpression){
 statements
}

The syntax of the do-while loop

do{

 statements

}
while (conditionalExpression);

Example 1: A while loop

String choice = "";

while (!(choice.equalsIgnoreCase("x"))){

 // statements within the loop
 choice = JOptionPane.showInputDialog(
 "To continue, press Enter.\n"
 + "To exit, enter ‘x’: ");
}

Example 2: A do-while loop that can be used instead of the while loop

String choice = "";

do{

 // statements within the loop
 choice = JOptionPane.showInputDialog(
 "To continue, press Enter.\n"
 + "To exit, enter ‘x’: ");
}
while (!(choice.equalsIgnoreCase("x")));

Example 3: A while loop that makes a calculation

int i = 1;

while (i <= months) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

Murach’s Beginning Java 2

 page 187

 i++;

}

Example 4: A while loop that makes a series of calculations

String message = "";

double interestRate = 5.0;

while (interestRate < 8.0){

 monthlyInterestRate = interestRate/12/100;

 monthlyPayment = FinancialCalculations.calculateMonthlyPayment(

 loanAmount, months, monthlyInterestRate);

 message += percent.format(interestRate/100) + " "

 + currency.format(monthlyPayment) + "\n";

 interestRate += .5;

}

System.out.println(message);

Description
 In a while loop, the condition is tested before the loop is executed. In a do-while loop,

the condition is tested after the loop is executed.

How to code for loops
Figure 8-4 shows how to use the for statement to code for loops. These loops are useful when you need
to increment or decrement a counter that determines how many times the loop is going to be executed.
In the parentheses of the for statement, you code an initialization expression that gives the starting
value for the counter, a termination condition that determines when the loop will end, and an increment
expression that determines how much the counter is incremented or decremented each time the loop is
executed. To separate these three components, you use semicolons. Then, you code the statements of
the loop.

The first example shows how to use the three components at the start of a loop. First, the initialization
expression declares the counter that’s used to determine the number of loops. In this example, the
counter is an int type named i, and this counter is initialized to 0. Next, the termination condition
specifies that the loop will be repeated as long as the counter is less than 5. Then, the increment
expression increments the counter by 1 at the end of each repetition of the loop. Since the loop uses the
println method to print the counter to the console, this code prints the numbers 0 to 4 to the console.

The second example calculates the sum of 8, 6, 4, and 2. In this example, the sum variable is declared
before the loop so it will be available outside of the loop because here again any variables declared
within braces have block scope. That way, the println method that comes after the loop can use the sum
variable. In this case, the initialization expression initializes the counter to 8, and the increment
expression uses an assignment operator to subtract 2 from the counter with each repetition of the loop.
The loop ends when the counter is no longer greater than zero.

The third example shows how to code a loop that calculates the future value for a series of monthly
payments. Here, the loop executes one time for each month. Then, the single statement within the loop
adds the monthly payment to the future value and calculates the interest for the month. If you compare
this example with the third example in the previous figure, you can see how a for loop improves upon a
while loop when a counter is required.

Murach’s Beginning Java 2

 page 188

The fourth example shows how to code a loop that calculates the monthly payments for varying interest
rates. Like the fourth example in the previous figure, this loop executes one time for each of these
interest rates: 5.0%, 5.5%, 6.0%, 6.5%, 7.0%, and 7.5%. But here again, the for loop works better
because a counter is required.

Figure 8-4: How to code for loops
The syntax of the for loop

for(initializationExpression; terminationCondition; incrementExpression){
 statements
}

Example 1: A for loop that prints the numbers 0 through 4
With a single statement

for (int i = 0; i < 5; i++)

 System.out.println(i);

With a block of statements

for (int i = 0; i < 5; i++){

 String counter = "Counter: " + i;

 System.out.println(counter);

}

Example 2: A for loop that adds the numbers 8, 6, 4, and 2

int sum = 0;

for (int j = 8; j > 0; j-=2){

 sum += j;

}

System.out.println(sum);

Example 3: A for loop that makes a calculation

for (int i = 1; i <= months; i++) {

 futureValue = (futureValue + monthlyPayment) *

 (1 + monthlyInterestRate);

}

Example 4: A for loop that makes a series of calculations

String message = "";

for (double interestRate = 5.0; interestRate < 8.0; interestRate += .5){

 double monthlyInterestRate = interestRate/12/100;

 double monthlyPayment = FinancialCalculations.calculateMonthlyPayment(

 loanAmount, months, monthlyInterestRate);

 message += percent.format(interestRate/100) + " "

Murach’s Beginning Java 2

 page 189

 + currency.format(monthlyPayment) + "\n";

}

System.out.println(message);

Description
 A for loop is useful when you need to increment or decrement a counter that

determines how many times the loop is executed.
 Within the parentheses of a for statement, you code an initialization expression that

gives the starting value for the counter, a termination condition that determines
when the loop ends, and an increment expression that increments or decrements
the counter.

How to code nested for loops
In chapter 3, you learned how to code nested while loops. Now, figure 8-5 shows how to code nested
for loops. As with all nested loops, you should use indentation to clearly show the relationships between
the loops.

The first example shows two nested for loops that print a table of random numbers. In this example, the
inner loop adds three random integers from 0 to 9 to the row string. Then, the outer loop adds the row
string to the table string, and it clears the row string so that string can be used in the next loop. Since
this code executes each loop three times, these two loops will print a table with three rows and three
columns. To get a random number, the inner loop calls the random method of the Math class to return a
double type between 0 and 1, multiplies that number by 9, and uses parentheses to cast the result to an
int type.

The second example shows nested for loops that print a table of monthly payment calculations. Here,
the amount of the loan is set to $12,000, the interest rates vary from 5.0% to 7.5%, and the number of
years vary from 2 years to 4 years. To start, the first for loop, which is not nested, adds the headings to
the table string. That will be the first line that’s displayed by the last statement in this example.

After that, the nested loops add one row for each year to the table string. To do that, the inner loop
makes six interest rate calculations per year and adds those calculations to the row string. This works
like the fourth example in the previous figure. Then, the outer loop adds the row to the table string and
clears the row string so it can be used again in the next loop. This works like the previous example in
this figure. Last, when all of the loops have been completed, the println method prints the table string to
the console. This shows the lowest monthly payment in the top left corner and the highest monthly
payment in the lower right corner. To align these interest rates, this code uses spaces, but you could
also use the tab escape sequence (\t) for alignment.

Figure 8-5: How to code nested for loops
Example 1: Nested for loops that print a table of random numbers

String table = "";

String row = "";

for (int i = 1; i < 4; i++){

 for (int j = 1; j < 4; j++){

 int number = (int) (Math.random() * 9);

 row += number + " ";

 }

 table += row + "\n";

 row = "";

Murach’s Beginning Java 2

 page 190

}

System.out.println(table);

Example 2: Nested for loops that print a table of calculations

double loanAmount = 12000;

double monthlyPayment = 0;

String table = "";

String row = "";

NumberFormat currency = NumberFormat.getCurrencyInstance();

NumberFormat percent = NumberFormat.getPercentInstance();

percent.setMinimumFractionDigits(1);

table = " ";

for (double interestRate = 5.0; interestRate < 8.0; interestRate += .5){

 table += percent.format(interestRate/100) + " ";

}

table += "\n";

for (int years = 4; years > 1; years—){

 row = years + " ";

 for (double interestRate = 5.0; interestRate < 8.0; interestRate += .5){

 int months = years * 12;

 double monthlyInterestRate = interestRate/12/100;

 monthlyPayment = FinancialCalculations.calculateMonthlyPayment(

 loanAmount, months, monthlyInterestRate);

 row += currency.format(monthlyPayment) + " ";

 }

 table += row + "\n";

 row = "";

}

System.out.println(table);

Result of the code shown above

Murach’s Beginning Java 2

 page 191

How to code break and continue statements
Whenever possible, you should control the logic of your program by using if statements, switch
statements, while loops, do-while loops, and for loops. Occasionally, though, you may need to jump out
of a loop. In these cases, you can use one of the two statements that are presented next.

How to code break statements
Figure 8-6 shows how to use the break statement and the labeled break statement to exit loops. If you
need to exit the current loop, you can code a break statement. If you need to exit the inner loop and the
outer loop, you can use the labeled break statement.

The first example shows how you can use the break statement to exit from an inner loop. Here, a while
loop is nested within a for loop. However, the conditional expression for the inner while loop has been
set to true. As a result, it will loop until one of the random numbers is greater than 7. Then, it will print
some text to the console and the break statement will exit this loop, which will transfer control back to
the outer loop. The outer loop will then continue.

If you study the code in this example, you should see that it prints each random number to the console.
But after it prints a number that is greater than 7, it also prints a message to that effect and ends the
inner loop. This is repeated three times by the outer loop.
The second example shows how you can use the labeled break statement to exit an outer loop from an
inner loop. Before you can use a labeled break statement, though, you must code a label for the loop
that you want to exit. Then, to break out of the outer loop, you just type the break statement followed by
the name of the label. This will transfer control to the next statement after the outer loop so the inner
loop is only run one time.

Figure 8-6: How to code break statements
The syntax of the break statement

break;

The syntax of the labeled break statement
break labelName;

The structure of the labeled break statement

Murach’s Beginning Java 2

 page 192

Examples
A break statement that exits the inner loop

for (int i = 1; i < 4; i++){

 System.out.println("Outer " + i);

 while (true){

 int number = (int) (Math.random() * 10);

 System.out.println(" Inner " + number);

 if (number > 7){

 System.out.println(" This number is greater than 7");

 break;

 }

 }

}

A labeled break statement that exits the outer loop

outerLoop:

 for (int i = 1; i < 4; i++){

 System.out.println("Outer " + i);

 while (true){

 int number = (int) (Math.random() * 10);

 System.out.println(" Inner " + number);

 if (number > 7){

 System.out.println(" This number is greater than 7");

 break outerLoop;

 }

 }

 }

Description
 To jump to the end of the current loop, you can use the break statement.
 To jump to the end of an outer loop from an inner loop, you can label the outer loop

and use the labeled break statement.
 To code a label, type the name of the label and a colon before a loop.

How to code continue statements
Figure 8-7 shows how to use the continue statement and labeled continue statement to jump to the
beginning of a loop. These statements work similarly to the break statements, but they jump to the
beginning of a loop instead of the end of a loop. Like the break statements, you can use the unlabeled

Murach’s Beginning Java 2

 page 193

version of the statement to work with the current loop and you can use the labeled version of the loop to
work with nested loops.

The first example shows how to use the continue statement to print 9 random numbers. In this example,
the loop generates random numbers from 0 through 10 and prints them to the console. If the random
number is less than or equal to 7, though, the continue statement jumps to the beginning of the loop. As
a result, the println method that comes after the continue statement is only executed when the random
number is greater than 7.

The second example shows how to use the labeled continue statement to print the prime numbers from
1 through 19. In this example, the outer loop loops through the numbers 1 through 19, while the inner
loop loops through all numbers from 2 through the outer number minus 1. Then, the remainder variable
is set equal to the remainder of the outer loop counter divided by the inner loop counter. If the remainder
equals 0, the continue statement causes control of the program to jump to the top of the outer loop. As a
result, the outer loop continues with the next number. But if the remainder doesn’t equal 0 at any point
in the inner loop, which means the number is a prime number, the program finishes the inner loop and
the println method prints the number to the console.

Figure 8-7: How to code continue statements
The syntax of the continue statement

continue;

The syntax of the labeled continue statement
continue labelName;

The structure of the labeled continue statement

Examples

A continue statement that continues a loop

for (int j = 1; j < 10; j++){

 int number = (int) (Math.random() * 10);

 System.out.println(number);

 if (number <= 7)

 continue;

 System.out.println("This number is greater than 7");

}

A labeled continue statement that helps print all prime numbers less than 20

outerLoop:

Murach’s Beginning Java 2

 page 194

 for(int i = 1; i < 20; i++){

 for(int j = 2; j < i-1; j++){

 int remainder = i%j;

 if (remainder == 0)

 continue outerLoop;

 }

 System.out.println(i);

 }

Description
 To skip the rest of the statements in the current loop and jump to the top of the

current loop, you can use the continue statement.
 To skip the rest of the statements in the current loop and jump to the top of a labeled

loop, you can add a label to the loop and use the labeled continue statement.
 To code a label, type the name of the label and a colon before a while, do-while, or

for loop.

Perspective
Now that you’ve finished this chapter, you should have a solid understanding of control statements and
loops. In the next chapter, you’ll see how important loops can be when you work with strings and arrays.

Summary
 You can use if/else statements and switch statements to control the logic of a program.

However, a switch statement can only be used with an expression that evaluates to a
char, byte, short, or int type.

 You can use while, do-while, and for statements to repeatedly execute the code within
while, do-while, and for loops.

 You can code nested loops with do-while and for statements just as you can with while
statements.

 You can use the break statement to jump to the end of the current loop, and the labeled
break statement to jump to the end of a labeled loop.

 You can use the continue statement to jump to the start of the current loop, and the
labeled continue statement to jump to the start of a labeled loop.

Terms
if/else statement switch statement for loop

if clause case label initialization expression

else clause break statement termination condition

else if clause fall through increment expression

block while loop nested loops

if block do-while loop labeled break statement

else if block counter label

else block infinite loop continue statement

block scope for statement labeled continue statement

Objectives
 Code if/else statements and switch statements to control the logic of a program.
 Code while, do-while, and for loops to control the repetitive processing that a program

requires.

Murach’s Beginning Java 2

 page 195

 Code nested loops whenever they are required.
 Use the break, labeled break, continue, and labeled continue statements to jump out of

a loop or to jump to the start of a loop.
Exercise 8-1: Enhance the Book application

This exercise guides you through the process of enhancing the Book application so you can select a
book by number. This will give you a chance to use a switch statement.

1. Open the BookApp class located in the c:\java\ch08\book directory.
2. Edit the BookApp class using if statements so you can select a book by entering a

number for it as in figure 8-1. Then, compile and run the application. When you do,
the first dialog box should look like this:

3. Then, the second dialog box should display the book that you’ve selected.
4. Convert the if statements that select a book by number in the BookApp class to a

switch statement as shown in figure 8-2. Then, compile and run the application. It
should work the same as it did before.

5. Convert the while loop in the BookApp class to a do-while loop as shown in figure 8-
3. Then, compile and run the application. It should work the same as it did before.

Exercise 8-2: Enhance the Book Order application

This exercise guides you through the process of enhancing the Book Order application.
1. Open the BookOrderApp class located in the c:\java\ch08\order directory.
2. Edit the code for the BookOrderApp application so it lets the user select a book by

entering a number as in exercise 1. To do that, use a switch statement.
3. Compile and run the BookOrderApp class to make sure it works properly.

Exercise 8-3: Enhance the Monthly Payment application

This exercise guides you through the process of enhancing the Monthly Payment application that you
created in the last chapter.

1. Open the MonthlyPaymentApp class located in the c:\java\ch08\payment directory.
2. Edit the code for the MonthlyPaymentApp class so it uses a loop like the one shown

in figure 8-4 to calculate the monthly payment for these interest rates: 5.0%, 5.5%,
6.0% and 6.5%.

3. Compile the code and run the application. The first dialog box should get the amount
of the loan from the user, the second dialog box should get the number of years, and
the third dialog box should display the calculations like this:

Murach’s Beginning Java 2

 page 196

Exercise 8-4: Practice using loops

In this exercise set, you create a Test application so you can practice using loops.
1. Enter the TestApp class shown here and save it in the c:\java\ch08 directory.

2. public class TestApp{
3. public static void main(String[] args){
4. for (int i=1; i<10; i++){
5. System.out.println(i);
6. }
7. }

}
8. Compile and run the application. The application should print the integers 1 through

9.
9. Within the main method, enter any of the code in figures 8-5 through 8-7 that you’re

not comfortable with. Then, compile and run the application so you can see how the
code works.

Chapter 9: How to work with arrays, strings, and vectors
In this chapter, you’ll learn how to work with arrays and vectors, which are important in a variety of Java
applications. You’ll also learn more about working with strings, which can be thought of as arrays of
characters. Before you read this chapter, you should read chapter 8 so you know how to use for loops,
because they are commonly used with arrays.

How to work with arrays
In this topic, you’ll learn how to use an array to work with groups of primitive types or objects. First,
you’ll learn how to create an array. Next, you’ll learn how to assign values to an array. Then, you’ll see
some examples that show how to work with arrays.

How to create an array
An array consists of more than one element, and the length (or size) of an array indicates the number of
elements that it contains. The type of an array can be any of the eight primitive types or any class.
In figure 9-1, you can learn how to create an array. Here, the syntax shows how to create an array in
one or two statements. When you code the brackets that indicate the number of elements in the array,
you can code them after the array type or after the array name. However, it’s good coding practice to
code them after the array type. This way, you can see that the array is an array of a specific type.

The first three examples show three different ways to create an array of double types that will hold 4
prices. The first example uses two statements, the second example uses one statement, and the third
example places the brackets after the array name instead of the array type. When you create an array,
each element is given a default value, which is zero for the numeric types, false for boolean types, and
null for objects.

Murach’s Beginning Java 2

 page 197

The fourth example shows how you can create two arrays of the same type in one statement. This
example also shows how to use a constant to specify the array size. Here, both arrays use the same
constant to create an array of 100 double values. That way, you can change the value of the constant to
change the size of both arrays.

The last two examples show how to create an array of objects from a class. The fifth example creates
an array of three String objects, and the sixth example creates an array of five Book objects. These
examples show that you can create an array of objects from a class that’s in the Java API, such as the
String class, or from a user-defined class, such as the Book class.

Once you create an array, you can’t change its size. As a result, if you create an array and then need to
make it bigger or smaller, you have to create a new array and copy the elements from one array to the
other. You’ll learn how to do that later in this chapter. But first, you’ll learn how to assign values to the
elements of an array.

Figure 9-1: How to create an array
The syntax for creating an array

With two statements
type[] arrayName;
arrayName = new type[ARRAY_SIZE];
With one statement
type[] arrayName = new type[ARRAY_SIZE];

How to create an array of double types
With two statements

double[] prices;

prices = new double[4];

With one statement

double[] prices = new double[4];

With different bracket location

double prices[] = new double[4];

Other examples
Two arrays in one statement

final int ORDER_COUNT = 100;

double[] prices = new double[ORDER_COUNT],

 totals = new double[ORDER_COUNT];

An array of String objects

String[] titles = new String[3];

An array of Book objects

Book[] books = new Book[5];

Description
 An array can store more than one primitive type or object. An element in an array is

one of the items in an array. And the length, or size, of an array is the number of
elements in the array.

 When you create an array of primitive types, numeric types are set to zeros and
boolean types to false. When you create an array of objects, they are set to null
values.

Murach’s Beginning Java 2

 page 198

How to assign values to the elements of an array
Figure 9-2 shows how to assign values to the elements of an array. As the syntax at the top of the figure
shows, you refer to an element in an array by coding the array name followed by an index in brackets.
Here, the index must be an int value starting at 0 and ending at one less than the size of the array. In
other words, an index of 0 refers to the first element in the array, 1 refers to the second element, 2
refers to the third element, and so on.

If you specify an index that’s outside of the range of the array, Java will throw an exception at run time
of the ArrayIndexOutOfBoundsException type. In chapter 10, you can learn more about working with
exceptions like this one.

The first three examples in this figure show how to assign values to the elements in an array by coding
one statement per element. The first example creates an array of 4 double values. In this example, the
first element holds the value 14.95, the second holds 12.95, the third holds 11.95, and the fourth holds
9.95. The second example creates an array that holds String objects. And the third example creates an
array that holds 2 Book objects.

The syntax in the middle of this figure shows how to use the length expression to return the length of an
array. Since this expression isn’t a method, you don’t need to include parentheses after it. You can use
this expression to return an int value that represents the length of the array, which is often necessary
when you use loops to work with arrays.

The two examples that follow show how to use a loop to assign values to the elements of an array. Both
of these examples use the length expression to return the length of the array. That way, these loops will
be executed once for each value of the index for the array. In the first example, the statement within the
loop uses the counter for the loop to access each element of the array. Since this statement also
assigns the value of the counter to each element, the value that’s stored within each element is equal to
the index for the element. In the second example, the statement within the loop assigns the same book
object to all five elements of the array.

The syntax and examples at the bottom of this figure show how to create an array and assign values to
the elements of the array in one statement. Here, you start the array definition as before. After the
equals sign, though, you use braces to supply the values you want to store in the array. Then, Java
creates an array with the number of elements within the braces, and it assigns the values within the
braces to each element of the array. For instance, the first statement that follows the syntax does the
same task as the five statements in the first example of this figure.

Figure 9-2: How to assign values to the elements of an array
The syntax for referring to an element of an array

arrayName[index]
Examples that assign values by accessing each element

Code that assigns values to an array of double types

double[] prices = new double[4];

prices[0] = 14.95;

prices[1] = 12.95;

prices[2] = 11.95;

prices[3] = 9.95;

Code that assigns objects to an array of String objects

String[] names = new Strings[3];

names[0] = "Ted Lewis";

names[1] = "Sue Jones";

names[2] = "Ray Thomas";

Murach’s Beginning Java 2

 page 199

Code that assigns objects to an array of Book objects

Book[] books = new Book[2];

books[0] = new Book("warp");

books[1] = new Book("mbdk");

The syntax for getting the length of an array
arrayName.length

Examples that use a for loop to assign values to an array
Code that puts the numbers 0 through 9 in an array

int[] values = new int[10];

for (int i = 0; i < values.length; i++){

 values[i] = i;

}

Code that puts five Book objects into an array

Book[] books = new Book[5];

for (int i = 0; i < books.length; i++){

 books[i] = new Book("warp");

}

The syntax for creating an array and assigning values in one statement
type[] arrayName = {value1, value2, value3, ...};

Examples that create an array and assign values in one statement

double[] prices = {14.95, 12.95, 11.95, 9.95};

int[] values = {3, 5, 7, 9};

boolean[] responses = {true, false, true, true, false};

String[] bookCodes = {"warp", "mbdk", "citr"};

Book[] books = {new Book("warp"),

 new Book("mbdk")};

Description
 To refer to the elements in an array, you use an index that ranges from zero (the first

element in the array) to one less than the number of elements in the array.

Code examples that work with arrays
Now that you understand how to store data in arrays, you’re ready to see some code examples that
show how to work with arrays. As you learned in the last figure, for loops are often used to access each
element of an array. That’s why most of the examples in figure 9-3 use for loops to work with arrays.

The first example shows how to use individual elements in an expression. Here, the first statement
creates an array of 4 doubles. Then, the second statement sets the sum variable equal to the sum of

Murach’s Beginning Java 2

 page 200

the four elements in the array. And the third statement computes the average by dividing the sum by the
number of elements in the array.

The second example performs the same task as the first example, but it uses a loop to access each
element. For this task, the first example is shorter and easier to understand than the second example.
However, the code in the second example will work for an array of any size while the code in the first
example will only work for an array that holds four elements.

The third example shows how to print each element in an array to the console. Here, the loop cycles
through each index of the array. Then, the single statement within the loop prints the array to the
console. As a result, each statement will be printed on a separate line.

The fourth example shows how you can use a loop to change the value of each element in an array.
The first statement in this example creates an array of double values that stores 8 heights in inches. To
convert inches to centimeters, the loop multiplies the value for each element by 2.54 and assigns the
result to the same element. As a result, after this code runs, 8 new values will replace the eight original
values of the array. For example, the first element will store a value of 152.4, the second element will
store a value of 157.48, and so on.

The fifth example shows how to print the array created by the fourth example to the console. This code
works like the code in the third example except that it uses a NumberFormat object to apply formatting
to the numbers, and it adds some text to the end of each number to show that the result is centimeters
(cm).

Figure 9-3: Code examples that work with arrays
Code that computes the average of an array of prices

double[] prices = {14.95, 12.95, 11.95, 9.95};

double sum = prices[0] + prices[1] + prices[2] + prices[3];

double average = sum/prices.length;

Code that uses a for loop to compute the average of an array of prices

double sum = 0.0;

for (int i = 0; i < prices.length; i++){

 sum += prices[i];

}

double average = sum/prices.length;

Code that prints an array of prices to the console

for (int i = 0; i < prices.length; i++){

 System.out.println(prices[i]);

}

The result of the code shown above

Murach’s Beginning Java 2

 page 201

Code that converts an array of heights from inches to centimeters

double[] heights = {60, 62, 64, 66, 68, 70, 72, 74};

for (int i = 0; i < heights.length; i++){

 heights[i] *= 2.54;

}

Code that prints the converted array of heights to the console

NumberFormat number = NumberFormat.getNumberInstance();

for (int i = 0; i < heights.length; i++){

 System.out.println(number.format(heights[i]) + " cm");

}

The result of the code shown above

How to work with two-dimensional arrays
So far, this chapter has shown how to use an array that uses one index to store a single set of
elements. You can think of that as a one-dimensional array. Now, you’ll learn how to work with two-
dimensional arrays that use two indexes to store data in a table.

How to create a two-dimensional array
Figure 9-4 shows how to create a two-dimensional array and how to assign values to all of its elements.
For the most part, two-dimensional arrays work like one-dimensional arrays, except that you use two
sets of brackets. Then, you can use the first index to refer to the rows in a table, and you can use the
second index to refer to the columns. You can also think of this as an array of arrays with the first array
representing the number of rows in a table and the other array representing each of the rows.

The figure shows the syntax for two expressions that can be used to determine the length of a two-
dimensional array. The first expression is the same expression that’s used with one-dimensional arrays.
In this context, though, it returns the number of arrays within the array, or the number of rows. To
determine the number of elements in any row, you must use the second length expression.

The first example in this figure shows how to create a two-dimensional array. Here, the first statement
creates a two-dimensional array of int types with three rows and two columns. As a result, this two-

Murach’s Beginning Java 2

 page 202

dimensional array can store six integers. Then, the next six statements assign a value to each element
in the array.

The second example shows how to create the same array as the first example using a single statement.
To do this, you use the same shorthand notation that you used with one-dimensional arrays. However,
you code arrays instead of elements. As a result, you must separate each array within the first array
with a comma.

The third example shows a two-dimensional array that stores three rows of 4 double values. Here, one
line is coded for each row and the column values are aligned so it’s easy to see where the values fit into
the table.

The fourth example shows that you can create two-dimensional arrays where each row has a different
length. In this example, the length of the first row is 3, the length of the second row is 4, and the length
of the third row is 2.

When you create a two-dimensional array, you must specify the number of rows that it will use.
However, you don’t have to specify the length of each row. For instance, the code in the last example
creates an array of three rows of unspecified lengths. In the next figure, you’ll learn how to work with
this type of array.

Figure 9-4: How to create a two-dimensional array
The syntax for creating a two-dimensional array

type[][] arrayName = new type[NUM_OF_ARRAYS][NUM_OF_ELEMENTS_IN_EACH_ARRAY];
How to return the number of arrays

arrayName.length
How to return the number of elements within each array

arrayName[index].length
How two-dimensional arrays are organized into rows and columns

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Examples
A two-dimensional array of int types with three rows and two columns

int[][] values = new int[3][2];

values[0][0] = 1;

values[0][1] = 2;

values[1][0] = 3;

values[1][1] = 4;

values[2][0] = 5;

values[2][1] = 6;

Code that creates the same array shown above with one statement

int[][] values = {{1,2}, {3,4}, {5,6}};

A two-dimensional array of double types where each row is the same length

double[][] grades = {{92.3, 88.0, 95.2, 90.5},

Murach’s Beginning Java 2

 page 203

 {70.2, 79.1, 82.0, 69.8},

 {88.5, 92.0, 84.4, 97.9}};

A two-dimensional array of strings where each row is a different length

String[][] titles = {{"War and Peace", "Wuthering Heights", "1984"},

 {"Casablanca", "Wizard of Oz", "Star Wars", "Birdy"},

 {"Blue Suede Shoes", "Yellow Submarine"}};

A two-dimensional array of int types where the length of each row is unspecified

int[][] values = new int[3][];

Description
 Two-dimensional arrays use two indexes and allow data to be stored in a table that

consists of rows and columns. This can also be thought of as an array of arrays with
each row as a separate array.

 You must specify the number of arrays in a two-dimensional array when it’s created.
However, you can leave the length of each row array unspecified and set it later.

Code examples that work with two-dimensional arrays
Figure 9-5 presents some examples that show how to work with two-dimensional arrays. First, it shows
how to use nested loops to assign values to a two-dimensional array, and how to print that array to the
console. Then, it shows how to work with a two-dimensional array that contains rows of unspecified
lengths.

The first example shows how to use nested for loops to create a two-dimensional array that has three
rows and three columns and how to assign values to the elements within that array. Here, each element
in the array is an int type that will store a value of 1 or 0 depending on whether its row and column
indexes are equal. Since this array is a two-dimensional array, two for loops are needed to cycle
through the array. The first for loop cycles through each row, while the second cycles through each
column.

The second example shows how to code nested loops to print a two-dimensional array to the console.
Here, the first statement declares a String object to store a string representation of the table. Then, the
inner loop adds each element to the string followed by a space, while the outer loop adds a new line
character to the end of the string.

The third example shows how to define a two-dimensional array without specifying the length of each
array. Here, the first statement creates an array that holds 4 arrays of unspecified lengths. To do that,
this statement specifies 4 as the first index, but leaves the second index blank. Then, a for loop cycles
through each array, and creates a different number of elements for each array. The first time through
the loop, the counter will be equal to 0 so the length of the array will be set to 1. The second time
through the for loop, i will be equal to 1 so the length of the array will be set to 2. And so on.

The fourth example shows how to code nested loops to print the array created by the third example to
the console. This code works like the code shown in the second example. However, it creates a string
that includes brackets that show the indexes for each element in the two-dimensional array.

Figure 9-5: Code examples that work with two-dimensional arrays
Code that uses nested for loops to create a table

int[][] table = new int[3][3];

for (int i = 0; i < table.length; i++){

 for (int j = 0; j < table[i].length; j++){

 if (i == j)

Murach’s Beginning Java 2

 page 204

 table[i][j] = 1;

 else

 table[i][j] = 0;

 }

}

Code that prints the table created above to the console

String tableString = "";

for (int i = 0; i < table.length; i++){

 for (int j = 0; j < table[i].length; j++){

 tableString += table[i][j] + " ";

 }

 tableString += "\n";

}

System.out.println(tableString);

The result of the code shown above

Code that creates a two-dimensional array with rows of different lengths

int[][] pyramid = new int[4][];

for (int i = 0; i < pyramid.length; i++){

 pyramid[i] = new int[i+1];

}

Code that prints the two-dimensional array created above to the console

String pyramidString = "";

for (int i = 0; i < pyramid.length; i++){

 for (int j = 0; j < pyramid[i].length; j++){

 pyramidString += "["+ i + "]" + "["+ j + "]" + " ";

 }

 pyramidString += "\n";

Murach’s Beginning Java 2

 page 205

}

System.out.println(pyramidString);

The result of the code shown above

More skills for working with arrays
Now that you’ve learned how to work with one- and two-dimensional arrays, you’re ready to learn some
new skills for working with arrays. So in this topic, you’ll learn how to use the Arrays class, the
Comparable interface, and the System class to work with arrays. You’ll also learn how to create a
second reference to an array.

The methods of the Arrays class
The Arrays class of the java.util package contains several static methods that you can use to compare,
sort, and search arrays. In addition, you can use this class to assign a value to one more elements of an
array. Figure 9-6 describes these methods.
As you can see, you can use the fill method to assign a value to all or part of an array. You can use the
equals method to compare two arrays to check whether they contain the same number of elements with
the same values stored within each element. And you can use the sort method to sort all or part of an
array. Note, however, that if you want to sort objects that are created from classes that you defined,
such as the BookOrder class, you must implement the Comparable interface as shown in figure 9-8.

The last method in this summary is the binarySearch method, which lets you search for an element with
a specific value and return its index. Before you can use this method, though, you must use the sort
method to sort the array.

In general, the methods in this figure work as you would expect. You can supply an array of primitive
types or an array of objects as the array argument for any of the methods, and you can supply any
primitive type or object as the value argument. However, you must make sure that the value type
matches the array type. In addition, when you supply an index argument, you must make sure that the
index falls within the array. Otherwise, the method will throw an exception.

Figure 9-6: The methods of the Arrays class
The Arrays class

java.util.Arrays

Static methods of the Arrays class

Murach’s Beginning Java 2

 page 206

Description

 All of these methods accept arrays of the primitive data types and arrays of objects
for the arrayName argument, and they all accept primitive types and objects for the
value argument.

 All of the index arguments for these methods must be int types. If an index argument
is less than zero or greater than one less than the length of the array, the method
will throw an exception of the ArrayIndexOutOfBounds type.

 The sort method will only work on an array of objects created from a user-defined
class, such as the Book class, when the class implements the Comparable interface
as shown in figure 9-8.

Code examples that work with the Arrays class
To make sure that you understand how the methods of the Array class work, figure 9-7 presents some
examples that show how you can use these methods. Here, the first five examples show how to work
with one-dimensional arrays while the last example shows how to work with a two-dimensional array.

The first example shows how to use the fill method to assign a value to all of the elements in an array of
int values and an array of Book objects. Here, the first statement creates an array of 5 int values, which
automatically initializes all five to 0. Then, the second statement uses the fill method of the Arrays class
to set all five values to 1. Similarly, the third statement creates an array of 5 Book objects, which
automatically sets all five to a null value. Then, the fourth statement uses the fill method of the Arrays
class to set all five Book object references equal to a single Book object. As a result, all five elements of
this array will reference the same Book object.

The second example shows how to use the fill method to fill just part of an array. Here, the second and
third arguments for the method indicate that elements 0 and 1 should be filled (not including element 2)
with a value of 4. This use of indexes works the same way if you want to sort just part of an array.

The third example shows how to use the equals method to compare two arrays. Here, the first two
statements create two arrays of String objects. Then, the third statement uses the equals method to
compare these arrays. Although these arrays contain the same number of elements, the values stored
within each element are different. As a result, the equals method will return a false value.

The fourth example shows how to use the sort method to sort an array of int values. Here, the first
statement creates an unsorted array of integers from 0 to 9, and the second statement uses the sort
method to sort these values. After the sort, the first element in this array will be 0, the second element
will be 1, and so on.

The fifth example shows how to use the binarySearch method. Here, the first statement creates an
array of unsorted strings. Then, the second statement uses the sort method to sort this array. For
strings, this will result in the array being sorted alphabetically from A to Z. As a result, the binarySearch

Murach’s Beginning Java 2

 page 207

method used in the third statement will return a value of 2, which means that the string is the third
element of the array.

The last example shows how to use the sort method to sort the rows in a two-dimensional array. To do
that, this example uses a loop to cycle through each of the rows in the two-dimensional array. Within the
loop, it calls the sort method for each row. When the loop finishes, the grades in each row will be sorted
from low value to high value.

Figure 9-7: Code examples that work with the Arrays class
Code that uses the fill method

int[] quantities = new int[5];

Arrays.fill(quantities, 1);

Book[] books = new Book[5];

Arrays.fill(books, new Book("warp"));

Code that uses the fill method to fill the first two elements in an array

int[] quantities = new int[5];

Arrays.fill(quantities, 0, 2, 4);

Code that uses the equals method

String[] bookCodes = {"warp", "mbdk"};

String[] newBookCodes = {"warp", "citr"};

boolean bookCodesEqual = Arrays.equals(bookCodes, newBookCodes);

Code that uses the sort method

int[] numbers = {2,6,4,1,8,5,9,3,7,0};

Arrays.sort(numbers);

Code that uses the sort and binarySearch methods

String[] bookCodes = {"warp", "mbdk", "citr"};

Arrays.sort(bookCodes);

int index = Arrays.binarySearch(bookCodes, "warp");

Code that uses the sort method on a two-dimensional array

double[][] grades = {{92.3, 88.0, 95.2, 90.5},

 {70.2, 79.1, 82.0, 69.8},

 {88.5, 92.0, 84.4, 97.9}};

for (int i = 0; i < grades.length; i++){

 Arrays.sort(grades[i]);

}

Murach’s Beginning Java 2

 page 208

How to implement the Comparable interface
You can only use the sort method of the Arrays class to sort arrays of objects when the classes for
those objects implement the Comparable interface. As a result, you need to implement the Comparable
interface for any classes that you need to sort. To do that, you must code a compareTo method similar
to the one shown in figure 9-8.

If you look up the Comparable interface in the documentation for the Java API, you’ll see how it’s
designed to work. In short, any class that implements the Comparable interface must implement the
compareTo method. This method should return -1 if the current object is less than the passed object, 0
if the two objects are equal, and 1 if the current object is greater than the passed object.

This first example in this figure shows one way that the BookOrder class can implement the
Comparable interface and its compareTo method. Since the compareTo method accepts an Object
type, the first statement casts the object to the BookOrder type. Then, the second and third statements
get the total values from the current BookOrder object and the passed BookOrder object. Last, the if
statements compare the two values and return the appropriate values.

Because the compareTo method uses the total variable as the basis for comparison, BookOrder objects
will be sorted by their total variables when you use the sort method of the Arrays class to sort them. If
you wanted to sort them by title or quantity or any other combination of variables, though, you just code
the compareTo method that way.

The second example shows how the sort method can be used with BookOrder objects. After the array is
created, the sort method of the Arrays class is used to sort the array. Then, a for loop is used to print
the objects in sequence. As a result, code like this can be used to test whether the compareTo method
(and the sort) is working properly. If it is, the three BookOrder objects will be sorted by their totals.

Figure 9-8: How to implement the Comparable interface
The Comparable interface defined in the Java API

public interface Comparable{

 int compareTo(Object obj);

}

A class that implements the Comparable interface

public class BookOrder implements Comparable{

 //body of BookOrder class

 public int compareTo(Object o){

 BookOrder bookOrder2 = (BookOrder) o;

 double total1 = this.getTotal();

 double total2 = bookOrder2.getTotal();

 if (total1 < total2)

 return -1;

 if (total1 > total2)

 return 1;

 return 0;

 }

Murach’s Beginning Java 2

 page 209

}

Code that uses the sort method of the Arrays class (which uses the compareTo method of the
BookOrder class)

import java.util.*;

public class CompareTestApp{

 public static void main(String args[]){

 BookOrder[] bookOrder = new BookOrder[3];

 bookOrder[0] = new BookOrder("warp", 2);

 bookOrder[1] = new BookOrder("mbdk", 3);

 bookOrder[2] = new BookOrder("warp", 1);

 Arrays.sort(bookOrder);

 for (int i = 0; i < bookOrder.length; i++){

 System.out.println(bookOrder[i]);

 }

 }

}

Description
 If you implement the Comparable interface for a class, you have to define the

compareTo method. Then, you can use the sort method of the Arrays class to sort
an array of objects created from that class. During the sort, the sort method uses
the compareTo method of that class.

 When you code the compareTo method in your class, you should return -1 if the
current object is less than the passed object, 0 if the objects are equal, and 1 if the
current object is greater than the passed object. In this example, the code sorts
BookOrder objects by the total field, but you could sort these objects by any field or
combination of fields.

How to reference an array
The first example in figure 9-9 shows how to create a reference to an array by assigning one array
variable to a second array variable. Here, the grades variable and the percentages variable both refer to
the same array. As a result, any change to the grades variable will be reflected by the percentages
variable and vice versa. For instance, the last statement in this example sets the element at index 1 in
the percentages array to 70.2, which is also the element that’s referred to by index 1 in the grades
array.
Since arrays are immutable, they can’t grow or shrink. However, you can use an existing array variable
to reference a larger or smaller array. When you do this, the original elements are erased from memory
and the array variable references the new array. For instance, assume you created an array that
contains 5 elements. Then, later in the program, you realize that you want that array to have 20
elements. To do this, you just reuse the array variable as shown in the second example and create a
new array of 20 elements.

Murach’s Beginning Java 2

 page 210

How to copy an array

If you want to create a copy of an array, you can use the arraycopy method of the System class as
shown in this figure. Then, each array variable will point to its own copy of the array, and any changes
that are made to one array won’t affect the other array.

To use the arraycopy method, you specify the five arguments shown in the figure. First, you specify the
source array and the starting index. Next, you specify the target array and the starting index. Then, you
specify the total number of elements to copy. When you use the arraycopy method, the target array
must be large enough to handle the number of elements that you’re copying, and both arrays must be of
the same type.

The third example in this figure shows how to make a copy of an entire array. Here, both index values
are set to 0 and the intLength argument is set to the length of the grades array. As a result, this example
copies all of the elements of the grades array into the percentages array.

The fourth example shows how to copy parts of one array into another array. Here, the first statement
creates an array of four double values, and the second statement sorts these values from lowest to
highest. Next, the third statement creates an array that can hold two double values, and the fourth
statement copies the two lowest values into it. Then, the fifth statement creates an array that can hold
two double values, and the sixth statement copies the two highest values into it.

Figure 9-9: How to reference and copy arrays
The arraycopy method from the System class

System.arraycopy(fromArray, intFromIndex, toArray, intToIndex, intLength);
Code that creates a reference to an array

double[] grades = {92.3, 88.0, 95.2, 90.5};

double[] percentages = grades;

percentages[1] = 70.2; //grades[1] and percentages[1] are both 70.2

Code that reuses an array variable

double[] grades = new grades[5];

grades = new grades[20];

Code that copies the values of an array

double[] grades = {92.3, 88.0, 95.2, 90.5};

double[] percentages = new double[grades.length];

System.arraycopy(grades, 0, percentages, 0, grades.length);

percentages[1] = 70.2; //grades[1] isn’t modified by this statement

Code that copies part of one array into another array

double[] grades = {92.3, 88.0, 95.2, 90.5};

Arrays.sort(grades);

double[] lowestGrades = new double[2];

System.arraycopy(grades, 0, lowestGrades, 0, 2);

double[] highestGrades = new double[2];

System.arraycopy(grades, 2, highestGrades, 0, 2);

Murach’s Beginning Java 2

 page 211

Description
 To reference an existing array, code an assignment statement like the one shown in

the first example. Then, two variables will point to the same array in memory.
 To copy the values of one array into another, use the arraycopy method of the

System class as shown in the second and third examples.
 When you copy an array, the target array must be the same type as the sending

array and it must be large enough to receive all of the elements that are copied to it.

How to work with the String class
In chapter 2, you learned how to create a String object and how to use a couple of the methods of the
String class that compare two strings. Now, you’ll learn some new ways to create String objects, and
you’ll learn how to use more of the methods of the String class.

Constructors of the String class
Figure 9-10 shows four constructors of the String class. The first constructor provides another way to
create an empty string; the second constructor provides another way to create a string from a string;
and the third and fourth constructors allow you to create a string from an array of characters or bytes.
Although none of these constructors are commonly used, the third and fourth constructors show that
you can think of a string as an array of characters.

Code examples that create strings
The first two examples show two ways to create a string. In both of these examples, the first statement
uses the shorthand notation you learned how to use in chapter 2. Then, the second statement shows
how to do the same task using a constructor of the String class.

The third example creates a string from an array of characters. Here, the second statement converts the
entire array of characters to a string named cityString1. Then, the third statement converts the first three
characters in the array to a string named cityString2.
The fourth example creates a string from an array of bytes. Here, the first statement creates an array of
bytes that represents the same characters as the characters that are used in the third example. That’s
because every character in the ASCII character set corresponds to a byte value. For example, the byte
value of 68 represents the character D. Then, the second and third statements in this example work just
like they did in the previous example

Figure 9-10: How to create strings
The String class

java.lang.String

Some constructors of the String class

Examples

Two ways to create an empty string

String name = "";

String name = new String();

Two ways to create a string from another string

Murach’s Beginning Java 2

 page 212

String title = "Wuthering Heights";

String title = new String("Wuthering Heights");

Two ways to create a string from an array of characters

char cityArray[] = {‘D’,’a’,’l’,’l’,’a’,’s’};

String cityString1 = new String(cityArray);

String cityString2 = new String(cityArray, 0, 3);

Two ways to create a string from an array of bytes

byte cityArray[] = {68, 97, 108, 108, 97, 115};

String cityString1 = new String(cityArray);

String cityString2 = new String(cityArray, 0, 3);

Notes
 For the fourth constructor shown above, the characters referenced by the intOffset

and intLength arguments must fall within the array. Otherwise, the constructor will
throw an exception of the IndexOutOfBounds type.

 Since String objects are immutable, they can’t grow or shrink. In the next topic, you’ll
learn how to work with StringBuffer objects that can grow and shrink.

Methods of the String class
In chapter 2, you learned how to use the equals and equalsIgnoreCase methods of the String class to
compare strings. Now, figure 9-11 reviews these methods and introduces you to 13 more methods that
you can use to work with strings. In the next figure, you’ll see some examples that use some of these
methods. You can also get more information about any of these methods by looking up the String class
in the documentation for the Java API.

The first five methods return an int value. Here, the length method returns the total number of
characters in the string. In contrast, the indexOf and lastIndexOf methods return a value that represents
an index within the string. This index value works as if the string was an array of characters. In other
words, the index value for the first character in a string is 0, the index value for the second character is
1, and so on.

The next four methods return a string. Here, the trim method returns the string, but it removes any
spaces from the beginning and end of the string. On the other hand, the substring method allows you to
return part of a string by specifying index values. When you use this method, you must make sure to
specify an index value that’s greater than or equal to 0 and less than the length of the string. Otherwise,
this method will throw an exception of the StringIndexOutOfBoundsException type.

The last five methods return a boolean value. Here, the equals and equalsIgnoreCase methods
compare strings and return a true value if the strings are equal. On the other hand, the startsWith and
endsWith methods check whether a string starts or ends with a certain combination of characters and
return true values if it does. These methods work similarly to the equals method.

Figure 9-11: Methods of the String class
Methods of the String class

Murach’s Beginning Java 2

 page 213

Note
If you supply an index argument that’s negative or greater than the length of the
string minus one, the method will throw an exception of the
StringIndexOutOfBounds type.

Code examples that work with strings
Figure 9-12 shows some examples of how you can use the methods of the String class. In particular,
this figure provides some examples that use the String class to parse strings.

The first example shows how to parse the first name from a string when a user enters a full name. Here,
the first statement uses a dialog box that lets a user enter a full name, and the second statement uses
the trim method to remove any spaces from the beginning or end of the string that the user may have
accidentally typed. Then, the third statement uses the indexOf method to get the index of the first space
in the string, which should be between the first name and the middle name or last name. If this method
doesn’t find a space in the string, it will return -1 and the if/else statement that follows uses the substring
method to set the first name variable equal to the entire name string. Otherwise, the if/else statement
uses the substring method to set the first name variable equal to the string that begins at the first
character of the string and ends at the first space character in the string.

The second example shows how to parse a string that contains an address into the components of the
address. In this case, a pipe character (|) separates each component of the address. Here, the second
statement uses the trim method to remove any spaces from the beginning and end of the string. Next,
an if/else statement sets the value of the streetIndex variable depending on whether the string starts

Murach’s Beginning Java 2

 page 214

with a pipe character. If it does, the if statement sets the streetIndex to 1 so the pipe character won’t be
included in the substring. The next three statements use the indexOf and lastIndexOf methods to
determine the index values of the first character for each substring. To do that, you find the index of the
pipe character and add 1. The last four statements supply these index variables as arguments of the
substring method to return the street, city, state, and zip code substrings.

The third example shows how to add dashes to a phone number. To do this, this example creates a
second string. Then, it uses the substring method to parse the first string and add the dashes at the
appropriate locations in the string. In a moment, you’ll learn an easier way to accomplish this task.

The fourth example shows how to remove the dashes from a phone number. To do this, this example
creates a second string. Then, it uses a for loop to cycle through each character in the first string. The
only statement within this loop uses the charAt method to add all characters in the first string that are
not equal to a dash to the second string. As a result, the second string won’t contain any dashes. In a
moment, you’ll learn another way to accomplish this task.

Figure 9-12: Code examples that work with strings
Code that parses a first name from a name string

String inputString = JOptionPane.showInputDialog(

 "Enter your full name: ");

String name = inputString.trim();

int indexOfSpace = name.indexOf(" ");

String firstName = null;

if (indexOfSpace == -1)

 firstName = name.substring(0);

else

 firstName = name.substring(0, indexOfSpace);

Code that parses a string that contains an address

String address = " |805 Main Street|Dallas|TX|12345 ";

address = address.trim();

int streetIndex;

if (address.startsWith("|"))

 streetIndex = 1;

else

 streetIndex = 0;

int cityIndex = 1 + address.indexOf("|", streetIndex+1);

int stateIndex = 1 + address.indexOf("|", cityIndex+1);

int zipIndex = 1 + address.lastIndexOf("|");

String street = address.substring(streetIndex, cityIndex-1);

Murach’s Beginning Java 2

 page 215

String city = address.substring(cityIndex, stateIndex-1);

String state = address.substring(stateIndex, zipIndex-1);

String zip = address.substring(zipIndex);

Code that adds dashes to a phone number

String phoneNumber1 = "9775551212";

String phoneNumber2 = phoneNumber1.substring(0, 3);

phoneNumber2 += "-";

phoneNumber2 += phoneNumber1.substring(3, 6);

phoneNumber2 += "-";

phoneNumber2 += phoneNumber1.substring(6);

Code that removes dashes from a phone number

String phoneNumber1 = "977-555-1212";

String phoneNumber2 = "";

for(int i = 0; i < phoneNumber1.length(); i++){

 if (phoneNumber1.charAt(i) != ‘-’)

 phoneNumber2 += phoneNumber1.charAt(i);

}

How to work with the StringBuffer class
When you use the String class to work with strings, the string is a fixed length, and you can’t edit the
characters that make up the string. In other words, the String class creates strings that are immutable.
The only way you can change this type of string is to assign a new string to the String object, which
deletes the original string and replaces it with the new string.
If you want more flexibility when working with strings, you can use the StringBuffer class. When you use
this class, you create strings that are mutable. In other words, you can add, delete, or replace the
characters in a StringBuffer object. This makes it easier to write some types of routines, and it can
improve the efficiency of your code in some situations.

Constructors and methods of the StringBuffer class
Figure 9-13 shows three constructors and thirteen methods of the StringBuffer class. In the next figure,
you’ll see some examples that use these constructors and methods. As always, you can find more
information on these constructors and methods by looking up the StringBuffer class in the
documentation for the Java API.
To create a StringBuffer object, you must use one of the three constructors shown in this figure. The
first constructor creates an empty StringBuffer object with a capacity of 16 characters. In other words,
Java allocates a block of memory, or a buffer, that can hold up to 16 characters. Then, if you add
characters to this StringBuffer object so the number of characters exceeds 16 characters, Java will
automatically increase the capacity.

Whenever possible, you should set the capacity so it’s appropriate for your needs. Otherwise, Java will
have to allocate memory each time capacity is exceeded, and that can cause your programs to run less
efficiently. On the other hand, if you set a large capacity and use a small percentage of it, you waste
memory.

Murach’s Beginning Java 2

 page 216

The second and third constructors show how to set the capacity for your needs. If you know roughly
how many characters you will need, you can use the second constructor to set the capacity. On the
other hand, if you need the StringBuffer to be large enough to accommodate the number of characters
stored in a particular String object, you can use the third constructor.

Once you create a StringBuffer object, you can use the methods in this figure to work with the object.
You can use the first three methods to check the capacity of the object or to check or set the length of
the string. You can use the next six methods to add, edit, or delete strings or characters. And you can
use the last four methods to return a String object or a character.

Figure 9-13: Constructors and methods of the StringBuffer class
The StringBuffer class

java.lang.StringBuffer

Constructors of the StringBuffer class

Methods of the StringBuffer class

Description

Murach’s Beginning Java 2

 page 217

 StringBuffer objects are mutable, which means you can modify the string in the
buffer.

 The capacity of a StringBuffer object is the block of memory, or buffer, that’s
allocated to hold the number of characters of the string. If you add characters to a
StringBuffer object so it exceeds its capacity, Java automatically increases the
capacity by doubling the current capacity and adding two characters (capacity * 2 +
2).

 The append and insert methods accept primitive types, objects, and arrays of
characters.

Code examples that work with the StringBuffer class
Figure 9-14 presents some examples that show how you can use the constructors and methods of the
StringBuffer class. In particular, this figure shows how to add characters to the end of a string, how to
insert characters into the middle of a string, and how to delete characters from a string.

The first example shows how to use the append method to add characters to the end of a StringBuffer
object. Here, the first statement creates an empty StringBuffer object with the default initial capacity of
16 characters. Then, the next three statements use the append method to add 10 characters to the end
of the string. As a result, the length of the string is 10 and the capacity of the StringBuffer object is 16.

The second example adds dashes to the string that was created in the first example. Here, the first
statement uses the insert method to insert a dash after the first three characters. This pushes the
remaining seven numbers back one index. Then, the second statement uses the insert method to insert
a dash after the eighth character in the string. This pushes the remaining four numbers in the string
back one index.

The third example shows how to remove the dashes from the phone number created by the first two
examples. Here, a loop cycles through each character. Within the loop, an if statement uses the charAt
method to check if the current character is a dash. If so, the deleteCharAt method is used to delete that
character. This causes all characters to the right of the dash to move forward one index.

The fourth example shows how to use the substring method of the StringBuffer class to return a String
object. Here, the first statement uses a constructor to create the StringBuffer object from a String object.
Then, the next three statements use the substring method to create three String objects from the
StringBuffer object. For example, the second statement specifies a substring that goes from the first
character up to, but not including, the fourth character. This shows that the substring method works the
same for the StringBuffer class as it does for the String class.

The fifth example shows how a StringBuffer object automatically increases its capacity as the length of
the string increases. Here, the first statement creates an empty StringBuffer object with a capacity of 8
characters, and the second statement uses the capacity method to check the capacity. Next, the third
statement appends a string of 17 characters to the empty string. Since this call exceeds the capacity,
Java automatically increases the capacity to twice the initial capacity plus 2 characters. Then, the last
two statements check the length and capacity of the modified StringBuffer object.

Figure 9-14: Code examples that work with the StringBuffer class
Code that creates a phone number

StringBuffer phoneNumber = new StringBuffer();

phoneNumber.append("977");

phoneNumber.append("555");

phoneNumber.append("1212");

Code that adds dashes to a phone number

phoneNumber.insert(3, ‘-’);

phoneNumber.insert(7, ‘-’);

Code that removes dashes from a phone number

Murach’s Beginning Java 2

 page 218

for(int i = 0; i < phoneNumber.length(); i++){

 if (phoneNumber.charAt(i) == ‘-’)

 phoneNumber.deleteCharAt(i);

}

Code that parses a phone number

StringBuffer phoneNumber = new StringBuffer("977-555-1212");

String areaCode = phoneNumber.substring(0,3);

String prefix = phoneNumber.substring(4,7);

String suffix = phoneNumber.substring(8);

Code that shows how capacity automatically increases

StringBuffer name = new StringBuffer(8);

int capacity1 = name.capacity(); //capacity1 is 8

name.append("Raymond R. Thomas");

int length = name.length(); //length is 17

int capacity2 = name.capacity(); //capacity2 is 18 (2 * capacity1 + 2)

How to work with the Vector class
Earlier in this chapter, you learned how to create an array that stores a fixed number of elements. Like
an array, a vector stores related data items that can be accessed using an integer index. Unlike an
array, though, the size of a vector can grow or shrink as elements are added or removed. This makes
vectors more flexible and appropriate for certain types of coding situations. Note, however, that vectors
can only be used with objects. As a result, you need to use wrapper classes to work with primitive data
types as shown in the next figure.

Constructors and methods of the Vector class
Figure 9-15 shows the constructors and methods of the Vector class that you can use to work with a
collection of objects. In the next figure, you’ll see some examples that show how you can use these
constructors and methods. For more information on these and other methods of the Vector class, you
can look this class up in the API documentation.

Like a StringBuffer object, each Vector object has a capacity that refers to the block of memory that’s
allocated for the object. When you code the constructor for a Vector object, you affect how Java
manages capacity. If you use the first constructor, the Vector object will start with the default capacity of
10 objects. On the other hand, if you use the second constructor, you can specify a starting capacity.
Either way, if the size of a vector exceeds its capacity, Java automatically doubles its capacity.

In contrast, if a vector created from the third constructor exceeds its capacity, Java automatically
increases the capacity by the specified increment amount. If the capacity increment amount is 0,
though, Java doubles the capacity just as it would with the second constructor. The fourth constructor in
this figure lets you create a Vector object by supplying another Vector object as an argument.

Once you create a Vector object, you can use its methods to work with the vector. You can use the first
two methods to check the capacity or size of the vector. You can use the third method to get the index
of an object in the vector. You can use the next six methods to add, get, set, or remove the objects in a
vector. And you can use the last method to convert a vector to an array. Most of these methods work
similarly to the methods of the StringBuffer class.

Murach’s Beginning Java 2

 page 219

Figure 9-15: Constructors and methods of the Vector class
The Vector class

java.util.Vector

Constructors of the Vector class

Methods of the Vector class

Description

 A vector is a data structure similar to an array, but it can change its capacity as
objects are added or removed. Although a vector can only hold objects, not primitive
types, it can hold wrappers that contain primitive types.

 When you use the first constructor above, Java sets the initial capacity of the vector
to 10 objects.

 When you use the first or second constructor above, Java doubles the capacity if the
size of the vector becomes larger than its capacity. When you use the third
constructor, you can specify an increment amount for the vector that will be used
instead of doubling the current capacity.

 If you specify an index that’s outside the range of the vector, the vector will throw an
exception of the ArrayIndexOutOfBoundsException type.

Code examples that work with the Vector class
Figure 9-16 presents some examples that show how you can use the constructors and methods in the
previous figure to create and work with Vector objects. In particular, it shows how to create vectors, how
to add objects to a vector, and how to retrieve objects from a vector.

The first example shows how to create a vector that stores three strings. Here, the first statement
creates a Vector object that has the default initial capacity of 10. Then, the second and third statements
add strings to the end of this vector while the fourth statement adds a string to the beginning of the
vector, which pushes the first two strings back one index. At this point, this vector has a capacity of 10
elements and a size of 3 objects.

Murach’s Beginning Java 2

 page 220

The second example shows how to print all of the objects in a vector to the console. Here, a loop cycles
through all of the objects in the vector. Within the loop, the first statement uses the get method to
retrieve the string. Since the get method returns an object of the Object type, this statement casts the
result of the get method to a String type. Then, the second statement prints the string to the console.

The third and fourth examples show how to replace or delete an element in the vector created by the
first example. In the third example, the set method is used to replace the third element in the vector with
a new string. In the fourth example, both statements delete an object from a vector.

The fifth example shows how to copy all of the elements of a vector into an array. Here, the first
statement uses the size method of the vector to create an array that has the same size as the vector.
Then, the second statement uses the copyInto method to copy all objects stored in the vector into the
array.

The last three examples show how you can use vectors to work with different types of objects. The sixth
example uses a wrapper class to store primitive data types in a vector. The seventh example stores
GregorianCalendar objects in a vector. And the eighth example stores BookOrder objects in a vector.

Figure 9-16: Code examples that work with the Vector class
Code that creates a vector and adds three objects

Vector codesVector = new Vector();

codesVector.add("mbdk");

codesVector.add("citr");

codesVector.add(0, "warp");

Code that prints all objects in a vector to the console

for (int i = 0; i < codesVector.size(); i++){

 String code = (String) codesVector.get(i);

 System.out.println(code);

}

The result of the code shown above

Code that replaces an object with another object

codesVector.set(2, "wuth");

Two ways to delete an object from a vector

codesVector.remove("wuth");

codesVector.remove(2);

Code that converts a vector to an array

String[] codesArray = new String[codesVector.size()];

Murach’s Beginning Java 2

 page 221

codesVector.copyInto(codesArray);

A vector that stores integers

Vector intVector = new Vector();

intVector.add(new Integer(1));

intVector.add(new Integer(2));

intVector.add(new Integer(3));

A vector that stores GregorianCalendar objects

Vector datesVector = new Vector();

datesVector.add(new GregorianCalendar(2001, 4, 6));

datesVector.add(new GregorianCalendar(2001, 8, 19));

A vector that stores BookOrder objects

Vector ordersVector = new Vector();

ordersVector.add(new BookOrder("warp", 2));

ordersVector.add(new BookOrder("mbdk", 1));

The Invoice application
To show how vectors can be used in a complete application, this chapter now presents an Invoice
application that uses a vector as an instance variable. This is a common use of a vector. As you will
see, the Invoice and InvoiceApp classes of this application use the BookOrder and Book classes that
have been used throughout this book.

The user interface
Figure 9-17 shows the user interface for the Invoice application. Here, the first dialog box asks the user
to enter a number for the invoice. Then, the next three dialog boxes ask the user to enter one or more
book orders. When the user enters “x” in the fourth dialog box to stop entering book orders, the fifth
dialog box displays the data that’s been stored for the invoice. In this figure, two books have been
ordered, but the user could have ordered one or more books.

The code

d shows the code for the Invoice class. This class uses a vector as an instance variable, which allows
an Invoice object to contain one or more BookOrder objects. In the constructor of the Invoice class, the
reference to the vector of BookOrder objects is set equal to the vector that’s passed to the constructor
from the InvoiceApp class.

The calculateTotal method of the Invoice class uses a loop to sum the totals for all of the BookOrder
objects to get the total for the Invoice object. Within the loop, the first statement retrieves the BookOrder
object from the vector. Then, the second statement adds the total for that BookOrder object to the total
for the Invoice object.

The toString method of the Invoice class begins by adding the invoice number, date, and total to an
invoice string. Then, it uses a loop to add a string representation of all of the BookOrder objects in the
Invoice object to the invoice string. To save space, this string includes just the code, price, quantity, and
total for each book order. In a more realistic application, though, this loop would also contain a
description of the book.
Figure 9-19 shows the code for the InvoiceApp class. This class works much like the BookOrderApp
class. However, it uses a vector to store each BookOrder object that’s created by the application. Then,
when the user enters “x” to exit the loop, the first statement after the loop passes the vector of

Murach’s Beginning Java 2

 page 222

BookOrder objects to the constructor of the Invoice class. And the second statement displays a string
representation of the newly created Invoice object in the final dialog box of the Invoice application.

Figure 9-17: The user interface for the Invoice application
The first dialog box

The second dialog box

The third dialog box

The fourth dialog box

The fifth dialog box

Figure 9-18: The code for the Invoice class

The code for the Invoice class

import java.text.*;

import java.util.*;

public class Invoice{

 private String number;

 private Date date;

Murach’s Beginning Java 2

 page 223

 private Vector bookOrders;

 private double total;

 public Invoice(String invoiceNumber, Vector orders){

 number = invoiceNumber;

 date = new Date();

 bookOrders = new Vector(orders);

 calculateTotal();

 }

 public double calculateTotal(){

 total = 0;

 for(int i = 0; i < bookOrders.size(); i++){

 BookOrder bookOrder = (BookOrder) bookOrders.get(i);

 total += bookOrder.getTotal();

 }

 return total;

 }

 public String toString(){

 DateFormat shortDate = DateFormat.getDateInstance(DateFormat.SHORT);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 String invoiceString = "Invoice number: " + number + "\n"

 + "Invoice date: " + shortDate.format(date) + "\n"

 + "Invoice total: " + currency.format(total) + "\n\n"

 + "Book Orders: \n";

 for(int i = 0; i < bookOrders.size(); i++){

 BookOrder bookOrder = (BookOrder) bookOrders.get(i);

 invoiceString += " " + bookOrder.getBook().getCode() + " "

 + currency.format(bookOrder.getBook().getPrice()) + " "

Murach’s Beginning Java 2

 page 224

 + bookOrder.getQuantity() + " "

 + currency.format(bookOrder.getTotal()) + "\n";

 }

 return invoiceString;

 }

}

Figure 9-19: The code for the InvoiceApp class
The code for the InvoiceApp class

import javax.swing.*;

import java.util.*;

public class InvoiceApp{

 public static void main(String args[]){

 String invoiceNumber = JOptionPane.showInputDialog(

 "Enter an invoice number:");

 Vector bookOrders = new Vector();

 String choice = "";

 while (!(choice.equalsIgnoreCase("x"))){

 String code = JOptionPane.showInputDialog(

 "Enter a book code:");

 String inputQuantity = JOptionPane.showInputDialog(

 "Enter a quantity:");

 int quantity = Integer.parseInt(inputQuantity);

 BookOrder bookOrder = new BookOrder(code, quantity);

 bookOrders.add(bookOrder);

 choice = JOptionPane.showInputDialog(

 "Press Enter to continue or enter ‘x’ to exit:");

 }//end while

 Invoice invoice = new Invoice(invoiceNumber, bookOrders);

 JOptionPane.showMessageDialog(null,

Murach’s Beginning Java 2

 page 225

 invoice.toString(), "Invoice", JOptionPane.PLAIN_MESSAGE);

 System.exit(0);

 }

}

Perspective
Now that you’ve finished this chapter, you should know how to work with one-dimensional and two-
dimensional arrays. You should also know how to use the String and StringBuffer classes to work with
strings, and you should know how to use the Vector class to work with vectors. These are important
skills that you’ll use in many applications.

Summary
 An array is a special type of object that can store more than one primitive data type or

object. The length (or size) of an array is the number of elements that are stored in the
array. The index is the number that is used to identify any element in the array.

 A one-dimensional array provides for a single list or column of elements so just one
index value is required to identify each element. In contrast, a two-dimensional array, or
an array of arrays, can be used to organize data in a table that has rows and columns.
As a result, two index values are required to identify each element.

 You can use the Arrays class to fill, compare, sort, and search arrays. You can use an
assignment statement to create a second reference to the same array. And you can use
the arraycopy method of the System class to make a copy of an array.

 You can use the methods of the String class to find index values for each character in a
string, to return parts of the string, and to compare all or part of a string. However, String
objects are immutable so you can’t add, delete, or modify individual characters in a
string.

 StringBuffer objects are mutable so you can use the StringBuffer methods to add,
delete, or change characters in the string that’s in the buffer. Whenever necessary, Java
automatically increases the capacity of this buffer.

 You can use the Vector class to create vectors that can store other objects. Then, you
can use the methods of the Vector class to add, get, remove, and replace the objects
that are stored in the vector.

Terms
array array of arrays

length reference

size immutable object

element mutable object

index buffer

one-dimensional array capacity

two-dimensional array vector

Objectives
 Given a list of values or objects, write code that creates a one-dimensional array that

stores those values or objects. Then, write code that uses the values or objects in the
array.

 Given a table of values or objects, write code that creates a two-dimensional array that
stores those values or objects. Then, write the code that uses the values or objects
stored in the array.

 Use the Arrays class, the Comparable interface, the arraycopy method of the System
class, and a second reference to work with arrays.

Murach’s Beginning Java 2

 page 226

 Use the methods of the String class to parse a string.
 Use the StringBuffer class to create a mutable string, and use the methods of a

StringBuffer object to edit the string.
 Given the description of an unspecified number of objects, write code that creates a

vector that stores those objects. Then, use the methods of the Vector class to retrieve,
modify, add, and remove objects in the vector.

Exercise 9-1: Practice using arrays

In this exercise set, you’ll create an Array Test application so you can practice using arrays.
1. Enter the ArrayTestApp class shown here and save it in the c:\java\ch09 directory.

2. public class ArrayTestApp{
3. public static void main(String[] args){
4. double[] prices = {14.95, 12.95, 11.95, 9.95};
5. for (int i = 0; i < prices.length; i++){
6. System.out.println(prices[i]);
7. }
8. }

}
9. Compile and run the application. This application should print each price in the array

on a separate line.
10. Edit the code so it uses a loop to calculate the average of the prices as in figure 9-3.

When you compile and run the code, it should print all of the prices plus the average
of the prices to the console.

11. Edit the code so it uses nested for loops to create a table like the first table in figure
9-5. Then, code nested for loops that print the table to the console. When you
compile and run the code, it should print a table that has three rows and three
columns to the console.

12. Experiment with any of the other array-handling routines that are illustrated in this
chapter.

Exercise 9-2: Practice working with strings

In this exercise set, you’ll create a String Test application so you can practice working with strings.
1. Enter a class named StringTestApp that contains a main method and save it in the

c:\java\ch09 directory.
2. Within the main method, enter code that allows the user to enter a full name in a

dialog box. Next, enter code that parses the name so the first name and last name
are stored in separate strings. Then, enter code that displays the first and last names
in a second dialog box. When you compile and run this code, the first dialog box
should look like this:

3. And the second dialog box should look like this:

4. If necessary, edit this application so it works even if the user enters a space before or

after the name and even if the user enters a middle initial or a middle name.

Exercise 9-3: Create the Invoice application

This exercise guides you through the process of creating and testing the Invoice application that’s
shown in the last three figures of this chapter.

Murach’s Beginning Java 2

 page 227

1. Open the Invoice class that’s in the c:\java\ch09\invoice directory. Then, review the
code to make sure you know how it works, and compile this class.

2. Open the InvoiceApp class in the same directory, and edit the code so it works the
way the code in figure 9-19 works. Then, compile and run the InvoiceApp class. It
should display dialog boxes like the ones shown in figure 9-17.

3. Add a loop to the InvoiceApp class so this application lets the user enter more than
one invoice. To make that work, you can change the fifth dialog box so it asks
whether the user wants to enter more invoices.

Chapter 10: How to handle exceptions and debug code
In chapter 3, you learned how to catch an exception, and in chapter 5 you learned how to throw an
exception. Now, in this chapter, you’ll review how to catch and throw exceptions, and you’ll learn more
about exceptions, including how to throw and define your own exceptions. Then, you’ll learn two simple
techniques that can help you debug code without using an IDE.

An introduction to exceptions
It’s inevitable that your programs will encounter errors. For example, a user may enter data that’s not
appropriate for the program, or a file that your program needs may get moved or deleted. These types
of errors may cause a poorly-coded program to crash and cause the user to lose data. In contrast, when
an error occurs in a well-coded program, the program will notify the user, save as much data as
possible, clean up resources, and exit the program as smoothly as possible.
To help you handle errors, Java uses a mechanism known as exception handling. Before you learn how
to handle errors, though, you need to learn about the exception hierarchy and the exception handling
mechanism.

The exception hierarchy
In Java, exceptions are objects that are created from the Exception class or one of its subclasses.
These objects represent errors that have occurred, and they contain information about those errors. All
exception classes are derived from the Throwable class as shown by the diagram in figure 10-1.

This diagram shows that the Error and Exception classes are derived from the Throwable class. Since
classes in the Error subset describe internal errors and since these errors are rare, you can ignore this
subset most of the time. In contrast, you do need to handle most of the exceptions that are derived from
the Exception class.
The classes in the Exception subset can be divided into two categories: (1) exceptions derived from the
RuntimeException class and (2) all other exceptions. Since the compiler doesn’t check the exceptions
derived from the RuntimeException class, these exceptions are known as unchecked exceptions. On
the other hand, the compiler does check the rest of the exceptions derived from the Exception class. As
a result, these exceptions are known as checked exceptions, and they must be handled or you won’t be
able to compile your program.

Unchecked exceptions usually occur because of bad code. For example, if a program attempts to
access an array with an invalid index, Java will throw an ArrayIndexOutOfBounds exception, which is a
type of IndexOutOfBounds exception. If you’re careful when you write your code, you can usually
prevent these types of exceptions from being thrown.

Checked exceptions, on the other hand, usually occur due to circumstances that are beyond the
programmer’s control, such as a missing file or a bad network connection. Although you can’t avoid
these exceptions, you can write code that handles them when they occur.

Figure 10-1: The exception hierarchy
The Throwable hierarchy

Murach’s Beginning Java 2

 page 228

Common exceptions from the Java API

Exception

 ClassNotFoundException

 IOException

 EOFException

 FileNotFoundException

 NoSuchMethodException

 RuntimeException

 ArithmeticException

 IllegalArgumentException

 NumberFormatException

 IndexOutOfBoundsException

 ArrayIndexOutOfBoundsException

 StringIndexOutOfBoundsException

 NullPointerException

Description
 An exception is an object of the Exception class or any of its subclasses. It

represents a potential problem that can cause a program to malfunction or crash if it
isn’t handled properly.

Murach’s Beginning Java 2

 page 229

 Checked exceptions are checked by the compiler. As a result, you must supply code
that handles any checked exceptions or you won’t be able to compile your program.

 Unchecked exceptions are not checked by the compiler. Although you don’t have to
handle these exceptions, your program may malfunction or crash if you don’t. Since
these exceptions result from events like dividing by zero or using an index that’s out
of the bounds, you can usually avoid them by coding your programs properly.

 Java uses the Error class to identify possible internal errors. Since these types of
errors are rare and since there’s not much you can do about them, you can usually
ignore objects of the Error class.

How exceptions are propagated
Figure 10-2 shows how the exception handling mechanism works in Java. To start, when a method
encounters a problem that can’t be solved within that method, it throws an exception. This means that
control of the program is transferred, or thrown, to another method.
Most of the time, exceptions are thrown by methods from classes in the Java API. Then, any method
that calls a method that throws a checked exception must either throw the exception again or catch it
and handle it. The code that catches and handles the exception is known as the exception handler.
Once a method throws an exception, the run-time system begins looking for the appropriate exception
handler. To do this, it searches through the execution stack trace, or call stack. The stack trace is the
list of methods that are called when you call one method. In this diagram, for example, the stack trace is
methodA, methodB, methodC, and methodD. If the run-time system doesn’t find an appropriate
exception handler in the stack trace, the program may crash or become unstable. Then, Java will
display information about the exception to the console.

This figure shows how methodD calls methodC, which calls methodB, which calls methodA. Here,
methodA may throw an exception. If it does, methodB and methodC choose not to catch the exception.
Instead, they throw the exception to methodD, which contains an exception handler.

Figure 10-2: How exceptions are propagated
How Java propagates exceptions

Murach’s Beginning Java 2

 page 230

Two ways to handle checked exceptions

 Throw the exception.
 Catch the exception.

Description
 When a method causes a program to become unstable or crash, that method should

throw an exception. This warns other programmers who use the method and allows
them to handle the exception in a way that’s appropriate for their programs. Many
methods in the Java API throw exceptions.

 When a method calls another method that throws a checked exception, the method
must either throw the exception again or catch the exception. Code that catches an
exception is known as an exception handler.

 When an exception occurs, the run-time system looks for the appropriate exception
handler. To do that, it looks through the stack trace, or call stack, which lists the
methods that have been called.

Typical exceptions thrown by the Java API
Figure 10-3 shows some common exceptions that are thrown by the Java API. In addition, this figure
shows how you can use the documentation for the Java API to find out what exceptions are thrown by a
method.

The two tables at the top of this figure show some of the exceptions that are thrown by the methods of
the String, Integer, Double, and RandomAccessFile classes. If, for example, you pass an invalid index
to the charAt method of the String class, it will throw an IndexOutOfBoundsException object. Similarly, if
the constructor of the RandomAccessFile class can’t find the file that’s supplied as an argument, it will
throw a FileNotFoundException object.
In this figure, all of the exceptions thrown by the methods in the java.lang package are unchecked
exceptions. That’s why this chapter uses the RandomAccessFile class of the java.io package to
illustrate checked exceptions. For now, don’t worry if you don’t understand the coding details of the

Murach’s Beginning Java 2

 page 231

RandomAccessFile class. All you need to know about this class is that it allows you to open a file and
read data from it. In chapter 18, you’ll learn how to use this class.

The screen in this figure shows how you can use the API documentation for a method to see if it throws
any exceptions. For instance, if you look up the parseInt method of the Integer class, you’ll see the
information that’s shown. This shows that the parseInt method may throw an exception of the
NumberFormatException type, and it briefly explains why this exception may be thrown.

Figure 10-3: Typical exceptions thrown by the Java API 311
Typical exceptions thrown by the java.lang package

ypical exceptions thrown by the java.io package

The documentation for the parseInt method of the Integer class

Description

 In the exception lists above, all exceptions thrown by the java.lang package are
unchecked exceptions while all exceptions thrown by the java.io package are
checked exceptions.

 To find what exceptions are thrown by a method in the Java API, you can look up the
method in the API documentation.

Murach’s Beginning Java 2

 page 232

How to handle exceptions
Now that you understand how exceptions work, you’re ready to write code that handles them. To start,
you’ll learn how to code a method that throws an exception. Then, you’ll learn how to write code that
catches and handles an exception. And finally, you’ll learn how to write code that prevents exceptions
from being thrown in the first place. Since you’ve already been introduced to throwing and catching
exceptions in chapters 2 and 5, most of this material should be review.

How to throw exceptions
When you call a method from the Java API that throws a checked exception, you must either throw the
exception or catch it. If you decide that you can’t handle the exception properly in the method that you’re
coding, you code a throws clause as shown in figure 10-4. This throws the exception so it can be caught
by another method. If a method throws more than one exception, you use commas to separate the
exceptions that are in the throws clause.

The first example shows how to code a getFileLength method that throws two types of exceptions.
Here, the first statement in this method calls the constructor of the RandomAccessFile class, which may
throw an exception of the FileNotFoundException type. Then, the next two statements call methods of
the RandomAccessFile class that may throw an exception of the IOException type. As a result, the
declaration for the getFileLength method uses a throw statement to identify both of these types of
exceptions. Since the FileNotFoundException is a subclass of the IOException class, this method could
throw the IOException object only. However, coding both exceptions in the declaration makes the code
easier to understand.

The second example shows how to code a getRecordCount method that uses the getFileLength method
shown in the first example. Since this method starts by calling the getFileLength method, it must throw
or handle the two exceptions that are thrown by that method. In this example, the getRecordCount
method uses a throws clause to throw both of these exceptions.

Figure 10-4: How to throw exceptions
The syntax for coding the throws clause of a method

method declaration throws ExceptionOne[, ExceptionTwo] ... {}
Example 1: A method that throws two types of exceptions

public static long getFileLength() throws FileNotFoundException,

 IOException{

 RandomAccessFile in = new RandomAccessFile("books.dat", "r");

 long length = in.length();

 return length;

}

Example 2: A method that calls the getFileLength method shown above

public static int getRecordCount() throws FileNotFoundException,

 IOException{

 long length = getFileLength(); // throws two exceptions

 int recordCount = (int) (length / RECORD_SIZE);

 return recordCount;

}

Description
 To throw an exception, you code a throws clause in the method declaration.

Murach’s Beginning Java 2

 page 233

 Any method that calls a method that throws a checked exception must throw the
exception as shown above or catch the exception as shown in the next figure.
Otherwise, the program won’t compile.

 Although you can throw unchecked exceptions, the compiler doesn’t force you to
handle these exceptions.

How to catch exceptions
Figure 10-5 shows how to code try/catch/finally blocks to catch exceptions. First, it shows how to code a
try block and a catch block within a loop. Then, it shows how to code a try block with two catch blocks,
one for each type of exception. In addition, it shows how to use a finally block to release system
resources.

The first example shows how to code try/catch blocks within a while loop to catch an exception of the
NumberFormatException type. This exception occurs when a user enters a string that can’t be
converted to an int type by the parseInt method of the Integer class. Here, the try block contains two
statements. The first statement calls the parseInt method while the second statement sets the tryAgain
variable to false so Java will exit the loop.

If the first statement successfully parses the value that’s entered by the user, Java will execute the
second statement and exit the loop. However, if the first statement isn’t able to parse the entry, it will
throw an exception of the NumberFormatException type, thus transferring control to the catch block and
skipping the second statement. Here, the catch block contains a single statement that displays a dialog
box that informs the user of the exception and asks the user to enter a valid number. Then, Java
continues processing at the beginning of the loop. As a result, Java won’t exit the loop until the user
enters a number that can be parsed by the parseInt method.

The second example shows how to code two catch blocks to handle two types of exceptions. Here, the
try block contains two statements. The first statement creates a RandomAccessFile object, which
throws an exception of the FileNotFoundException type. The second statement calls the length method
from this object, which throws an exception of the IOException type. Since the FileNotFoundException
class is a subclass of the IOException class, its catch statement must be coded first. If you coded this
catch block second, the catch block for the IOException object would catch all exceptions and the catch
block for the FileNotFoundException object would never get executed.

In this example, both catch blocks work similarly. The first statement displays a dialog box that notifies
the user of the type of exception, and the second statement exits the program. To indicate that the
program exited abnormally, this statement uses a non-zero number as the argument of the exit method.

The second example also shows how to code a finally clause. Since Java executes the code in a finally
block whether or not an exception is thrown, finally blocks are often used to release system resources.
For instance, it’s a common coding practice to use finally blocks to free system resources when working
with graphics or input/output operations. In this example, the finally block calls the close method of the
RandomAccessFile object, which closes the object and releases any resources used by the object.

Although you usually code one or more catch blocks after a try block, it sometimes makes sense to
code just a finally block. If, for example, you want to throw an exception to another method, but you also
want to clean up system resources, you can omit the catch block and code a finally block.

Figure 10-5: How to catch exceptions
The syntax for coding try/catch/finally blocks

try{statements}
catch(MostSpecificExceptionType e){statements}
catch(LeastSpecificExceptionType e){statements}
finally{statements}

An example that uses a loop to prevent invalid data input

String inputQuantity = JOptionPane.showInputDialog(

 "Enter a quantity:");

int quantity = 0;

boolean tryAgain = true;

Murach’s Beginning Java 2

 page 234

while(tryAgain){

 try{

 quantity = Integer.parseInt(inputQuantity);

 tryAgain = false;

 }

 catch(NumberFormatException e){

 inputQuantity = JOptionPane.showInputDialog(

 "Invalid quantity. \n"

 + "Please enter a number.");

 }

}

An example that uses two catch blocks and a finally block

public static long getFileLength() throws IOException{

 RandomAccessFile in = null;

 long len = 0;

 try{

 in = new RandomAccessFile("books.dat", "r");

 len = in.length();

 }

 catch(FileNotFoundException e){

 JOptionPane.showMessageDialog(null, "books.dat not found.\n"

 + "System will exit.", "Error", JOptionPane.ERROR_MESSAGE);

 System.exit(1);

 }

 catch(IOException e){

 JOptionPane.showMessageDialog(null, "I/O exception.\n"

 + "System will exit.", "Error", JOptionPane.ERROR_MESSAGE);

 System.exit(2);

 }

 finally{

 in.close();

Murach’s Beginning Java 2

 page 235

 }

 return len;

}

Description
 When you code a try block to catch an exception, you must code one or more catch

blocks or a finally block immediately after the try block.
 You should code the catch blocks in sequence from the lowest class in the Throwable

hierarchy to the highest.
 A finally block is executed whether or not an exception is thrown.

When you code too many try/catch blocks, of course, you clutter the logic of your methods with
exception handling code. If possible, then, you should design your methods so they throw exceptions to
another method that contains an appropriate exception handler. That way, you can code one exception
handler that handles the exceptions from many methods. Another good coding practice is to usually
code just one try block within a method. Then, you can code catch blocks for each type of exception that
can occur in the method.

When and how to use conventional error trapping
Figure 10-6 shows how to use conventional error trapping to avoid throwing an exception. To start, this
figure shows some code that may result in an exception. Then, it shows how to handle this exception
using a try/catch block. Last, it shows how to avoid this exception by using conventional error trapping.
Since conventional error trapping executes faster than using an exception handler, and since
conventional error trapping usually requires less code than an exception handler, you should use it
whenever possible.
In the first example, if the indexOf method of the String class doesn’t find a space character within the
string, the substring method will throw an IndexOutOfBoundsException object. That’s because the
substring method will attempt to access an index that doesn’t exist in the string. (If you haven’t read
chapter 9, you won’t understand how the string methods work, but that shouldn’t affect your
understanding of how you can avoid throwing exceptions.)

Then, to catch the exception that may be thrown by the code in the first example, the code in the
second example uses a try/catch statement. Here, the try block is coded around the last three
statements in the first example. Then, if the indexOf method doesn’t find a space character, the
substring method will throw an exception and Java will transfer control to the catch block, which will
return the name that was originally passed to the method.

In contrast, the code in the third example uses conventional error trapping to prevent the exception from
being thrown in the first place. Since the indexOf method returns a value of -1 when it doesn’t find the
string that’s specified in the argument list, this method can use an if statement to check the int value
that’s returned. Then, if the value is equal to -1, the method returns the original string. However, if the
value isn’t equal to -1, the method uses the substring method to parse the first name.

Although you should use conventional error trapping whenever possible, there are times when this is
too difficult to be practical. Imagine, for example, how you could use conventional error trapping for the
NumberFormatException thrown by the parseInt method shown in the last figure. For an exception like
that, it makes more sense to use a try/catch statement.

Figure 10-6: When and how to use conventional error trapping
Code that may throw a StringIndexOutOfBoundsException

public static String getFirstName(String inputName){

 String name = inputName.trim();

 int indexOfSpace = name.indexOf(" ");

 String firstName = name.substring(0, indexOfSpace);

 return firstName;

Murach’s Beginning Java 2

 page 236

}

How to use an exception handler to catch the exception(not the best solution)

public static String getFirstName(String inputName){

 String name = inputName.trim();

 try{

 int indexOfSpace = name.indexOf(" ");

 String firstName = name.substring(0, indexOfSpace);

 return firstName;

 }

 catch (StringIndexOutOfBoundsException e){

 return name;

 }

}

How to use conventional error trapping so the exception isn’t thrown (best solution)

public static String getFirstName(String inputName){

 String name = inputName.trim();

 int indexOfSpace = name.indexOf(" ");

 String firstName = null;

 if (indexOfSpace == -1)

 firstName = name;

 else

 firstName = name.substring(0, indexOfSpace);

 return firstName;

}

Description
 Whenever possible, you should use conventional error trapping to prevent exceptions

from being thrown. This is illustrated by the third example.

How to throw and define your own exceptions
Although you usually need to handle only those exceptions that are thrown by the Java API, you may
occasionally need to throw your own exceptions. If you do, you should search through the exceptions in
the Java API to see if one adequately describes your exception. If you find one, you should throw that
exception. On the other hand, if you can’t find an appropriate exception in the Java API, you can code a
class that defines an exception that is more appropriate.

Murach’s Beginning Java 2

 page 237

How to throw your own exceptions
When you’re coding a class, you may sometimes need to throw an exception as shown in figure 10-7.
However, you should only throw an exception if the current method doesn’t have the means to handle
the exception, or if you need to throw the exception for testing purposes. Although this figure shows two
methods from the Java API that throw exceptions, you can use similar code to throw exceptions when
you write your own methods.
To throw an exception, you code a throw statement that throws an object of an exception class. To do
that, you usually use the new keyword to create an object from the exception class. When you create an
object from the exception class, you can use the default constructor, which doesn’t accept any
arguments, or you can use a constructor that accepts a string that describes the exception in more
detail.

The first example in this figure shows the parseInt method from the Integer class in the Java API. This
method accepts a string as an argument and attempts to convert this string to an int type. If it can’t
convert the string, it creates a NumberFormatException object, using the invalid string as the argument
for the constructor. Then, it uses the throw statement to throw this object. In the method declaration, the
throws clause declares that this method may throw a NumberFormatException object.

The second example shows the readBoolean method from the RandomAccessFile class in the Java
API. In the method declaration, the throws clause declares that the method throws an IOException. In
the method body, the throw statement throws an EOFException. Since an EOFException object is a
type of IOException, this code will work.

The third example shows how to throw an exception for testing purposes. Here, the throw statement
throws an IOException object. That way, you can test the exception handler for the IOException object.

The fourth example shows how you can use the throw statement to rethrow an exception after it has
been caught. That way, you can catch an exception and do some exception handling. Then, you can
throw the exception again so an exception handler in another method can do the rest of the exception
handling.

Figure 10-7: How to throw your own exceptions
The syntax for throwing an exception

throw new ExceptionClass(args);
A method from the API that throws an unchecked exception

public static int parseInt(String s, int radix)

 throws NumberFormatException {

 //code for the parseInt method...
 while (i < max) {
 digit = Character.digit(s.charAt(i++),radix);
 if (digit < 0) {
 throw new NumberFormatException(s);
 //more code for the parseInt method
}

A method from the API that throws a checked exception

public boolean readBoolean() throws IOException {

 int ch = in.read();

 if (ch < 0)

 throw new EOFException();

 return (ch != 0);

}

Code that throws an IOException for testing purposes

Murach’s Beginning Java 2

 page 238

try{

 in = new RandomAccessFile(filename, "r");

 len = in.length();

 throw new IOException();

}

Code that rethrows an exception

catch(IOException e){

 System.err.println("IOException thrown in getFileLength method");

 throw e;

}

When to throw an exception
 When a method encounters a situation where it isn’t able to complete its task.
 When you want to generate an exception to test an error handler.
 When you want to catch an exception, perform some exception handling, and then

throw the exception again.

Note
All exception classes in the Java API have two constructors. The default
constructor doesn’t accept any arguments. The other constructor accepts a string
that provides additional information about the exception.

How to define your own exceptions
Although the Java API contains a wide range of exceptions, you may encounter a situation where none
of those exceptions describes your exception accurately. If so, you can code a class that defines an
exception as shown in figure 10-8. Then, you can throw your exception just as you would throw any
other exception.

Most of the time, you’ll want to inherit the Exception class or one of its subclasses to create a checked
exception. For example, the diagram in this figure shows the inheritance hierarchy for a programmer-
defined exception named BookNotFoundException. However, you can also code a class that defines an
unchecked exception by inheriting the RuntimeException class or one of its subclasses.

By convention, all exception classes should have a default constructor that doesn’t accept any
arguments and another constructor that accepts a string argument. That way, your exception class will
behave like the rest of the exception classes in the Java API.

The class shown in this figure provides some skeleton code that you can use to code your own
exception classes. To start, this class inherits the Exception class. Then, this class contains two
constructors. The first constructor doesn’t accept any arguments, while the second constructor accepts
a string argument. Here, the second constructor calls the constructor of the superclass. Although this
figure presents the minimum amount of code for a programmer-defined exception class, you can add
other constructors or instance variables if you need to collect additional information about the exception.

Figure 10-8: How to define your own exceptions
A programmer-defined exception

Murach’s Beginning Java 2

 page 239

The constructors of the Throwable class

How to code a programmer-defined exception class

public class NewExceptionClass extends Exception{
 public NewExceptionClass(){
 }
 public NewExceptionClass(String message){
 super(message);
 }
}

Description
 To define a checked exception, inherit the Exception class or one of its subclasses.
 To define an unchecked exception, inherit the RuntimeException class or any of its

subclasses.
 By convention, each exception class should contain a default constructor that doesn’t

accept any arguments and another constructor that accepts a string argument.

How to debug your classes without an IDE
Locating errors, or bugs, in a program and fixing them is known as debugging. Although the JDK
provides a command line debugger, it’s difficult to use. One the other hand, most IDEs for working with
Java provide good debuggers that can help you locate and fix errors by letting you watch variables as
you step through your code. However, if you don’t have access to an IDE that includes a good
debugger, you can use the skills described in this topic to debug your classes.

How to use print statements to identify bugs
Figure 10-9 shows how to use print statements to identify bugs. To do that, you can use print
statements to print the value of a variable to the console. You can also use print statements to
determine when a method was entered or exited. Although this isn’t as convenient as using a good
debugger, it’s a rudimentary way to get information about the execution of your program.

The example in this figure shows how to use the println method of the System.out object to help debug
a method that computes the average of an array of integers. In this case, the first print statement prints
a message that says that execution has entered the method. Within the loop, two print statements print
the value of the counter variable and the value of each element of the array. After the loop, the last
three print statements print the sum variable, the average variable, and a message that execution has

Murach’s Beginning Java 2

 page 240

left the method. The comments on these debugging statements make them easy to find and remove
after the cause of the bug has been determined.

When you look at the data that’s printed to the console, you can tell that the sum isn’t being calculated
correctly. As a result, the bug must be in the statement that sums the numbers. And if you look at this
statement, you’ll find that it uses the = operator to assign an int value to the sum variable. To fix this
bug, you need to edit this statement so it uses the += operator to add the sum to the current value of the
sum variable. Although you could probably find this bug just by studying the code, this illustrates a
debugging technique that you can use on more complex problems.

Figure 10-9: How to use the println method to identify bugs
How to use the println method to watch variables

System.out.println("variableName: " + variableValue);

A method that uses the println method to watch variables

public static int getAverage(int[] values){

 System.out.println("enter getAverage method"); //debug code

 int sum = 0;

 for (int i = 0; i < values.length; i++){

 sum = values[i];

 System.out.println("i: " + i); //debug code

 System.out.println("values[i]: " + values[i]); //debug code

 }

 int average = sum/values.length;

 System.out.println("sum: " + sum); //debug code

 System.out.println("average: " + average); //debug code

 System.out.println("leave getAverage method"); //debug code

 return average;

}

The output of the code shown above

Murach’s Beginning Java 2

 page 241

Description
 When a method or routine is producing the wrong result, you can add print

statements that display the values of variables as the program progresses. You can
also use print statements to indicate when a method or routine is entered and
exited.

 To make it easy to remove the debugging statements after you determine the cause
of the bug, you can add appropriate comments to the statements.

How to get information about an exception
Since all exception classes ultimately inherit the Throwable class, you can use any of its methods to get
information about exception objects. If you look up this class in the Java documentation, you’ll see that it
contains seven methods. Of these, the three most commonly used methods are shown in figure 10-10.

The first example shows how to use these three methods to display data about an exception. Here, the
first statement uses the getMessage method to print the message string of the exception object. If no
message is supplied for the exception, this statement will return a null value. Then, the second
statement supplies the exception object as the argument of the println method. As a result, Java will
automatically call the toString method of the exception, which will print the full name of the exception
followed by the message string (if one exists). Last, the third statement prints the full name of the class,
followed by the string message, followed by the stack trace. Since this method provides all of the
information provided by the first two methods plus some additional information about the stack trace,
you can use it instead of using the first two methods.

The first two statements in the first example use the println method of the System.err object, the
standard error output stream. Although this works the same as using the System.out object, the
standard output stream, it’s common to use the System.err object when displaying information about
errors and exceptions. This way, even if the standard output stream is redirected to another source
(such as a file), the standard error output stream will always come to the attention of the user.

How to print the stack trace to the console

In the first example in this figure, the third statement calls the printStackTrace method of the exception
object. This method prints the stack trace to the console, which provides the line numbers of the
statements that called the methods in the current stack. In this case, the 17th line in the main method of
the BookOrderApp class called the 454th line in the parseInt method of the Integer class, which called
the 405th line of the parseInt method of the Integer class where the exception was thrown. By analyzing
this information, you can determine that the exception was thrown at the 405th line in the parseInt
method of the Integer class. More importantly, though, you can tell that you need to fix the code that’s
related to the 17th line of the main method of the BookOrderApp class.

The second example shows how to return the stack trace anywhere in your program. To do that, you
can create a Throwable object and invoke the printStackTrace method. In this example, you can see
that the 10th line of the setPrice method was called by the 7th line of the Book constructor, which was
called by the 10th line of the BookOrder constructor, which was called by the 35th line of the main
method in BookOrderApp class. Whenever you have a bug in a method, you may want to check the
stack trace to see which methods are affected by the bug.

Figure 10-10: How to use the methods of the Throwable class to identify bugs
Methods of the Throwable class

Code that uses these three methods

catch(NumberFormatException e){

 System.err.println(e.getMessage());

 System.err.println(e);

Murach’s Beginning Java 2

 page 242

 e.printStackTrace();

}

Output of these three methods

How to use the printStackTrace method anywhere in a program

new Throwable().printStackTrace();

An example that uses the printStackTrace method in a method

public void setPrice(){

 new Throwable().printStackTrace();

 ...

}

Output of the printStackTrace method shown above

Perspective
In this chapter, you’ve learned all the skills that you need to write code that handles exceptions properly.
In addition, you’ve learned some useful debugging techniques. As you develop the applications for the
next two sections of this book, you’ll see how valuable these skills can be.

Summary
 In Java, an exception is an object created from a class that’s derived from the Exception

class or one of its subclasses. When an exception occurs, a well-coded program notifies
its users and minimizes any disruptions or data loss.

 Exceptions derived from the RuntimeException class and its subclasses are unchecked
exceptions because they aren’t checked by the compiler. All other exceptions are
checked exceptions.

 Any method that calls a method that throws a checked exception must either throw the
exception by coding a throws clause or catch it by coding try/catch/finally blocks. The
code that catches an exception is known as an exception handler.

 Whenever practical, you should use conventional error trapping to avoid common
coding errors. Conventional error trapping runs faster than exception handling and often
requires less code.

Murach’s Beginning Java 2

 page 243

 When coding your own methods, if you encounter a potential error that can’t be handled
within that method, you can code a throw statement that throws an exception. If you
can’t find an appropriate exception class in the Java API, you can code your own
exception class.

 Most IDEs provide a debugger that can help you identify and fix the bugs in your
programs. If you don’t have access to a good debugger, though, you can use the println
method of the System.out and System.err objects to help debug your programs.

 In Java, the stack trace, or call stack, is the chain of method calls for any statement that
calls a method. You can use the printStackTrace method of an exception object to print
the stack trace for any method.

Terms
exception handling exception handler finally block

exception stack trace conventional error trapping

checked exception call stack bug

unchecked exception throws clause debugging

throw an exception try block debugger

catch an exception catch block

Objectives
 Describe the difference between checked and unchecked exceptions.
 Given a method that throws an exception, code a method that calls that method and

throws that exception.
 Given a method that throws an exception, code a method that calls that method and

catches that exception.
 Code a method that throws an exception.
 Code a class that defines a new exception.
 Debug programs by using print statements to watch variables and to mark the entry and

exit of methods and routines.
 Debug programs by analyzing the stack trace.

Exercise 10-1: Create the Book IO Test application
In this exercise set, you’ll use the Book IO Test application to practice throwing and catching
exceptions. Even if you haven’t read section 4 yet, you should be able to do this exercise because the
focus is on error handling, not file I/O.

1. View the files in the c:\java\ch10\book directory. This directory should contain files
named books.dat, BookIO.java, and BookIOTestApp.java.

2. Open the BookIO class, read through it to see what it does, and try to compile it. Java
should display an error that indicates that the exceptions in the BookIO class must
be caught or thrown. Then, code a throws clause for both methods in the BookIO
class as shown in figure 10-4, and compile this class again. It should compile
cleanly.

3. Open the BookIOTestApp class and try to compile it. Java should display an error
that indicates that the exceptions in the BookIO class must be caught or thrown.
Then, code a try/catch statement around the four statements in the BookIOTestApp
class that catches the FileNotFoundException and the IOException as shown in
figure 10-5. To do that, you’ll need to import the java.io package. When you’re done,
compile and run this class. Java should display the length and number of records in
the book.dat file.

4. Edit the BookIO class so it looks for a file named books.txt instead of books.dat.
Then, compile this class and run the BookIOTestApp class. When you do, you
should get a dialog box that looks like this:

Murach’s Beginning Java 2

 page 244

5. Modify the catch clause for the FileNotFoundException so it uses the getMessage
method of the Exception object to display the message in the dialog box. Then,
compile and run the class. Although this should display a dialog box like the previous
one, the message string is from the FileNotFoundException object.

Exercise 10-2: Create the Trap Test application

In this exercise set, you’ll use the Trap Test application to practice conventional error trapping.
1. Open the TrapTestApp class that’s in the c:\java\ch10\trap directory. Then, read

through the code to see what it does, and compile and run the class. In the first
dialog box that’s displayed, enter a full name like this:

Then, the second dialog box should look like this:

2. Run the TrapTestApp again. This time enter “Test” in the first dialog box. Then, the

application should crash and display information about the error to the console like
this:

To end the application, you’ll need to press Ctrl+C.
3. Modify the TrapTestApp so it uses an exception handler to solve this problem as in

figure 10-6. Then, test this application to make sure it works properly.
4. Modify the TrapTestApp again so it uses conventional error trapping to solve this

problem as in figure 10-6. Then, test this application to make sure it works properly.
It should work the same as it did after step 3, but the code should be easier to read
and the application should execute faster (through you probably won’t be able to
notice the difference).

Chapter 11: How to code a graphical user interface (part 1)
In chapter 2, you learned how to use the JOptionPane class to display dialog boxes. Now, you’ll learn
how to code a graphical user interface (GUI) that contains labels, text boxes, and buttons. Then, you
can learn how to enhance a GUI in the three chapters that follow. When you’re done, you’ll be able to
develop sophisticated GUIs of your own.

Murach’s Beginning Java 2

 page 245

An introduction to the Swing classes
In this chapter, you’ll learn how to create graphical user interfaces using classes from the javax.swing
package. These classes are known as Swing classes, or the Swing set. This topic presents some
general concepts that apply to all Swing classes.

The user interface for the Loan Calculator application
Figure 11-1 presents the graphical user interface for the Loan Calculator application that’s presented in
this chapter. This shows some of the terminology that Java uses for working with GUIs. For example,
Java calls a “decorated” window a frame. That is, a frame contains a title bar that contains the Java
icon, a title, a Minimize button, a Maximize button, and a Close button. In addition, the frame in this
figure displays ten components: four labels, four text fields, and two buttons. Here, the fourth text field
has been modified so it can display output but can’t accept input from the user. In this chapter, you’ll
learn how to write the code that adds these components to the frame.

A user can use this application to calculate the monthly payment of a loan. To start, the user enters the
numbers into the first three text fields. Then, the user can select the Calculate button by clicking on it or
by pressing the Tab key to move the focus to the Calculate button and then pressing the spacebar to
select the button. When this happens, the application displays the amount of the monthly payment in the
fourth text field.
By default, Swing components look and act the same on any platform. This is known as the Metal look
and feel. However, these components look and act slightly different than the components that are native
to a particular platform. For example, the user interface shown in this figure looks slightly different than
a native Windows user interface. Although the Swing set provides classes that let programmers set the
look and feel of a user interface to a particular platform, the Metal look and feel is appropriate for most
programs. As a result, that’s the look and feel that this book uses in all of its applications.

Figure 11-1: The user interface for the Loan Calculator application
The user interface for the Loan Calculator application

Description

 The window that contains the GUI is called a frame.
 The frame in this figure contains four labels, four text fields, and two buttons.
 The last text field in this figure is not editable. As a result, this text field can display

output, but the user can’t enter data into this field.
 To calculate a monthly payment, the user enters or changes the loan amount, the

yearly interest rate, and the number of years. Then, the user selects the Calculate
button.

 To exit the program, the user selects the Exit button.
 To select a button, the user can click on the button or use the Tab key to move the

focus to the button and then press the spacebar.

The inheritance hierarchy
Figure 11-2 presents the inheritance hierarchy for user interface programming. Within this hierarchy, all
Swing classes start with the letter J. Although the Java API contains an overwhelming number of
classes and methods for GUI programming, the next few chapters will teach you all of the concepts you
need to begin using these classes. Once you understand these concepts, you can search through the
documentation for the Java API to find the classes and methods that you need.
When Java was first released, it contained only the Abstract Windowing Toolkit (AWT) for GUI
programming. The java.awt package contains most of the classes for the AWT. Since these classes rely
on the underlying operating system, they are often called heavyweight components. This type of
component can make your code perform inconsistently from one system to another and thus difficult to
debug. Instead of “write once, run everywhere,” Java programming becomes “write once, debug
everywhere.”
That’s why version 1.2 of Java introduced the Swing package for GUI programming. The Swing classes
consist of lightweight components, which means they are written entirely in Java and don’t rely on the

Murach’s Beginning Java 2

 page 246

underlying operating system as much. However, since Swing classes are derived from classes in the
AWT, you need to understand how the AWT works. In fact, you need to use classes and methods from
the AWT just to create a simple GUI like the one shown in this chapter.

When creating GUIs, though, you should try to avoid combining AWT components with Swing
components. Since AWT components are heavyweight components, they will always be painted over
the “lighter” Swing components. This means that the Swing components may not be displayed properly
if they are overlapped with AWT components.

Although Swing applets, frames, and dialogs are derived from their AWT counterparts, all other Swing
components are derived from the JComponent class. In other words, Swing buttons, labels, and text
fields are all derived from the JComponent class.
All GUI components are ultimately derived from the Component class. In addition, most components are
derived from the Container class. You can think of a container as a component that can hold another
component. For instance, a frame can hold buttons, buttons can hold text, and so on. Since all
containers are components, a container can hold other containers. The only exception to this is the
Window class and its subclasses. If you try to place a window, frame, or dialog box in another container,
Java will throw an exception.

Figure 11-2: The inheritance hierarchy
The Component hierarchy

A summary of the classes

Murach’s Beginning Java 2

 page 247

Description

 The Abstract Windowing Toolkit (AWT) components use an old technology for
creating graphical user interfaces that causes them to look and act a little different
on each platform. Swing components use a newer technology that allows them to
look and act the same on all platforms.

 The AWT classes are stored in the java.awt package, while the Swing classes are
stored in the javax.swing package. All Swing classes begin with the letter J.

Methods of the Component class
Figure 11-3 introduces you to some of the most commonly used methods of the Component class.
Since all GUI components are ultimately derived from this class, you can use any of these methods on
any component. For more information about these methods, you can use the documentation for the
Java API.
The top portion of this figure presents some set methods that can be used to set the properties of a
component. Here, the first three methods can be used to size and position a component. When you
work with these methods, you use pixels as the unit of measurement. Pixels are the tiny dots that your
monitor uses to display text and images. Although the number of pixels per screen varies depending on
the resolution setting of the monitor, a typical setting is 800 pixels wide by 600 pixels tall. However,
some people set their resolution as low as 640 by 480. As a result, if you want your components to fit on
the screens of all computer users, you need to size and position your components for the lowest
possible resolution.

The middle portion of this figure presents some get methods that you can use to return the properties of
a component. With these methods, you can get the size, position, and name of a specific component.

The bottom portion of this figure presents some other methods that you can use to work with
components. To start, you can use the first two methods to determine if a component is enabled or
visible. Then, you can use one of the last two methods to move the focus to the component. If you’re
using SDK1.3.1 or earlier SDK versions, you can use the requestFocus method to move the focus to the
current component. However, this method is platform dependent and may act differently depending on
the system. To overcome this and other focus drawbacks, a new focus model was created in SDK1.4.
Part of this model includes the platform independent requestFocusInWindow method. If you’re using
SDK1.4, then, you should use this method rather than the requestFocus method.

Figure 11-3: Methods of the Component class
Set methods

Murach’s Beginning Java 2

 page 248

Get methods

Other methods

Description

 Since all GUI components are ultimately derived from the Component class, you can
use its methods on any component.

 When you set the position and size of a component, the unit of measurement is
pixels, which is the number of dots that your monitor uses to display a screen. The
number of pixels per screen varies depending on the resolution setting.

How to work with frames
In chapter 5, you were introduced to the JFrame class, you learned how to open a frame, and you
learned some concepts for working with frames. In this topic, you’ll review some of those skills, and
you’ll learn more about working with frames.

How to display a frame
Figure 11-4 shows a frame that doesn’t contain any components. Then, it shows some code for creating
and displaying this frame, and it summarizes some methods that you can use to work with a frame.

The first example shows the code for a class that defines a frame. Since this class uses a Swing
component, the first line in the class imports the javax.swing package. Next, the class declaration
indicates that the LoanCalculatorFrame class inherits the JFrame class. Then, in the constructor for this
class, the first statement uses the setTitle method of the Frame class to set the title of the frame. The

Murach’s Beginning Java 2

 page 249

second statement uses the setBounds method of the Component class to set the size and position of
the frame.

By default, all frames are 0 pixels by 0 pixels and positioned in the top left corner of the screen. In this
example, the top left corner of the frame begins 267 pixels to the right of the left edge of the screen and
200 pixels down from the top of the screen. The size of the frame is 267 pixels wide by 200 pixels tall.
For a screen running at the 800 x 600 resolution, this setting will center the frame on the screen.

The second example shows a driver class that contains a main method that creates an instance of the
LoanCalculatorFrame and displays it. Here, the first statement of the main method creates an object
from the LoanCalculatorFrame class. Then, the second statement invokes the show method of that
object to display the frame to the screen.

When you use the JFrame class, you can call methods from the Frame, Window, and Component
classes. The previous figure showed some of the common methods from the Component class, and this
figure shows some of the common methods from the Frame and Window classes. As you work with
frames, you can use these methods to control the behavior and appearance of each frame.

Figure 11-4: How to display a frame
A frame that doesn’t contain any components

A class that defines a frame

import javax.swing.*;

public class LoanCalculatorFrame extends JFrame{

 public LoanCalculatorFrame(){

 setTitle("Loan Calculator");

 setBounds(267, 200, 267, 200);

 }

}

A class that displays the frame

import javax.swing.*;

public class LoanCalculatorApp{

 public static void main(String[] args){

 JFrame frame = new LoanCalculatorFrame();

Murach’s Beginning Java 2

 page 250

 frame.show();

 }

}

Methods of the Frame class

Methods of the Window class

How to close a frame
When you create an instance of a frame like the one in the last figure, the frame runs in its own thread.
As a result, the LoanCalculatorFrame will continue to run even after the main method has ended, and
you won’t be able to close the frame properly. Instead, you’ll be returned to a command prompt window
where you can press Ctrl+C to manually terminate this thread. Since this is not an acceptable way to
end a program, figure 11-5 provides the code needed to terminate the thread for a frame.
To close a frame or any other window properly, you need to include some code that handles the event
that’s generated when a window closes. In this case, several actions can close the window and
generate the event. For example, the user can click on the Close button in the upper right corner of the
window, select the Close command from the frame’s control menu, or press Alt+F4. No matter how the
event is started, though, the code in this figure handles the event by calling the exit method of the
System class, which terminates the thread for the frame.
In the next chapter, you’ll learn more about how this code works. And in chapter 20, you can learn more
about threads. For now, though, all you need to know is that the code shown in this figure is a typical
way to terminate the thread for a frame.

Figure 11-5: How to close a frame
The control menu for a frame

Code that closes a frame

public LoanCalculatorFrame(){

 setTitle("Loan Calculator");

 setBounds(267, 200, 267, 200);

Murach’s Beginning Java 2

 page 251

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

}

Description
 To close a frame, the user can click on the Close button in the upper right corner of

the frame, press Alt+F4, or pull down the menu for the frame and select the Close
command as shown above.

 When you create an instance of a frame in an application, the frame runs in its own
thread. As a result, the frame continues to run even after the main method has
ended.

 To terminate the thread for the frame, you can add the code for a window listener as
shown above. This code handles the event that occurs when a window closes by
executing the exit method of the System class, which terminates the thread for the
frame. You’ll learn more about handling events later in this chapter and in the next
chapter, but this will get you started.

 Before you can use this code to close a frame, you must import the java.awt.event
package that contains the WindowAdapter class.

How to center a frame using the Toolkit class
Figure 11-6 shows how to get the height and width of the current user’s screen in pixels. To do that, you
can use the Toolkit and Dimension classes of the java.awt package. Then, you can use the setBounds
method to set the position and size of a frame relative to the height and width of the current user’s
screen.
To start, you use the getDefaultToolkit method of the Toolkit class to create a Toolkit object, or toolkit.
Then, you use the getScreenSize method to return the screen resolution of the current system as a
Dimension object. Since the Dimension class allows you to access the fields it uses to store height and
width, you can use these fields to position and size your frame.

In this figure, for example, the setBounds method centers the frame on the screen. To do that, it gets
the x coordinate by subtracting the width of the frame from the width of the screen and dividing the
result by two. Then, it gets the y coordinate by performing a similar calculation.

Figure 11-6: How to center a frame using the Toolkit class
Code that centers a frame on the screen

Toolkit tk = Toolkit.getDefaultToolkit();

Dimension d = tk.getScreenSize();

int width = 267;

int height = 200;

setBounds((d.width - width)/2, (d.height - height)/2, width, height);

Two methods of the Toolkit class

Two fields of the Dimension class

Murach’s Beginning Java 2

 page 252

Description

 The number of pixels per screen varies depending on the resolution setting of the
user’s monitor.

 To determine the number of pixels for the current screen, you can use a Toolkit
object, or toolkit, to return a Dimension object that contains the number of pixels for
the current screen.

 The Toolkit and Dimension classes are in the java.awt package.

How to work with panels, buttons, and events
Now that you know how to display and close a frame, you’re ready to learn how to place other
components on it. In this topic, you’ll learn how to add two types of components: panels and buttons.
Then, you’ll learn how to handle the event that’s generated when a user clicks on a button.

How to add a panel to a frame
Figure 11-7 shows how to add a panel, which is a container component, onto a frame. But before you
can add a panel to a frame, you need to understand that a frame contains several panes, and you need
to learn how to place components on the content pane. Although other panes exist, you should place all
components on the content pane.

The code in this figure shows how to add a panel to the content pane. Here, the first statement returns a
Container object for the content pane by calling the getContentPane method of the JFrame class. The
second statement creates a panel by calling the constructor of the JPanel class. And the third statement
uses the add method of a Container object to add the panel to the content pane.

Although you can add other components such as buttons directly to the content pane, you typically add
components to a panel and then add the panel to the content pane. This helps you organize the
components so your code is easier to read and understand.

Figure 11-7: How to add a panel to a frame
The JFrame structure

Code that adds a panel to the content pane

Container contentPane = getContentPane();

JPanel panel = new JPanel();

contentPane.add(panel);

Methods needed to add components to the content pane

Murach’s Beginning Java 2

 page 253

Description

 A JFrame object contains several panes. To add components to a frame, you add
them to the content pane of the frame.

 A panel is a component that is also a container. Normally, you add components such
as buttons to a panel. Then, you add the panel to the content pane.

How to add buttons to a panel
Figure 11-8 shows how to add buttons to a panel and how to add the panel to the frame’s content pane.
To start, this figure shows two examples that add buttons to a panel. Then, this figure summarizes four
constructors for the JButton class and three common methods for working with buttons.

The first example shows how to create a button and add it to a panel. Here, the first two statements
create the panel and the button. Then, the third statement adds the button to the panel.

The second example shows how to add two buttons to a panel and how to add that panel to the frame.
Here, the first three statements create the panel and the two buttons, and the next two statements add
the Calculate and Exit buttons to the panel. As a result, the Calculate button appears before the Exit
button. Then, the last two statements return the content pane of the frame and add the panel to the
content pane.

If you run the code in the second example, you’ll see a frame like the one in this figure. Here, the frame
displays the buttons in the top center of the frame. Later in this chapter, though, you’ll learn how to
control the layout that’s used by frames and panels so you can display these buttons in the lower right
corner of the frame.
The four constructors of the JButton class in this figure let you create buttons that contain text, icons,
both, or neither. To place an icon in a button, you must pass it an Icon object. To learn more about
working with icons, see chapter 14.

The three methods in this figure let you modify a button after it has been created. To work with the text
displayed on a button, you can use the setText and getText methods. To enable or disable a button, you
can use the setEnabled method. When you disable a button, the button is grayed out and the button
doesn’t do anything.

Figure 11-8: How to add buttons to a panel
A frame with two buttons

Code that adds a button to a panel

JPanel panel = new JPanel();

JButton button = new JButton("OK");

panel.add(button);

Code that adds two buttons to panel

Murach’s Beginning Java 2

 page 254

JPanel panel = new JPanel();

JButton calculateButton = new JButton("Calculate");

JButton exitButton = new JButton("Exit");

panel.add(calculateButton);

panel.add(exitButton);

Container contentPane = getContentPane();

contentPane.add(panel);

Common constructors of the JButton class

A few methods of the JButton class

How to handle button events
Figure 11-9 shows how to write the code that’s executed when a button is clicked. Although this figure
only shows how to handle the event that’s generated when a user clicks on a button, the same
principles are used to handle other types of events. In the next chapter, you’ll learn how to handle other
types of events.

The procedure at the top of this figure shows how to handle the event that’s generated when a user
clicks on an Exit button. In step 1, you declare that the LoanCalculatorFrame class implements the
ActionListener interface. This interface is stored in the java.awt.event package, and it contains one
method, the actionPerformed method.
In step 2, you add a listener to the button. In this case, you use the this keyword to specify that the
listener is the current object, which is the LoanCalculatorFrame object. Then, the frame object uses the
ActionListener to listen for any events that occur for the Exit button.
In step 3, you implement the ActionListener interface by coding the actionPerformed method. This is the
method that handles the ActionEvent object that’s passed to it when a button is clicked. The class that
contains this method is known as the event handler class. Inside the actionPerformed method, the first
statement uses the getSource method of the ActionEvent object to return the source of the event as an
object of the Object class. Then, the second statement is an if statement that checks if the source of the
event is equal to the Exit button. If so, it executes the exit method of the System class, which terminates
the thread for the current frame.

The example in this figure shows how the three steps work when you code a class. This class defines a
frame that contains two buttons, and it handles the click events for both of those buttons. To start, the
declaration for the class states that the LoanCalculatorFrame class implements the ActionListener
interface. Then, both buttons are declared as instance variables of this class. That way they’re available
to the constructor and the actionPerformed method. In the constructor, the code sets up the frame,
creates the buttons and the panel, and adds the listener to both buttons.

Murach’s Beginning Java 2

 page 255

In the actionPerformed method, the code gets the source object from the ActionEvent object and uses
if/else statements to check the source object and execute the appropriate code for each button. If the
source is the Exit button, the application exits. If the source is the Calculate button, the application
displays a dialog box that says that this button was clicked. Later in this chapter, you’ll see how you can
code a Calculate button that displays the results of a calculation.

Figure 11-9: How to handle button events
How to handle an action event

1. Specify that a class implements the ActionListener interface.
2. public class LoanCalculatorFrame extends JFrame

 implements ActionListener{}
3. Add the ActionListener object to the button by calling the addActionListener method

from the button.
exitButton.addActionListener(this);

4. Implement the ActionListener interface by coding the actionPerformed method.

public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 if (source == exitButton)

 System.exit(0);

}

A class that handles two action events

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class LoanCalculatorFrame extends JFrame

 implements ActionListener{

 private JButton calculateButton, exitButton;

 public LoanCalculatorFrame(){

 setTitle("Loan Calculator"); // set up the frame

 setBounds(267, 200, 267, 200);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

Murach’s Beginning Java 2

 page 256

 JPanel panel = new JPanel();

 calculateButton = new JButton("Calculate");

 calculateButton.addActionListener(this);

 exitButton = new JButton("Exit");

 exitButton.addActionListener(this);

 panel.add(calculateButton);

 panel.add(exitButton);

 Container contentPane = getContentPane();

 contentPane.add(panel);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 if (source == exitButton)

 System.exit(0);

 else if (source == calculateButton){

 JOptionPane.showMessageDialog(null,

 "You pressed the Calculate button.");

 }

 }

}

An introduction to layout managers
This topic shows you how to use two of the most commonly used layout managers to position your
components within a panel. By combining these layout managers, you can design an effective user
interface. In the next chapter, you’ll learn more about layout managers.

How to use the Flow layout manager
Figure 11-10 shows how to use the Flow layout manager. This layout manager is used by default when
you add buttons to a panel. It adds components to the top of the container moving from left to right.
When a container runs out of horizontal space, the Flow layout manager creates a new row and begins
adding components to the new row. By default, this manager centers components horizontally.

The first frame in this figure shows what happens when five buttons are added to a panel using the Flow
layout manager with center alignment. If the frame was wider, the fourth button would appear in the top
row, and the fifth button would appear in the center of the next row.

The second frame shows what happens when two buttons are added to a panel using the Flow layout
manager with right alignment. Then, the code that follows shows how to create this panel. To do that,
the second statement uses the setLayout method of the panel to set Flow layout with right alignment.

To set the layout of a container, you can use the setLayout method that’s summarized in this figure.
Although this figure shows how to supply a FlowLayout object as an argument, this method accepts any

Murach’s Beginning Java 2

 page 257

object that implements the LayoutManager interface. In the next figure, you’ll see how this method can
be used with another type of layout manager.

To create a Flow layout manager with centered alignment, you can use the first FlowLayout constructor
that’s summarized in this figure. But if you want to change the alignment, you should use the second
constructor. Then, you can align components with the left or right side of a container. To specify
alignment, you use the fields of the FlowLayout class.

Figure 11-10: How to use the Flow layout manager
The Flow layout manager with centered alignment

The Flow layout manager with right alignment

Code that creates a panel that uses right alignment

JPanel panel = new JPanel();

panel.setLayout(new FlowLayout(FlowLayout.RIGHT));

calculateButton = new JButton("Calculate");

exitButton = new JButton("Exit");

panel.add(calculateButton);

panel.add(exitButton);

Method of the Container class needed to lay out components

Common constructors of the FlowLayout class

Alignment fields of the FlowLayout class

CENTER LEFT RIGHT

How to use the Border layout manager
Although the Flow layout manager lets you align buttons with the left or right edge of a container, it
doesn’t let you place the buttons at the bottom of the container. To do that, you can use the Border
layout manager as shown in figure 11-11. With this layout manager, you can place components in five
different regions of a container: north, south, east, west, and center.

The first frame in this figure shows how the Border layout manager works if you add one button to each
of its regions. Here, the Border layout manager stretches the buttons so they are as wide as each
region of the container. Although this is okay for some types of user interfaces, you’ll usually want to
combine the Border layout manager with the Flow layout manager as shown in the second example.

Murach’s Beginning Java 2

 page 258

The first code example shows how to set the layout to Border layout and how to add one button to the
south region of the container. Here, the first statement uses the setLayout method and the constructor
of the BorderLayout class to set the layout for the current container to Border layout. Then, the second
statement adds a button to the south region of the container by specifying the component and the
region. In this example, if the button is the only button in the south region, the Border layout manager
will stretch the button as shown in the first frame.

The second frame in this figure shows what happens when you add two buttons to a panel with Flow
layout and right alignment and then add that panel to the south region of a Border layout. In this case,
the Border layout manager of the content pane will stretch the panel so it fits the entire south region, but
the buttons will not be stretched. This shows how you can combine two or more layout managers to
position components.

The second code example shows the code that creates the panel for the second frame. Here, you can
see that the layout for the panel is set to Flow layout with right alignment. Then, the buttons are added
to that panel, and the panel is added to the south region of the content pane, which has Border layout
by default.

To add a panel to a specific region of a Border layout, you supply a second argument that uses one of
the five region fields. These fields, of course, correspond to the five regions shown in this figure.
Alternatively, you can use these strings for the region fields: “North”, “South”, “East”, “West”, and
“Center”. If you don’t specify one of these regions as the second argument, though, the BorderLayout
manager uses the default region, which is the center region.

Figure 11-11: How to use the Border layout manager
The Border layout manager

Code that adds a component to the south region of a Border layout

setLayout(new BorderLayout());

add(button5, BorderLayout.SOUTH);

A panel of buttons in the south region of the content pane

Code that adds a panel of buttons to the south region of the content pane

JPanel panel = new JPanel(); //create the panel

Murach’s Beginning Java 2

 page 259

panel.setLayout(new FlowLayout(FlowLayout.RIGHT));

calculateButton = new JButton("Calculate");

exitButton = new JButton("Exit");

panel.add(calculateButton);

panel.add(exitButton);

Container contentPane = getContentPane(); //BorderLayout by default

contentPane.add(panel, BorderLayout.SOUTH); //add the panel

Constructor of the BorderLayout class

A method in the Container class used with the Border layout

Region fields of the BorderLayout class

NORTH WEST CENTER EAST SOUTH

How to structure the layout code
Although you can add multiple components to the content pane of a frame, it’s a good coding practice to
add all of your components to a single panel and then add that panel to the content pane as shown in
figure 11-12. To do that, it helps to divide the code for your user interface into two or more classes. At
the least, you should consider storing the code that displays a frame in one class while storing the code
that displays the panel in a separate class. This helps you write code that’s modular, flexible, and
potentially reusable.

The frame in this figure shows a new layout for the Loan Calculator user interface that uses two panels.
Here, the first panel is a master panel that uses the Border layout. Then, the second panel is added to
the southern region of this master panel. This second panel uses the Flow layout with right alignment.

The code in this figure contains two classes, the LoanCalculatorFrame class and the
LoanCalculatorPanel class. The first class contains the code that defines the frame. The second class
contains the code that defines the panel that’s placed on the frame.

The code for the LoanCalculatorFrame class extends the JFrame class. The first four statements in this
class set up the frame and return the content pane. Then, the last statement adds an instance of the
LoanCalculatorPanel to the content pane. Since the content pane uses the Border layout by default and
since the center region is the default region for Border layout, this adds the LoanCalculatorPanel to the
center region of the content pane. In this case, however, because nothing is added to any of the other
regions, the center region is stretched to fill the entire content pane.

The code for the LoanCalculatorPanel class extends the JPanel class and implements the
ActionListener interface. As a result, this panel class will handle the click events of the buttons. After this
class declares both buttons as instance variables, the first eight statements of its constructor create a
panel that contains the two buttons. Then, the last two statements set the layout of the current object
(which is the LoanCalculatorPanel) to the Border layout and add the button panel to the south region of
the current object. Last, the actionPerformed method of this class handles the events that are generated
when the user presses the Calculate or Exit buttons.

Murach’s Beginning Java 2

 page 260

Figure 11-12: How to structure the layout code
The layout of a frame

The code that defines this frame

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class LoanCalculatorFrame extends JFrame{

 public LoanCalculatorFrame(){

 setTitle("Loan Calculator");

 setBounds(267, 200, 267, 200);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 contentPane.add(new LoanCalculatorPanel());

 }

}

class LoanCalculatorPanel extends JPanel implements ActionListener{

 private JButton calculateButton, exitButton;

Murach’s Beginning Java 2

 page 261

 public LoanCalculatorPanel(){

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 calculateButton = new JButton("Calculate");

 calculateButton.addActionListener(this);

 exitButton = new JButton("Exit");

 exitButton.addActionListener(this);

 buttonPanel.add(calculateButton);

 buttonPanel.add(exitButton);

 setLayout(new BorderLayout());

 add(buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 if (source == exitButton) System.exit(0);

 else if (source == calculateButton)

 JOptionPane.showMessageDialog(null,

 "You pressed the Calculate button.");

 }

}

How to work with labels and text fields
This topic shows how to create and work with labels and text fields. First, you’ll learn how to use labels
to display text. Then, you’ll learn how to use text fields to get input from a user and to display output.

How to work with labels
Figure 11-13 shows how to use the JLabel class to add labels to a panel. Labels are typically used to
display text that identifies other components. By default, they don’t receive the focus when the user
presses the Tab key.

For more information about labels, you can look up the JLabel class in the documentation for the Java
API. If you do, you’ll see that the JLabel class contains many constructors and methods that let you
associate a label with a component and to provide keystroke shortcuts for the associated component.
For now, though, the skills presented in this figure will get you started with labels.

The first code example in this figure shows how to add a label to a panel. Here, the first statement
creates a panel. Then, the second statement creates a label that contains the text “Label One”, and the
third statement uses the add method of the panel to add the label to the panel. When this panel is
displayed in a frame, it will use the default layout manager for a panel, which is the Flow layout with
centered alignment.

Murach’s Beginning Java 2

 page 262

The second code example shows how to add four labels to a panel. Here, the first statement creates a
panel, and the second statement sets the layout for this panel to Flow layout with right alignment. Then,
the next four statements create the four labels, and the last four statements add the labels to the panel.
The JLabel constructors in this figure show three ways to create a label. Most of the time, you’ll use the
constructor that accepts a string argument to create a label that contains text. However, you can create
a blank label or one that contains an icon. If you create a blank label, you can use the setText method of
the JLabel object to set the text at run time. For more information about working with icons, see chapter
14.

Figure 11-13: How to work with labels
A frame that displays a label

Code that adds a label to a panel

JPanel panel = new JPanel();

JLabel label = new JLabel("Label One");

panel.add(label);

A frame that displays four labels

Code that adds four labels to a panel

JPanel displayPanel = new JPanel();

displayPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

JLabel amountLabel = new JLabel("Loan Amount:");

JLabel rateLabel = new JLabel("Yearly Interest Rate:");

JLabel yearsLabel = new JLabel("Number of Years:");

JLabel paymentLabel = new JLabel("Monthly Payment:");

displayPanel.add(amountLabel);

displayPanel.add(rateLabel);

displayPanel.add(yearsLabel);

displayPanel.add(paymentLabel);

Common constructors of the JLabel class

Murach’s Beginning Java 2

 page 263

A common method of the JLabel class

How to work with text fields
Figure 11-14 shows how to use the JTextField class to add text fields to a panel. This figure also shows
how you can use text fields to get input, and how you can use a disabled text field to display output.

The first code example shows how to create two text fields and add them to a panel. Here, the first
statement creates the panel. Then, the second statement uses the first constructor to create a text field
that’s approximately 20 characters wide and begins with the specified text. The third statement, on the
other hand, uses the second constructor to create a field that doesn’t contain any text and is
approximately 10 characters wide. When you display this panel as shown in the figure, the user can use
the Tab key to move between these text fields and the user can enter and edit text in these fields.

The second code example shows how to work with text fields. In particular, it shows how to work with
the two text fields that were added in the first code example. Here, the first statement uses the getText
method of the first text field to return the text that’s stored in that field. The second statement uses the
setText method to set the text that’s stored in the second text field equal to the text that’s stored in the
first text field. The third statement uses the setColumns method to set the width of the second text field
equal to the width of the first text field. And finally, the fourth statement uses the setEditable method to
disable the second text field. This means that the text field will be grayed out and that the user won’t be
able to enter any text in this field.

This figure also summarizes the two constructors of the JTextField class. The first constructor accepts
an argument that specifies the length of the field, and the second constructor accepts arguments that
specify a default string and the length of the field. When you specify the length of a field, you specify the
maximum number of characters that you want the field to be able to display. However, due to variations
in fonts and operating systems, this measurement isn’t completely consistent. As a result, it’s usually a
good coding practice to specify a slightly larger value for the length of the text field. Otherwise, the text
field may not be wide enough to display all of its text.

In the application that’s shown next, you’ll see how to use the setNextFocusableComponent method
described in this figure. You can use this method to change the default focus sequence that’s used
when the user presses the Tab key. For example, you can use this method to skip any disabled text
fields. Although this method is commonly called from text fields, it can be called from any class that
inherits the JComponent class.

Figure 11-14: How to work with text fields
A frame that displays two text fields

Code that adds two text fields to a panel

JPanel panel = new JPanel();

JTextField oneTextField = new JTextField("Test ", 20);

Murach’s Beginning Java 2

 page 264

JTextField twoTextField = new JTextField(10);

panel.add(oneTextField);

panel.add(twoTextField);

A frame that displays the modified text fields

Code that works with text fields

String data = oneTextField.getText();

twoTextField.setText(data);

twoTextField.setColumns(20);

twoTextField.setEditable(false);

Common constructors of the JTextField class

A few methods that work with text fields

Description

 The JTextField class inherits the JTextComponent class. As a result, it can use the
getText, setText, and setEditable methods of the JTextComponent class.

The Loan Calculator application
In this chapter, you’ve learned all the skills you need to design a simple graphical user interface. Now,
you’ll learn how to put all these skills together to create an interface for the Loan Calculator application.
Although this interface is simple, it shows how to organize Swing components that create a working
graphical user interface.

The user interface
Figure 11-15 begins by showing the user interface for the Loan Calculator application. This user
interface uses three panels. The outermost panel is the LoanCalculatorPanel, and it uses a Border
layout. Then, the displayPanel is added to the center region of the LoanCalculatorPanel, and the
buttonPanel is added to the south region of the LoanCalculatorPanel. Both the displayPanel and the
buttonPanel use a Flow layout with right alignment.

Murach’s Beginning Java 2

 page 265

The code

The code on this page of this figure shows the LoanCalculatorFrame class that defines the frame of the
application. By now, you should understand all the code that’s in the constructor for this class. To start,
the code defines a frame that’s 267 pixels wide by 200 pixels tall and centers this frame on the screen.
Then, since you don’t want the user to be able to resize this frame, a false value is supplied as the
argument for the setResizable method. Next, this constructor contains the code that will terminate the
thread for this frame when the frame is closed. Last, the LoanCalculatorPanel object is created and
added to the content pane of the frame. You’ll see the code for the LoanCalculatorPanel class on the
next two pages of this figure.

The main method that’s shown on this page displays a frame that’s created from the
LoanCalculatorFrame class. Within this method, the first statement creates an object from the class.
Then, the second statement calls the show method from the frame object to display the frame. Because
this main method is coded in this class, you don’t need to code a driver class that starts this application.
Instead, the LoanCalculatorFrame class will start itself.

Figure 11-15: The Loan Calculator application (part 1 of 3)
The panels of the user interface

The code for the LoanCalculatorFrame class

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.*;

public class LoanCalculatorFrame extends JFrame{

 public LoanCalculatorFrame(){

 setTitle("Loan Calculator");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

Murach’s Beginning Java 2

 page 266

 int height = 200;

 int width = 267;

 setBounds((d.width-width)/2, (d.height-height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 JPanel panel = new LoanCalculatorPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 JFrame frame = new LoanCalculatorFrame();

 frame.show();

 }

}

The second page of code is the start of the LoanCalculatorPanel class. The declaration for this class
shows that it extends the JPanel class and that it implements the ActionListener interface. Then, the
declarations for the instance variables identify the ten components that will be added to this panel: four
labels, four text fields, and two buttons.

The constructor for this class begins by creating the display panel that holds the labels and text boxes.
Here, the first two statements create the panel and set the layout for the panel to Flow layout with right
alignment. Then, the next nine statements create the four labels and four text fields and set the last text
field so it isn’t editable. The last eight statements add these components to the display panel.

The constructor for this class continues by creating the button panel that holds the two buttons. The first
two statements create the buttonPanel and set the layout to Flow layout with right alignment. The next
two statements create the buttons. And the last two statements add the components to the button panel.

After creating all of the components for this panel, the constructor adds the listener that’s implemented
by the current object (the LoanCalculatorPanel object) to the two buttons. In addition, it changes the
default focus sequence so the focus will skip from the Years text field to the Calculate button. That way,
the disabled Payment text field won’t receive the focus when the user presses the Tab key to navigate
through the application.

The constructor finishes by setting the layout for the LoanCalculatorPanel object and adding the other
two panels to this panel. Here, the first statement sets the layout to Border layout. Then, the second
statement adds the displayPanel to the center region of the LoanCalculatorPanel, and the third
statement adds the buttonPanel to the south region of the LoanCalculatorPanel.

Figure 11-15: The Loan Calculator application (part 2 of 3)
The code for the LoanCalculatorPanel class

Murach’s Beginning Java 2

 page 267

class LoanCalculatorPanel extends JPanel implements ActionListener{

 private JTextField amountTextField, rateTextField, yearsTextField,

 paymentTextField;

 private JLabel amountLabel, rateLabel, yearsLabel, paymentLabel;

 private JButton calculateButton, exitButton;

 public LoanCalculatorPanel(){

 JPanel displayPanel = new JPanel();

 displayPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 amountLabel = new JLabel("Loan Amount:");

 rateLabel = new JLabel("Yearly Interest Rate:");

 yearsLabel = new JLabel("Number of Years:");

 paymentLabel = new JLabel("Monthly Payment:");

 amountTextField = new JTextField(10);

 rateTextField = new JTextField(10);

 yearsTextField = new JTextField(10);

 paymentTextField = new JTextField(10);

 paymentTextField.setEditable(false);

 displayPanel.add(amountLabel);

 displayPanel.add(amountTextField);

 displayPanel.add(rateLabel);

 displayPanel.add(rateTextField);

 displayPanel.add(yearsLabel);

 displayPanel.add(yearsTextField);

 displayPanel.add(paymentLabel);

 displayPanel.add(paymentTextField);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));

 calculateButton = new JButton("Calculate");

Murach’s Beginning Java 2

 page 268

 exitButton = new JButton("Exit");

 buttonPanel.add(calculateButton);

 buttonPanel.add(exitButton);

 calculateButton.addActionListener(this);

 exitButton.addActionListener(this);

 yearsTextField.setNextFocusableComponent(calculateButton);

 setLayout(new BorderLayout());

 add(displayPanel, BorderLayout.CENTER);

 add(buttonPanel, BorderLayout.SOUTH);

 }

The last page of code shows the actionPerformed method of the LoanCalculatorPanel class. This
method contains the code that’s executed when the user clicks on the Calculate or Exit buttons. Here,
the first statement uses the getSource method of the ActionEvent class to return an object of the Object
class. Then, if/else statements are used to compare this Object with the JButton objects. If the Exit
button has been clicked, the application terminates the thread for this frame. If the Calculate button has
been clicked, the application makes the calculation and displays the result in the fourth text field.
The code that’s executed for the Calculate button uses the static calculateMonthlyPayment method of
the FinancialCalculations class to perform the calculation. If you’ve already read chapter 7, you should
know how to create that method. But remember that you don’t need to know how a method works just to
use it. All you need to know is what arguments that method requires.

So before that method is called, the first three statements in the else if block use the getText method to
return the arguments that are needed. Since the getText method returns strings, these statements use
the static parseDouble and parseInt methods of the Double and Integer classes to convert these strings
to the required data types. Then, after the interest rate and year values are adjusted to months, the
payment is computed by calling the calculateMonthlyPayment method of the FinancialCalculations
class. When the result is returned, it is formatted as currency and set as the text of the Monthly
Payment text field.

Since this class will only work properly when valid numbers are entered in the three editable text fields,
this method uses a try/catch statement to catch any exceptions of the NumberFormatException type. So
if a user doesn’t enter valid numbers, Java will throw a NumberFormatException object. Then, the
exception handler will display a dialog box that asks the user to check all the entries and try again.

Figure 11-15: The Loan Calculator application (part 3 of 3)
The code for the LoanCalculatorPanel class (continued)

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 try{

 if (source == exitButton)

 System.exit(0);

Murach’s Beginning Java 2

 page 269

 else if (source == calculateButton){

 double amount = Double.parseDouble(amountTextField.getText());

 double rate = Double.parseDouble(rateTextField.getText());

 int years = Integer.parseInt(yearsTextField.getText());

 double monthlyInterest = rate/12/100;

 int months = years * 12;

 double payment = FinancialCalculations.calculateMonthlyPayment(

 amount, months, monthlyInterest);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 paymentTextField.setText(currency.format(payment));

 }

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, "Invalid data entered.\n"

 + "Please check all numbers and try again.");

 }

 }

}

Perspective
Now that you’ve finished this chapter, you should be able to create a graphical user interface that can
accept user input, display output, and respond appropriately when the user clicks on a button. In
particular, you learned how to work with components like frames, panels, labels, text boxes, and
buttons. Although that’s a good start, there’s much more to developing GUIs than that.
In the next chapter, then, you’ll expand on this base of knowledge. There, you’ll learn how to work with
other types of components. You’ll learn more about handling events. And you’ll learn how to use a more
sophisticated layout manager. When you’re done with that chapter, you’ll be able to develop GUIs at a
professional level.
As you learn how to develop GUIs with code, you may remember from chapter 1 that integrated
development environments (IDEs) like Forte provide drag-and-drop tools that make it much easier to
create a GUI. The trouble is that you still need to understand the code that’s generated by the IDE
because you often have to modify or enhance it. That’s why you need to master the coding skills before
you start using an IDE.

Summary
 You can use Swing components to create graphical user interfaces that are platform

independent and more bug-free than GUIs developed with the older GUI technology
known as the Abstract Windowing Toolkit (AWT).

 All Swing classes inherit the Component and Container classes, are stored in the
javax.swing package, and begin with a J. Since all Swing components inherit the
Component class, you can call any methods of the Component class from any Swing
component.

Murach’s Beginning Java 2

 page 270

 You can use Swing components to create a frame that contains a title bar and a control
menu. Then, you can add panels, labels, text fields, and buttons to the content pane of
that frame.

 You can use the Toolkit class to get the height and width of a user’s screen in pixels.
 When coding a graphical user interface, you write code that handles events that are

initiated by the user. To do that, you must write code that defines a listener that listens
for each event and responds when an event occurs.

 You can use layout managers to control how components are displayed within a frame
or panel. By default, the content pane of a frame uses the Border layout manager while
a panel uses the Flow layout manager. When using these layout managers, it’s common
to nest one panel within another panel.

Terms
Swing classes Abstract Windowing Toolkit (AWT) panel

Swing set heavyweight component pane

frame lightweight component content pane

title bar container listener

component pixels event handler class

label thread layout manager

text field event Flow layout manager

button toolkit Border layout manager

Metal feel and look

Objectives
 Code graphical user interfaces that display labels, text fields, and buttons that respond

when a user selects a button.
 Write code that opens a frame, centers it on the screen, and closes it.
 Write code that displays labels and text fields and works with those components.
 Write code that displays a button and handles the event that’s generated when a user

selects a button.
 Use the Flow layout manager and Border layout manager to control how Java places

components on frames and panels.
Exercise 11-1: Create a GUI for the Loan Calculator application

This exercise guides you through the process of creating a GUI for the Loan Calculator application
that’s described in this chapter.

1. Open the code for the FinancialCalculations class that’s saved in the
c:\java\ch11\loan directory and read through it to make sure you understand how this
class works.

2. Open the code for the LoanCalculatorFrame class that’s stored in the
c:\java\ch11\loan directory. Notice that this file also contains the code for the
LoanCalculatorPanel class. Then, compile and run this class. It should display the
user interface, but it won’t respond when you click on either of the buttons.

3. Add the code that responds to the buttons as shown in figure 11-15. This code should
use one try/catch statement to prevent invalid user entries. Then, compile and run
the program. It should display a dialog box like the one in figure 11-15, make an
accurate calculation, and respond to any exceptions that are thrown due to invalid
input data.

Exercise 11-2: Create a GUI for the Book Order application

This exercise guides you through the process of creating a GUI for the Book Order application.
1. Open the code for the Book and BookOrder classes that are saved in the

c:\java\ch11\order directory and read through them to make sure you understand
how these classes work.

2. Using the skills and coding style that you learned in this chapter, create the classes
that are needed to define a GUI for the Book Order application that looks like the one

Murach’s Beginning Java 2

 page 271

below. After you start each class, save it in the c:\java\ch11\order directory. When
the GUI first appears, all fields should be empty. Then, after the user enters the book
code and quantity and clicks on the Calculate button, the program should display the
other text fields.

3. Compile the classes and run the application to make sure that it works correctly.
4. Once you’re satisfied with the basic operation of the application, enhance the code so

it prevents an invalid quantity entry. Then, compile and test this enhancement.

Chapter 12: How to code a graphical user interface (part 2)
In the last chapter, you learned how to code a graphical user interface by using the most common
controls, events, and layout managers. Now, you’ll learn how to code a graphical user interface using
more sophisticated controls, events, and layout managers. When you complete this chapter, you should
be able to develop GUIs at a professional level.
Incidentally, three of the controls that are presented in this chapter require some knowledge of the use
of arrays. So if you haven’t already read chapter 9, you may want to read the first part of that chapter
now. If you don’t do that, though, you should still be able to follow what’s going on.

How to handle events
In the last chapter, you learned how to handle the event that occurs when you click on a button. In this
topic, you’ll review how event handling works. Then, you’ll learn a general procedure that you can use to
code an event handler for any event.

How event handling works
Figure 12-1 shows how event handling works. Here, the first diagram shows how to handle an event
that’s generated by a button object, while the second diagram shows how to handle any event that’s
generated from any source. In short, a source generates an event object that’s handled by an event
listener.

When a user presses a JButton object, for example, that object generates an ActionEvent object that
contains information about the event. Then, any object that implements the ActionListener interface
such as a JPanel object can handle the event.
The tables in this figure summarize some common actions along with their events and listeners. These
tables divide events into two categories: semantic events and low-level events. The difference between
these two types of events is that semantic events are specific to a component while low-level events are
less specific. Since semantic events are easier to handle, you should use them whenever possible. For
example, it’s easier to handle a mouse click on a button by handling the ActionEvent that’s generated by
the button than it is to handle a low-level MouseEvent. As a result, low-level events aren’t covered until
the end of this chapter while the semantic events for a control are covered as each control is presented.

As you can see in these tables, some components generate more than one event. When a user selects
an item from a combo box, for example, the combo box generates either an ActionEvent or an
ItemEvent object depending on which listener you use. In a case like that, you have to decide which
event to handle.

Since the Java event model depends on the Abstract Windows Toolkit (AWT), most of the classes in
this figure are stored in the java.awt package and the java.awt.event package. However, some event
classes were added with the introduction of Swing and are stored in the javax.swing.event package. For
instance, the javax.swing.event package contains the ListSelectionEvent and DocumentListener
classes.

Murach’s Beginning Java 2

 page 272

Figure 12-1: How event handling works
What happens when a button is pressed

What happens when any event occurs

Semantic events

Low-level events

Description

 An event is an object that’s created from any class derived from the EventObject
class. The event object contains information about the event that occurred.

 An event listener is the object that handles the event. The class for an event listener
can be called the event handler class, and it must implement the appropriate
listener interface.

 Two types of events exist in Java: semantic events and low-level events. A semantic
event is related to a specific component such as clicking on a button or selecting an
item from a list. Low-level events are less specific like a clicking a mouse button,
pressing a key on the keyboard, or closing a window.

 Some components generate more than one event object. This means that you can
choose which listener interface to implement.

 Most events and listeners are stored in the java.awt.event package, but some of the
newer events and listeners are stored in the javax.swing.event package.

A procedure for handling events
Figure 12-2 shows a three-step procedure that you can use to handle any event. Then, it shows the
code for a panel that handles three action events. As you learn how to use the controls that are
presented in this chapter, you’ll also learn how to do these steps for most of the semantic events listed
in the previous figure.

Murach’s Beginning Java 2

 page 273

In step 1 of the procedure, you declare that the event handler class implements the appropriate listener
interface. In the example, the BookOrderPanel class implements the ActionListener interface. However,
it could implement more than one listener interface.

In step 2, you add the listener object to any components that generate events that you want to handle.
To do that, you call the addXXXListener method from each component. In the example, the three
statements in the constructor for the BookOrderPanel call the addActionListener method for three
components. Here, the arguments use the this keyword, which says that the current object (the
BookOrderPanel) will act as the event handler.

Then, in step 3, you implement the interface by coding the methods required by the interface. To find
out what methods you have to code, you can look up the API documentation for the interface. In this
book, though, we’ll identify the methods that you have to code for each interface.

In this example, the ActionListener interface requires only one method, the actionPerformed method,
but some require more. Within the method for the ActionListener interface, the first statement uses the
getSource method of the ActionEvent object to return the component that generated the event. Then,
an if/else statement executes the right statements for each component. Here, you can see how one
method and one event object can be used for two different types of components.

As this figure points out, any class that implements a listener interface can be used as a listener. Often,
it makes sense to use the this keyword to indicate that the current object is going to be the listener. But
you can code the name of another object instead of the this keyword. Then, that object acts as the
event handler, so its class must implement the appropriate listener interface.

Figure 12-2: A procedure for handling events
Three basic steps to handle any event

1. Declare a class so it implements the appropriate listener interface.
2. Add the listener object to the component by calling the addXXXListener method.
3. Implement the listener interface by coding the methods of the listener interface.

Code for a panel that handles three action events

class BookOrderPanel extends JPanel implements ActionListener{

 private JComboBox titleComboBox;

 private JButton calculateButton, closeButton;

 public BookOrderPanel(){

 titleComboBox.addActionListener(this);

 calculateButton.addActionListener(this);

 closeButton.addActionListener(this);

 }

 public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 if (source == titleComboBox) {

 // code for the Title combo box
 }
 else if (source == calculateButton) {
 // code for the Calculate button
 }

Murach’s Beginning Java 2

 page 274

 else if (source == closeButton){
 // code for the Close button
 }
 }
}

Description
 Any class that implements a listener interface can act as the listener for events. In the

example above, the this keyword indicates that the listener is the current object,
which is the current BookOrderPanel object.

 If you don’t want the current object to be the listener, you can code the name of
another object instead of the this keyword. Then, that object acts as the listener so
its class must implement the appropriate listener interface.

How to work with controls
In the last chapter, you learned how to work with four controls: panels, labels, text fields, and buttons.
Now, you’ll learn how to work with some other controls.

How to work with combo boxes
Figure 12-3 shows how to work with a combo box. After the first part (page) of this figure shows a
combo box and some code for using one, the second part (on the next page) summarizes the
constructors, methods, and interfaces that you need for working with a combo box. Most of the controls
in this chapter are presented in two-part figures like this one because there’s too much information for
one page. There’s also more information than you can remember, so just try to get the concepts as you
read about these controls. Then, you can refer back to these figures whenever you need to.

In part 1 of this figure, you can see how a combo box can be used with the Book Order application. With
this control, the user can select an item from the drop-down list instead of entering the code for an item.
That way, the user always selects a valid item.
The first code example shows how to create a combo box and add it to a panel. Here, the first
statement declares the combo box, which is an instance variable of the panel class. Then, the second
statement calls the readTitles method of the BookIO class to return an array of Strings. In chapter 18,
you’ll learn more about this method, but all you need to know right now is that it returns an array with
one book title in each element of the array. This array is used as the argument of the constructor in the
third statement to populate the list of the new instance of the combo box. The last two statements in this
example add a listener to the combo box, and add the combo box to the panel.

The second code example shows how to code the method of the ItemListener interface so it handles the
item event that’s generated by the Title combo box. In this case, the method is the itemStateChanged
method, and the first statement in this method gets the source of the event. Then, the if statement that
follows tests to see whether the source is a combo box. If it is, the statements in the if block are
executed.

Within the if block, the first statement uses the getSelectedIndex method of a combo box to get the
index number of the selected item in the list. Then, the next statement creates a new Book object by
using that index plus 1 as the argument for another method of the BookIO class. The last four
statements display the price of the book with a currency format, move the focus to the quantity text field,
and set the total text field to an empty string.

By default, combo boxes aren’t editable so the user can’t edit the value that’s in the combo box.
Although that’s usually what you want, you can use the setEditable method to make the combo box
editable as shown in the last coding example. Then, the user can type the text of an item into the combo
box instead of selecting an item from the list. This, however, means that entry may be invalid.

Figure 12-3: How to work with combo boxes (part 1 of 2)
The Book Order interface with a combo box

Murach’s Beginning Java 2

 page 275

Code that adds a combo box to a panel

private JComboBox titleComboBox;

String[] titles = BookIO.readTitles();

titleComboBox = new JComboBox(titles);

titleComboBox.addItemListener(this);

displayPanel.add(titleComboBox);

The method of the ItemListener class

public void itemStateChanged(ItemEvent e){

 Object source = e.getSource();

 if (source == titleComboBox){

 int recordNumber = titleComboBox.getSelectedIndex();

 Book book = BookIO.readRecord(recordNumber+1);

 String priceString = currency.format(book.getPrice());

 priceTextField.setText(priceString);

 quantityTextField.requestFocus();

 totalTextField.setText("");

 }

}

The Book Order interface with an editable combo box

Code that changes a combo box so it’s editable

titleComboBox.setEditable(true);

Description
 When you click on the arrow in a combo box, a drop-down list appears. Then, you

can click on any item in the list to select it.

Murach’s Beginning Java 2

 page 276

 To populate the list in a combo box, you pass an array or a vector to it as the
argument in the constructor. The items in the array or vector then appear in the
drop-down list.

 To handle the events of a combo box, you can implement either the ActionListener or
the ItemListener interface, but the ItemListener interface is more logical since you
select an item from the list. When you implement the ItemListener interface, you
must implement the itemStateChanged method.

 The getSelectedIndex method of a combo box returns the index of the selected item.
This is a number from 0 to one less than the number of items in the list.

Part 2 of figure 12-3 summarizes the common constructors and methods of the JComboBox class.
Then, this figure summarizes the interfaces and methods that you need for handling the events of a
combo box.
As you can see, the two constructors for a combo box accept either an array or a vector of objects.
These are used to populate the items in the drop-down list of the combo box. Usually, you’ll use an
array or a vector to store objects of the String class, but you can also create combo boxes that store
other types of objects. (To learn more about arrays and vectors, you can refer back to chapter 9.)

The nine methods of the JComboBox class are the methods you’ll use the most with combo boxes. For
instance, you can use the getSelectedItem method to return the selected item as an object, and you can
use the getSelectedIndex method to return the index of the selected item. In addition, you can use the
setEditable method to control whether the combo box can be edited.

The last two methods of the JComboBox class add listeners to the component. The addActionListener
method adds an action listener while the addItemListener method adds an item listener. Although an
item listener is slightly more flexible than an action listener, both of these listeners are adequate for
most coding situations. As a result, you can usually use the listener that’s the most convenient for your
coding situation. Then, you must code the methods that are required by the class that implements the
listener interface.

Since the EventObject class contains the getSource method, every event object can use this method to
determine the source of an event. As a result, both ActionEvent and ItemEvent objects can call this
method. In addition, the ItemEvent class contains a getItem method that returns the object that was
selected and a getStateChanged method that can be used to determine whether an item was selected
or deselected.

Figure 12-3: How to work with combo boxes (part 2 of 2)
Common constructors of the JComboBox class

Common methods of the JComboBox class

Murach’s Beginning Java 2

 page 277

The event-handler method of the ActionListener interface

The event-handler method of the ItemListener interface

A common method of event objects

Two more methods of ItemEvent objects

How to work with list boxes
Figure 12-4 shows how to work with a list box. Part 1 shows two list boxes and the code that relates to
them. Then, part 2 shows the constructors, methods, interfaces, and fields that you need for working
with them.

In part 1, you can see how a list box can be used with the Book Order application. Here, the user
selects a book title from the list box. Then, that selection is used to create a Book object and display the
price for the book title.

The first code example shows how to add a list box to a panel. Here, the first statement declares the list
box, the second statement uses the readTitles method of the BookIO class to return an array of titles,
and the third statement creates the list box and populates it with the items in that array. Then, the fourth
statement uses the setSelectionMode method to set the selection mode so the user can select just one
item in the list. The last two statements add a listener to the list and add the list to the panel.

Murach’s Beginning Java 2

 page 278

The second code example shows how to code the method of the ListSelectionListener interface that’s
located in the javax.swing.event package so it can handle the event that’s generated when the user
selects an item from the list. Here, the first statement uses the getSource method to return the source of
the event. Then, an if statement checks to see if the source is the title list. If it is, the if block executes
six statements that create a Book object based on the list selection, display the price in the panel, set
the total field to an empty string, and move the focus to the quantity field. Then, the user can enter the
quantity and click on the Calculate button.

The last example in this figure shows a list box that lets a user select more than one item. This is
followed by a code example that uses the getSelectedValues and getSelectedIndices methods to return
arrays of either the selected values or the indexes of the selected values. Then, the code that handles
the events can process these values or the values represented by the indexes.

Figure 12-4: How to work with list boxes (part 1 of 2)
The Book Order interface with a list box

Code that adds a list box to a panel

private JList titleList;

String[] titles = BookIO.readTitles();

titleList = new JList(titles);

titleList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

titleList.addListSelectionListener(this);

titlePanel.add(titleList);

The method of the ListSelectionListener interface

public void valueChanged(ListSelectionEvent e){

 Object source = e.getSource();

 if (source == titleList){

 int recordNumber = titleList.getSelectedIndex();

 Book book = BookIO.readRecord(recordNumber+1);

 String priceString = currency.format(book.getPrice());

 priceTextField.setText(priceString);

 totalTextField.setText("");

 quantityTextField.requestFocus();

Murach’s Beginning Java 2

 page 279

 }

}

A list box that allows multiple selections

Code that returns an array of selected items or their indexes

Object[] title = titleList.getSelectedValues();

int[] recordNumber = titleList.getSelectedIndices();

Description
 A list box lists an array of items. Then, the user can select an item by clicking on it or

deselect an item by clicking on it again.
 To handle the events of a list box, you must implement the ListSelectionListener and

its valueChanged method.
Part 2 of figure 12-4 summarizes the common constructors and methods for the JList class as well as
the interface and fields that you need for working with a list. As you can see, the constructors and
methods of the JList class are similar to the constructors and methods of the JComboBox class. In
short, you can create a JList from an array of objects or a vector. Then, you can use methods to retrieve
the selected item.

Since list boxes can let you select more than one item from a list, the JList class also contains methods
that provide for multiple selections. First, you can use the setSelectionMode method and the fields of
the ListSelectionModel class to set the mode for the list. Then, if you set the mode to single-interval or
multiple-interval selection, you can use the getSelectedValues or getSelectedIndices methods to get the
selected items or their indexes.

The JList class also contains a method that lets you control the number of items in the list box. But
when you use that method, you should also use a scroll pane as shown in the next figure.

To handle the event that’s generated when a user selects an item from a list box, you must implement
the ListSelectionListener interface. To do that, you also need to implement the valueChanged method
as the event handler.

Figure 12-4: How to work with list boxes (part 2 of 2)
Common constructors of the JList class

Common methods of the JList class

Murach’s Beginning Java 2

 page 280

The ListSelectionListener interface

Fields of the ListSelectionModel class

How to work with scroll panes
Figure 12-5 shows how to use the JScrollPane class to add a component like a list box to a scroll pane.
Here, you can see a version of the Book Order interface with a list box that uses a scroll pane. In this
case, the list is too long to fit in the list box so a scroll bar appears that lets the user scroll through the
items in the list. Note, however, that the scroll bar isn’t displayed if the list fits within its allotted rows.

The code shows how to add a list box to a scroll pane. Here, the first statement uses the
setVisibleRowCount method of the JList object to set the number of visible rows for the list. Then, the
second statement creates the scroll pane by adding the list to the scroll pane, and the third statement
adds the scroll pane to the panel.

The constructor for the JScrollPane class shows that you can add any component to a scroll pane.
However, scroll panes are generally used with components that contain rows.

Figure 12-5: How to work with scroll panes
The Book Order interface with a list in a scroll pane

Murach’s Beginning Java 2

 page 281

Code that adds a scroll pane to a list on a panel

titleList.setVisibleRowCount(4);

JScrollPane titleScroll = new JScrollPane(titleList);

titlePanel.add(titleScroll);

Constructor of the JScrollPane class

Description

 A scroll pane can be used when all of the items in a list won’t fit into the component.
Then, the user can click on the arrows in the scroll bar or on the scroll bar itself to
scroll through the items.

 When you add a list to a scroll pane, you should use the setVisibleRowCount method
of the list to set the visible row count.

 If the list doesn’t extend beyond the view of the component that has been added to a
scroll pane, the scroll bar isn’t displayed.

How to work with borders
Figure 12-6 shows how to add a border to a component. Although adding borders is an esthetic
consideration that doesn’t affect functionality, borders also let you add a title to a component. For
example, the three text boxes in the BookOrder interface in this figure have etched borders (that you
can barely see), but the scroll pane that contains the list box component has a border that adds the
word Title at the top of the pane.

The first code example shows how to add an etched border to the three text fields. Here, the first
statement uses the createEtchedBorder method of the BorderFactory class to create a Border object for
an etched border. Then, the next three statements use the setBorder method to apply this border to the
three text fields.

The second code example shows how to add an etched border and a title to the scroll pane. Here, the
first statement creates the Border object that defines an etched border. Then, the second statement
uses this Border object in the createTitledBorder method to create a second Border object that also
contains a title. And the third statement uses the setBorder method to apply this Border object to the
scroll pane.

The rest of this figure summarizes the methods of the BorderFactory class that are used to create
Border objects as well as the method of the JComponent class that you use to set the border for any
component. It also lists the packages that store the BorderFactory class and the Border interface, which
is the interface that’s used by the BorderFactory class. Since the Border interface is located in the
javax.swing.border package, you must import this package when you work with borders.

Figure 12-6: How to work with borders
The Book Order interface with etched borders

Murach’s Beginning Java 2

 page 282

Code that adds an etched border to the three text fields

Border etchedBorder = BorderFactory.createEtchedBorder();

priceTextField.setBorder(etchedBorder);

quantityTextField.setBorder(etchedBorder);

totalTextField.setBorder(etchedBorder);

Code that adds an etched title border to a scroll pane

Border etchedBorder = BorderFactory.createEtchedBorder();

Border titleBorder = BorderFactory.createTitledBorder(

 etchedBorder, "Title:");

titleScroll.setBorder(titleBorder);

The Border interface

javax.swing.border.Border

The BorderFactory class

javax.swing.BorderFactory

Static methods of the BorderFactory class

Method of the JComponent class used to set borders

Note
To set borders as shown above, you must import the javax.swing.border
package.

Murach’s Beginning Java 2

 page 283

How to work with text fields and text areas
In the last chapter, you learned how to use a text field to get one line of input from a user. Now, figure
12-7 shows you how to create a text area to get more than one line of input from a user. It also shows
how to provide a listener for either a text field or a text area. As before, part 1 of this figure illustrates the
use of text fields and areas and the code that makes them work. Then, part 2 summarizes the
constructors and methods that you need for working with text fields and areas.

The first code example shows how to add a text area to a scroll pane and how to add that scroll pane to
a panel. Here, the first statement declares the text area as an instance of the JTextArea class, and the
second statement specifies that the text area should have approximately 4 rows with 20 columns per
row. Next, the third statement specifies that each line should wrap to the next line, and the fourth
statement specifies that the wrapped lines should be split between words. Then, the fifth statement
adds the text area to a scroll pane, and the sixth statement adds the scroll pane to the panel.

The second example shows how to return the text that’s stored in a text area as a string. To do that, you
use the same method that’s used with text fields. That’s because this method is actually an inherited
method of the JTextComponent class.

The third example shows how to add a document listener to a text field or area. Since text fields and
areas are both derived from the JTextComponent class, this works the same for both of these
components. Here, the first statement calls the getDocument method from the quantity text field to
return a Document object. Then, this statement calls the addDocumentListener method from the
Document object to add the listener to the text field. The next statement works the same way for a
comment text area.

The fourth example shows how to code the three methods of the DocumentListener interface. Here, the
first method contains an if statement that tests to see whether the insert event has occurred for the
Document object for the quantity text field. If that’s true, the calculateButton is enabled so the user can
finish the order. Remember that this type of coding works the same for a text area.

The other two methods in this fourth example are there to remind you that you have to declare them
when you implement the DocumentListener interface, although you don’t have to code any statements
for these methods. To determine whether a user has added or removed a portion of the document, you
should use the insertUpdate or removeUpdate methods.

Figure 12-7: How to work with text fields and text areas (part 1 of 2)
The Book Order interface with a text area

Code that adds a text area

private JTextArea commentTextArea;

commentTextArea = new JTextArea(4, 20);

commentTextArea.setLineWrap(true);

commentTextArea.setWrapStyleWord(true);

JScrollPane commentScroll = new JScrollPane(commentTextArea);

displayPanel.add(commentScroll);

Code that gets the text stored in a text area

String comments = commentTextArea.getText();

Code that adds a document listener to a text field and a text area

Murach’s Beginning Java 2

 page 284

quantityTextField.getDocument().addDocumentListener(this);

commentTextArea.getDocument().addDocumentListener(this);

The three methods of the DocumentListener interface

public void insertUpdate(DocumentEvent e){

 if (e.getDocument() == quantityTextField.getDocument())

 calculateButton.setEnabled(true);

}

public void removeUpdate(DocumentEvent e){}

public void changedUpdate(DocumentEvent e){}

Description
 In contrast to a text field, a text area can be used to enter and display more than one

line of text.
 When you use the constructor to create a text area, you specify the number of rows

and columns for the area. If the text area is going to receive more text than can be
viewed, you should add the text area to a scroll pane.

 You can use the setLineWrap and setWrapStyleWord methods to provide for
wrapping the lines in the text area when necessary and breaking these lines
between words.

 The getText method is actually an inherited method of the JTextComponent class so
it works the same for text fields and text areas.

 To add a document listener to a text field or area, you first need to use the
getDocument method to get the Document object for the field or area. Then, you
use the addDocumentListener method to add the listener to that Document object.

 The three methods for the DocumentListener interface can be used to determine
whether a text field or area has had text inserted into it, removed from it, or
changed.

Part 2 of this figure summarizes the constructors and methods that you need for working with text areas.
Note, however, that many of the methods also work with text fields.

To create a text area, you use a constructor of the JTextArea class. The first one creates a blank text
area by specifying the number of rows and columns that should be visible. The second one does the
same but also specifies an initial string for the text area. When you use one of these constructors, you
specify the desired number of rows and columns, but the actual number of rows and columns that are
displayed may be slightly different. That depends on a number of variables including the font size and
style and the type of layout manager that’s being used.

By default, text areas don’t wrap text to the next line so a user must press the Enter key to start a new
line of text. So if you want the text to wrap, you need to call the setLineWrap method and supply a true
value as the argument. By default, though, wrapped lines are split wherever the line reaches the end of
the text area, even if that’s in the middle of a word. So if you want to make sure that the text is wrapped
between words, you can call the setWrapStyleWord method and supply a true value as the argument.

To add a document listener to a text area or field, you should use the addDocumentListener method of
the Document class. Before you can do that, though, you must use the getDocument method of the text
area or field to get the Document object for the area or field. This means that you add the listener with
code like this:
commentTextArea.getDocument().addDocumentListener(this);
quantityTextField.getDocument().addDocumentListener(this);

Once you’ve done that, you can implement the three methods for the DocumentListener interface.
Figure 12-7: How to work with text fields and text areas (part 2 of 2)

Murach’s Beginning Java 2

 page 285

Common constructors of the JTextArea class

Methods that work with text areas

Method of the Document class

Methods of the DocumentListener interface

Method of the DocumentEvent class

Description

 The DocumentListener interface is stored in the javax.swing.event package.
 Both the JTextField and JTextArea classes inherit the JTextComponent class. As a

result, these classes can call the getText, setText, and setEditable methods that you
learned about in the last chapter. Both of these components can also call the
getDocument method to return a Document object from the text field or text area.

 To provide a listener for a text area or field, you must implement the
DocumentListener interface and its three methods.

How to work with radio buttons
Figure 12-8, which is in two parts, shows how to use radio buttons. When you work with these buttons,
you must put them in a button group. Then, the user can select only one button from the group. In the
frame in this figure, you can see that the user can select either a Monthly Payment button or a Loan
Amount button. This selection then determines what type of calculation the application does.

Murach’s Beginning Java 2

 page 286

The first example shows how to add these radio buttons to a button group and how to add the button
group to a panel. Here, the first statement declares the two radio buttons from the JRadioButton class,
and the next five statements create a panel for the buttons, create the two buttons, and add an action
listener to each button. Then, the next three statements create a button group from the ButtonGroup
class and add both buttons to the button group. The last four statements add the radio buttons to the
panel and create a titled border for the panel.

The second example shows how to code the method of the ActionListener interface for the two radio
buttons. If the user selects the Loan Amount radio button, the code clears and disables the Loan
Amount text field, enables the Monthly Payment text field, and moves the focus to that field. But if the
user selects the Monthly Payment radio button, the code clears and disables the Monthly Payment text
field, clears the Loan Amount text field, and moves the focus to that field.

Figure 12-8: How to work with radio buttons (part 1 of 2)
The Loan Calculator interface with radio buttons

Code that adds the radio buttons to the user interface

private JRadioButton paymentRadioButton, amountRadioButton;

JPanel radioPanel = new JPanel();

paymentRadioButton = new JRadioButton("Monthly Payment");

amountRadioButton = new JRadioButton("Loan Amount", true);

paymentRadioButton.addActionListener(this);

amountRadioButton.addActionListener(this);

ButtonGroup radioGroup = new ButtonGroup();

radioGroup.add(paymentRadioButton);

radioGroup.add(amountRadioButton);

radioPanel.add(paymentRadioButton);

radioPanel.add(amountRadioButton);

Border titledRadioBorder =

Murach’s Beginning Java 2

 page 287

 BorderFactory.createTitledBorder("Calculate:");

radioPanel.setBorder(titledRadioBorder);

Code that implements the ActionListener for the radio buttons

public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 if (source == amountRadioButton){

 amountTextField.setText("");

 amountTextField.setEditable(false);

 paymentTextField.setEditable(true);

 paymentTextField.requestFocus();

 }

 else if (source == paymentRadioButton){

 paymentTextField.setText("");

 paymentTextField.setEditable(false);

 amountTextField.setEditable(true);

 amountTextField.requestFocus();

 }

}

Part 2 of this figure shows some of the constructors and methods that you can use when you work with
radio buttons. By default, radio buttons are not selected. But if you want to create a radio button that’s
selected, you can use the second constructor for the JRadioButton class.

If you add more than one radio button to a container, you need to create a button group. To do that, you
use the constructor of the ButtonGroup class. Then, you use the add method of this class to add each
radio button to the group.

The JRadioButton and JButton classes both inherit the AbstractButton class. As a result, you may find
that working with radio buttons is not that different from working with regular buttons. This also allows
the add method of the ButtonGroup class to accept a JRadioButton object as an argument.

Figure 12-8: How to work with radio buttons (part 2 of 2)
Constructors of the JRadioButton class

Some methods that work with radio buttons

Murach’s Beginning Java 2

 page 288

Constructor of the ButtonGroup class

Method of the ButtonGroup class

Description

 If you add more than one radio button to a container, you must add them to a button
group. To do that, you add JRadioButton objects to a ButtonGroup object.

 The JRadioButton class inherits the JToggleButton class, which inherits the
AbstractButton class. As a result, you can use a JRadioButton object anywhere an
AbstractButton object is accepted.

How to work with check boxes
Figure 12-9 shows how to use a check box with the Book Order application. Here, if the box is checked,
sales tax is added to the order total. Otherwise, the sales tax isn’t added to the total.

The first code example shows how to use the JCheckBox class to add a check box to a panel. Here, the
first statement declares the check box, the second statement creates the check box, and the third
statement adds the check box to a panel.

The second code example shows how you can use the isSelected method to test whether the box is
checked. In this case, if the box is checked, 8.75% sales tax is added to the order total.

This figure also summarizes the constructors and methods of the JCheckBox class. Since check boxes
are unselected by default, you need to use the second constructor to create a box that is checked.
Otherwise, you can use the setSelected method to check or uncheck a box after it has been created.
Like the JRadioButton class, the JCheckBox class inherits the AbstractButton class. As a result, these
components can call many of the same methods.
Although you can code a listener for a check box, you usually don’t need to know when a box is
checked or unchecked. Instead, you just need to know if it is checked. However, if you do need to know
when a box is changed, you can implement either an ActionListener or an ItemListener. If, for example,
you want to change the values that are displayed when a box is checked, you can implement one of
these interfaces.

Figure 12-9: How to work with check boxes
The Book Order interface with a check box

Code that adds a check box to a panel

Murach’s Beginning Java 2

 page 289

private JCheckBox taxCheckBox;

taxCheckBox = new JCheckBox("Include sales tax", true);

inputPanel.add(taxCheckBox);

Code that tests to see whether a check box is checked

if (taxCheckBox.isSelected())

 total += total * .0875;

Common constructors of the JCheckBox class

Some methods that work with check boxes

Description

 The user can click on a check box to check or uncheck a box. Then, the code for the
listener can change the processing that’s done based on the setting for the check
box.

 In many cases, you don’t need to use a listener for a check box because you can use
the isSelected method to see whether it’s checked.

 If you do need to use a listener, you can use either the ActionListener or the
ItemListener.

 Like the JRadioButton class, the JCheckBox class inherits the JToggleButton class,
which inherits the AbstractButton class.

A summary of other Swing components
In this chapter and the previous chapter, you’ve learned how to work with the most commonly used
Swing components. In addition, figure 12-10 summarizes eight more Swing components that you may
find useful and two more event listeners. By now, you should be able to use the API documentation to
figure out how to use these components and their event listeners whenever you need them.

The figure presents two Swing components introduced in SDK1.4. First, the JFormattedTextField was
added to format numbers, strings, dates, and other arbitrary objects. With this component, you can
specify what legal values can be displayed from and entered into a text component. For instance, you
can format dates to be displayed in MM/DD/YY notation. Or, you can format strings to include only
uppercase letters. You can also format strings to edit telephone numbers, social security numbers, or
zip codes.

The second component introduced with SDK1.4 is the JSpinner. A spinner is a single line input field that
lets the user select a value from an ordered sequence by using tiny up and down arrow buttons. For
instance, spinners are often used to select dates and numbers. If you’re interested, you can learn more
about these components in the SDK1.4 API documentation.

Figure 12-10: A summary of other Swing components

Murach’s Beginning Java 2

 page 290

Other Swing components

Other Swing components introduced in SDK1.4

Other semantic event listeners

How to work with layout managers
In the last chapter, you were introduced to the Flow and Border layout managers. Now, you’ll be
introduced to the rest of the layout managers of the Java API, and you’ll learn how to use one of the
most sophisticated layout managers, the Grid Bag layout manager.

A summary of layout managers
Figure 12-11 presents a summary of the layout managers provided by the Java API. After the Flow and
Border layout managers that you learned about in the last chapter, you can see the Card layout
manager, the Box layout manager, the Grid layout manager, and Grid Bag layout manager.

The first user interface in this figure illustrates the Box layout, which can lay components out vertically or
horizontally. To set the direction of the layout, you use the constructor of the BoxLayout class. If you
want to use the Box layout manager, you can create an object of the Box class. This class acts as a
container similar to the JPanel class. The biggest difference is that a Box object uses the Box layout as
the default layout manager, while a JPanel object uses the Flow layout.

In SDK 1.3.1 and earlier versions, the Box class isn’t a Swing class. That means that the Box objects
don’t conform to Swing behavior. In SDK1.4, though, the Box class descends from the JComponent
class, which means that you can treat Box objects as normal Swing components. In addition, the Box
layout supports right to left and bottom to top orientation layouts in SDK1.4.

Murach’s Beginning Java 2

 page 291

The second user interface illustrates the Grid layout, which uses a rectangular grid to lay out
components. With this layout, each rectangle in the grid is of equal size. To set the grid up, you specify
the number of rows and columns in the constructor of the GridLayout class. Then, you add the
components to the container. In some situations, though, this layout manager may ignore the number of
columns that you specify. If, for example, you create a grid of 4 rows and 3 columns with 8 components,
the layout manager will use 4 rows and 2 columns as shown in this figure.

Although the Card, Box, and Grid layouts aren’t used much, they’re easy to use if you ever need them.
To learn more about these layout managers, you can look them up in the documentation of the Java
API (they’re stored in the java.awt package).

In contrast, the Grid Bag layout manager is the most flexible and sophisticated layout manager, and it’s
commonly used. That’s why it’s presented in the next three figures.

Figure 12-11: A summary of layout managers
Examples of the Box and Grid layouts

Description of layout managers

Note
Although this figure lists all of the layout managers available from the Java API,
it’s possible to define other layout managers. As a result, if you use an IDE, it may
use another layout manager.

How to work with the Grid Bag layout manager
Figure 12-12 shows how to work with the Grid Bag layout manager. Here, you can see a user interface
with this layout along with the grid that’s used to align the components in this user interface. When you
use this layout manager, components can differ in size and be aligned both horizontally and vertically.

Murach’s Beginning Java 2

 page 292

Like the Grid layout, the Grid Bag layout uses a rectangular grid to lay out the components. But unlike
the Grid layout, the Grid Bag layout allows components to be displayed in more than one cell.

To use the Grid Bag layout, you specify the location and size of each component within the grid. To do
that, you can use the five-step procedure shown in this figure.

In step 1, you can sketch the GUI and divide it into rows and columns. From this, you can see how
many rows and columns each component will occupy. For instance, the sketch in this figure shows that
the list box in the scroll pane will start at x = 1 and y = 1 and use 2 columns and 3 rows. Similarly, the
first text field will start at x = 4 and y = 1 and use 1 row and 2 columns. As you work, you should
understand that the size of the overall grid isn’t predetermined. Instead, the size is set automatically
after you specify the number of rows and columns for each component.

In step 2, as with all layout managers, you need to set the container’s layout manager by calling the
constructor of the GridBagLayout class. However, this class doesn’t hold the size and positioning
constraints. So in step 3, you must create an object of the GridBagConstraints class, which will hold
these constraints.

In step 4, you supply the constraints for each component, and in step 5, you use the add method of the
Container class with the component and its constraints as arguments. You’ll learn how to do those steps
in the next two figures. Then, as step 6 shows, you repeat steps 4 and 5 for each component of the
layout.

Figure 12-12: How to work with the Grid Bag layout manager
A user interface that uses the Grid Bag layout

The layout of the user interface shown above

How to work with the Grid Bag layout

1. Diagram or sketch the user interface and divide it into rows and columns.
2. Set the layout to an object of the GridBagLayout class.

Murach’s Beginning Java 2

 page 293

setLayout(new GridBagLayout());
3. Create a GridBagConstraints object to hold positioning data for a component.

GridBagConstraints c = new GridBagConstraints();
4. Set the constraints in the GridBagConstraints object as shown in the next figure.

5. c.gridx = 1;
6. c.gridy = 1;
7. c.gridwidth = 2;

c.gridheight = 3;
8. Use the add method of the Container class that specifies the component and its

constraints.
add(Component, GridBagConstraints)

9. Repeat steps 4 and 5 until all components have been added.

How to set the constraints for a Grid Bag layout
Figure 12-13 shows how to set the positioning and size constraints for each component in a Grid Bag
layout. To do that, you need to use the fields of the GridBagConstraints class.

The first eight fields in this figure let you set the size and position of each component. You can use the
gridx and gridy fields to set the starting position for the component in cells. You can use the gridheight
and gridwidth fields to state the overall height and width of the component in cells. You can use the
ipadx and ipady fields to specify the amount of padding that’s used between cells in pixels. And you can
use the weightx and weighty fields to specify how to distribute the extra space when the overall layout
doesn’t take up the whole container area. By default, the weightx and weighty values are set to 0 so the
cells are spaced as close together as possible. If you want some extra space to appear between the
cells, you can set these values to 100 for all components.

You can use the anchor constraint to align components within a cell. If, for example, you want to align a
component on the left edge of a cell, you can set the anchor constraint to the WEST field. By default,
though, components use the CENTER field. Similarly, you use the fill constraint to determine what to do
with any extra space in the cell. If, for example, you want a component to grow vertically so it fills the
entire cell, you can set the fill constraint to the VERTICAL field.

You can use the last two fields instead of using the gridx, gridy, gridheight, and gridwidth constraints.
For example, you can use the RELATIVE field for the gridx constraint to place a component to the right
of the previous component. And you can use the REMAINDER field for the gridwidth field to specify
when a component is the last in a row. That way, the layout manager knows to move on to the next row.

Figure 12-13: CHow to set the constraints for a Grid Bag layout
Fields of the GridBagConstraints class

Murach’s Beginning Java 2

 page 294

Fields of the GridBagConstraints class that set the anchor field

CENTER NORTHEAST WEST SOUTHEAST

NORTH EAST SOUTH

Fields of the GridBagConstraints class that set the fill constraint

NONE HORIZONTAL VERTICAL BOTH

Other fields of the GridBagConstraints class

Description

 For most purposes, the value of 100 will work fine for both the weightx and weighty
constraints.

 The ipadx and ipady fields use pixels as the unit of measure where the number of
pixels is equal to double the amount of the int value that’s stored in the field. For
example:

int numberOfPixels = ipadx * 2

An example that uses the Grid Bag layout manager
Figure 12-14 presents the code that uses the Grid Bag layout manager to lay out the components in the
Book Order interface shown in figure 12-12. To start, this figure shows how to code the grid values to
lay out components. Then, it shows how to get similar results by using the RELATIVE and REMAINDER
fields of the GridBagConstraints class.

The first group of statements in the first example sets the current container’s layout manager to the Grid
Bag layout. Next, it creates an object from the GridBagConstraints class named c, and it sets the weight

Murach’s Beginning Java 2

 page 295

constraints to 100. Then, it sets the ipadx constraint to 5 so all components will have a minimum of 10
pixels of horizontal padding.

The second group of statements first sets the constraints for the scroll pane that contains the title list
box. Here, the component will be located in the top left corner of the grid with a width of 2 cells and a
height of 3 cells. This code also uses the NORTHWEST field of the anchor constraint to align the
component with the upper left corner of the grid. Then, the last statement in this group adds the title
scroll pane to the grid using the constraints that have been set in the GridBagConstraints object (c).

The third group of statements adds the three labels to the container. To start, it sets the size and
position of the Price label and adds that label. Then, it sets a new value for the gridy constraint and
adds the Quantity label. This works because the rest of the constraints are the same as the constraints
for the Price label. Last, it sets a new value for the gridy constraint and adds the Total label.

The fourth group of statements adds the three text fields to the container. This code works like the code
for the three labels. And the fifth group of statements adds a panel that contains the two buttons of the
user interface.

The second example in this figure shows how you can use the RELATIVE and REMAINDER fields to
position and size the text fields that are added to this grid. Here, to set the size of the text fields so they
take up the rest of the grid horizontally, the fourth statement uses the REMAINDER field to set the
gridwidth constraint. Then, to place the second and third text fields immediately below the previous text
field, the sixth and eighth statements use the RELATIVE field to set the gridy constraint. This block of
code gets the same result as the fourth block in the first example.

At this point, you should realize that using the Grid Bay layout manager can be tedious, but it’s not that
difficult. After you set the layout for the container to GridBagLayout and create the GridBagConstraints
object, you just set the constraints for each component and add it to the container. This is an efficient
way to design and code a layout for most applications.

Figure 12-14: An example that uses the Grid Bag layout
Code that lays out the Book Order interface in figure 12-12

setLayout(new GridBagLayout());

GridBagConstraints c = new GridBagConstraints();

c.weightx = 100;

c.weighty = 100;

c.ipadx = 5;

c.gridx = 1;

c.gridy = 1;

c.gridwidth = 2;

c.gridheight = 3;

c.anchor = GridBagConstraints.NORTHWEST;

add(titleScroll, c);

c.gridx = 3;

c.gridy = 1;

Murach’s Beginning Java 2

 page 296

c.gridwidth = 1;

c.gridheight = 1;

c.anchor = GridBagConstraints.EAST;

add(priceLabel, c);

c.gridy = 2;

add(quantityLabel, c);

c.gridy = 3;

add(totalLabel, c);

c.gridx = 4;

c.gridy = 1;

c.gridwidth = 2;

c.anchor = GridBagConstraints.WEST;

add(priceTextField, c);

c.gridy = 2;

add(quantityTextField, c);

c.gridy = 3;

add(totalTextField, c);

c.gridx = 3;

c.gridy = 4;

c.gridwidth = 3;

c.anchor = GridBagConstraints.EAST;

add(buttonPanel, c);

Code that uses relative positioning

c.gridx = 4;

c.gridy = 1;

c.anchor = GridBagConstraints.WEST;

c.gridwidth = GridBagConstraints.REMAINDER;

add(priceTextField, c);

c.gridy = GridBagConstraints.RELATIVE;

Murach’s Beginning Java 2

 page 297

add(quantityTextField, c);

c.gridy = GridBagConstraints.RELATIVE;

add(totalTextField, c);

How to code low-level events
So far, you’ve learned how to handle the semantic events that are generated by controls. In the last
chapter, you also learned how to handle the low-level event that occurs when you close a window. Now,
you’ll learn how to work with other low-level events, such as a mouse being moved, and you’ll learn why
the code that closes a window works the way it does.

A summary of low-level events
Figure 12-15 presents a summary of low-level events. To handle these events, you need to implement
the appropriate listener interfaces that are shown. Then, you need to add the listener to a component.
However, unlike the listeners for semantic events that often require you to code a single method, the
listeners for low-level events require you to code several methods.

The first five events in this figure can occur on any component. In other words, the Component class
contains methods that allow you to add these event listeners to any component. The next event can
occur on any container, which means that the Container class has an addContainerListener method.
The last event can be used with any window because the Window class has an addWindowListener
method. To add a listener to a component, you can use the methods presented in this figure.

In the next two figures, you’ll learn how to work with the FocusListener and KeyListener interfaces.
Then, if you want to learn more about the rest of the low-level events, you can look up the interfaces for
these events in the documentation for the Java API. All of these interfaces are stored in the
java.awt.event package.

Figure 12-15: A summary of low-level events
Common low-level events and listeners

Murach’s Beginning Java 2

 page 298

How to declare a listener for any class

class MyClass extends AnotherClass implements XXXListener{
Methods that add low-level listeners

How to work with focus events
Figure 12-16 shows how to work with focus events. To start, this figure describes the two methods that
you must code to implement the FocusListener interface. Then, it describes three methods that you can

Murach’s Beginning Java 2

 page 299

use to get information about the FocusEvent class. Last, it shows some code that implements the two
methods of the FocusListener interface for the Book Order application.

In SDK1.4, the getOppositeComponent method is added to the FocusEvent class. This method returns
the “opposite” component involved in the focus change. If, for example, a text field loses focus, the
“opposite” component is the one that gains the focus. Similarly, if a button gains the focus, the
“opposite” component is the one that lost the focus.

In the example, the focusLost method validates the entry in the quantity text field. This means that a
focus listener has been added to this text field. Once focus is permanently lost from this field, the code
checks to see if a valid integer has been entered. If not, this method displays a dialog box with an error
message and moves the focus back to the quantity text field. As a result, the user won’t be able to
continue until a valid integer has been entered. Although the focusLost method contains all of this code,
the focus listener class must also include the focusGained method, even if this method doesn’t contain
any statements.

Figure 12-16: How to work with focus events
Methods of the FocusListener interface

Common methods of the FocusEvent class

Code that implements the methods of the FocusListener interface

public void focusLost(FocusEvent e){

 if (e.getComponent() == quantityTextField && !e.isTemporary()){

 try{

 int quantity = Integer.parseInt(quantityTextField.getText());

 }

 catch(NumberFormatException nfe){

 JOptionPane.showMessageDialog(null, "Invalid quantity.\n"

 + "Please enter a positive number.",

 "Error", JOptionPane.ERROR_MESSAGE);

 quantityTextField.requestFocus();

 }

 }

}

Murach’s Beginning Java 2

 page 300

public void focusGained(FocusEvent e){

}

Description
 A focus event occurs when the focus moves to or from a component.
 To implement the FocusListener, you must implement both of the methods for this

interface. However, both methods don’t have to include code that processes the
event.

How to work with keyboard events
Figure 12-17 shows how to work with keyboard events that result from keys being pressed. To start, it
describes the three methods that must be coded to implement the KeyListener interface. Then, it
describes some of the methods and fields of the KeyEvent class. For a complete list of the fields in this
class, you can use the documentation of the Java API.

The example in this figure shows how to implement the KeyListener interface for the Book Order
application. This example assumes that a key listener has been added to the quantity text field. That
way, a user can press Alt+C to perform the calculation once the data has been entered.

In this example, all three methods of the KeyListener interface are coded, even though the keyPressed
method is the only method that contains any statements. Within this method, the first statement calls the
getKeyCode method to return the combination of keys that the user pressed. Then, if the user pressed
Alt+C while the focus was on the quantity text field, the application moves the focus to the Calculate
button and uses the doClick method to click this button. This has the same effect as if the user clicked
the mouse on the Calculate button.

Figure 12-17: How to work with keyboard events
Methods of the KeyListener interface

Common methods of the KeyEvent class

Some fields of the KeyEvent class

Code that implements the methods of the KeyListener interface

public void keyPressed(KeyEvent e){

 int keyCode = e.getKeyCode();

Murach’s Beginning Java 2

 page 301

 if ((keyCode == KeyEvent.VK_C) && (e.isAltDown())){

 calculateButton.requestFocus();

 calculateButton.doClick();

 }

}

public void keyReleased(KeyEvent e){

}

public void keyTyped(KeyEvent e){

}

Description
 A keyboard event occurs when a user presses, releases, or presses and releases a

key.
 The key listener only works when the focus is on a component that has the listener

added to it. To implement a key listener for an entire user interface, you must add
the key listener to every component that can receive the focus.

 The doClick method that’s used in the code above is a method in the AbstractButton
class.

How to work with adapter classes
Since it can be tedious to code all the methods in a listener interface just to use one of them, the Java
API provides adapter classes. An adapter class is a class that implements all the methods of a listener
interface but doesn’t code any statements within these methods. Then, your listener class can inherit
the adapter class and override any methods you want to code.
Figure 12-18 shows how to work with adapter classes. To start, it summarizes five adapter classes that
correspond with five of the listener interfaces. Then, it shows how an adapter class makes it easier to
code a class that implements an interface.

The first two examples illustrate how using an adapter class shortens the amount of code needed to
implement a listener interface. Here, the first code example is 11 lines long because it includes all seven
methods of the WindowListener interface. However, the second code example takes only 5 lines
because it inherits the WindowAdapter class.

The third example shows how to add a listener class to a component. In particular, it shows how to add
the WindowWorker class that’s created in either of the first two examples to the current component.
Here, the first statement creates a WindowWorker object. Then, the second statement adds this object
to the current component.
The fourth example combines the code that’s used in the second and third code examples to create an
anonymous class. This example begins by calling the addWindowListener method. Then, to supply the
argument for this method, this code creates a WindowAdapter object that includes the code that
overrides the windowClosed method. In other words, the entire class is coded as the argument for the
addWindowListener method without ever giving this class a name (that’s why it’s anonymous).

You may recognize this fourth example as the technique that you’ve been using to handle the window
closed event at the end of a program. You should now have a better idea of what this code is doing. If
it’s still difficult to follow, though, that’s because it uses some unusual coding techniques. Just
remember that this example is equivalent to the second and third examples combined

Figure 12-18: How to work with adapter classes
Common adapter classes

Murach’s Beginning Java 2

 page 302

How to implement the WindowListener interface

Without an adapter class

class WindowWorker implements WindowListener{

 public void windowActivated(WindowEvent e){}

 public void windowClosed(WindowEvent e){

 System.exit(0);

 }

 public void windowClosing(WindowEvent e){}

 public void windowDeactivated(WindowEvent e){}

 public void windowDeiconified(WindowEvent e){}

 public void windowIconified(WindowEvent e){}

 public void windowOpened(WindowEvent e){}

}

With an adapter class

class WindowWorker extends WindowAdapter{

 public void windowClosed(WindowEvent e){

 System.exit(0);

 }

}

How to add a window listener to a frame
With a named class

WindowWorker win = new WindowWorker();

addWindowListener(win);

With an anonymous class

addWindowListener(new WindowAdapter(){

 public void windowClosed(WindowEvent e){

Murach’s Beginning Java 2

 page 303

 System.exit(0);

 }

});

Description
 An adapter class is a class that implements all the methods of a listener interface as

empty methods. This way, your event handler class can inherit the Adapter class
and override only the methods that you need in your program.

 Although your event handler class can’t inherit an adapter class if it already inherits
another class, you can use an adapter class as an anonymous class. The fourth
example shows how you can add a window listener to a frame by using the
WindowAdapter class as an anonymous class.

The Book Maintenance application
In chapter 6, you learned about the design of a program called the Book Maintenance application. This
application lets you add, update, or delete the book data that’s stored in a file or database. Now, you’ll
learn how to code the user interface for that application.
As you will see, this application calls methods from the BookIO class to handle input and output
operations that add, update, and delete the data for a Book object. In chapter 18, you’ll learn how the
methods in this class work. For now, though, you just need to use those methods, which is illustrated by
the code for this application.

The user interface
Figure 12-19 shows the user interface for the Book Maintenance application. This interface lets the user
change the data for any record in the file or database that contains the book records. It also lets the
user add records to and delete records from the file or database. In case you aren’t familiar with this
kind of interface, this figure describes its operation in detail.

Note in the description that the buttons in this interface are enabled or disabled depending on what the
user starts to do. When the data for a book is first displayed, for example, only the Update button is
disabled. But if the user changes the data in the title or price text fields for a book, all of the buttons are
disabled except for the Update and Exit buttons. Then, the user can click on the Update button to save
the changes to the record in the file or database.

Note too that clicking on the Add button doesn’t add a record to the file or database. Instead, that clears
the text fields so the user can enter the data for a new record. That also disables all of the buttons
except the Update and Exit buttons. Then, the user can enter the data for a new record and click on the
Update button to add the record to the file or database. To cancel an add or update operation, the user
can simply press the Escape key when the focus is in the code, title, or price text field.

To navigate through the records in this interface, the user can click on one of the buttons in the bottom
row. Although this is acceptable for a file or database that consists of a small number of records, most
interfaces provide an easier way to display the data for any record. For instance, some interfaces let
you enter the code for the record that you want displayed and then click on a Find button to display that
record. Other interfaces provide a combo or list box that lets you select the record that you want
displayed. If you understand the code for this interface, though, you should be able to add an
enhancement like that.

Figure 12-19: The user interface for the Book Maintenance application
The user interface

Murach’s Beginning Java 2

 page 304

How the interface works
 When the GUI is first displayed, the data for the first book in the file or database is

displayed and the Update button is disabled as shown.
 To navigate through the book records, the user can click on the one of the buttons in

the bottom row: the First button displays the first record in the file or database; the
Prev button displays the previous record; the Next button displays the next record;
and the Last button displays the last record. Whenever a new record is displayed,
the Update button is disabled.

 To modify the data for a book, the user makes a change to the title or price fields. At
that point, the Update button is enabled and the Add, Delete, and navigation buttons
are disabled. Then, to save the changes to the file or database, the user clicks on
the Update button.

 To add a record to the file or database, the user clicks on the Add button. This clears
the text fields, enables the Update button, and disables the Add, Delete, and
navigation buttons. Then, the user can enter the code, title, and price (without dollar
sign) for a new book and click on the Update button to save the new record to the
file or database. This record will be added at the end of the file or database.

 To delete a record, the user navigates to that record and clicks on the Delete button.
After it deletes the record from the file or database, the program displays the data
for the next record (or the new last record if the deleted record was the last record).

 To cancel any add or update operation, the user can press the Esc key when the
focus is in one of the text fields. To exit from the program at any time, the user can
click on the Exit button. This will cancel any change, addition, or deletion that’s in
progress.

Two ways this interface has been simplified
 Only three fields are displayed for each book record, although a typical master record

like this contains many fields that can be maintained.
 The interface doesn’t provide a way to go directly to the data for a specific book like

entering the book code and clicking on a Find button.

The Grid Bag layout and the code
Figure 12-20 (in five parts) starts with a diagram of the grid that’s used by this application’s Grid Bag
layout manager. This diagram lays out eight components in a 4x5 grid: three labels, three text fields,
and two panels with four buttons in each. You can use this as a guide to the code for the interface for
this application.
Part 1 of this figure also presents the first page of code, which includes the code for the BookFrame
class. To start, the code imports the six packages that the user interface needs. Then, the constructor
for the BookFrame class sets up the frame and adds a BookPanel object to the content pane of the
frame. Since this code is the same as in the last chapter, you shouldn’t have any trouble following it,
although you may have new respect for the code that adds the window listener and ends the program
when the window is closed.

Note, however, that the windowClosing method now includes a statement that calls the close method of
the BookIO class. This method closes the file that is opened in the BookPanel class, as you will see in a
moment. This is typical of any program that works with files. Each file is usually opened at the start of
the application and closed at the end of it.

After the constructor, the main method for the BookFrame class creates an instance of the BookFrame
and displays it on the screen. That way, you can run the BookFrame class by itself, and it will display
the user interface for the Book Maintenance application. You won’t need to create a separate driver
class.

Before you continue, I want you to know that the code for this interface has a few simplifications for
illustrative purposes. First, the code lets the user add a new record to the file or database with the same
book code as an existing record, which shouldn’t be allowed. Second, the code deletes a record when
the user clicks on the Delete button without displaying a warning message. If you understand the code
that follows, though, you should be able to make these enhancements on your own.

Figure 12-20: The Book Maintenance application (part 1 of 5)
The grid for the Grid Bag layout of the user interface

Murach’s Beginning Java 2

 page 305

The code

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

import java.text.*;

import java.io.*;

public class BookFrame extends JFrame{

 public BookFrame(){

 setTitle("Book Maintenance");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 400, height = 200;

 setBounds((d.width - width)/2, (d.height - height)/2, width, height);

 setResizable(false);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

Murach’s Beginning Java 2

 page 306

 BookIO.close;

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 BookPanel panel = new BookPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

 JFrame frame = new BookFrame();

 frame.show();

 }

}

Part 2 of this figure shows the start of the BookPanel class. It begins by implementing three event
listener interfaces and by declaring the instance variables that will be used throughout the rest of the
class. These instance variables declare the labels, text fields, and buttons of the BookPanel class. In
addition, they declare a boolean variable that determines whether a record is being added or updated, a
NumberFormat variable that defines a currency format, and a Book variable that defines the current
book that is displayed in the user interface.

The constructor of the BookPanel class begins by creating the labels and text fields of the panel. Then,
it creates the two panels that hold the buttons, and it adds those buttons to the appropriate panels.

In the fourth block of code, the constructor executes 13 statements that add the appropriate listeners to
the controls. To start, it adds an action listener to the eight buttons. Then, it adds a key listener to the
three text fields. And finally, it adds a document listener to the title and price text fields, but not the code
field, which shouldn’t be changed. You’ll see how the document events are handled in part 5 of this
figure.

Figure 12-20: The Book Maintenance application (part 2 of 5)
The code for the Book Maintenance application (continued)

class BookPanel extends JPanel implements ActionListener,

 DocumentListener, KeyListener{

 private JButton addButton, updateButton, deleteButton, exitButton,

 firstButton, prevButton, nextButton, lastButton;

 private JLabel codeLabel, titleLabel, priceLabel;

 private JTextField codeField, titleField, priceField;

 private boolean addFlag = false;

 private NumberFormat currency = NumberFormat.getCurrencyInstance();

Murach’s Beginning Java 2

 page 307

 private Book currentBook = null;

 public BookPanel(){

 codeLabel = new JLabel("Code: ");

 codeField = new JTextField("", 7);

 titleLabel = new JLabel("Title: ");

 titleField = new JTextField("", 26);

 priceLabel = new JLabel("Price: ");

 priceField = new JTextField("", 7);

 JPanel updatePanel = new JPanel();

 addButton = new JButton("Add");

 updateButton = new JButton("Update");

 deleteButton = new JButton("Delete");

 exitButton = new JButton("Exit");

 updatePanel.add(addButton);

 updatePanel.add(updateButton);

 updatePanel.add(deleteButton);

 updatePanel.add(exitButton);

 JPanel navigationPanel = new JPanel();

 firstButton = new JButton("First");

 prevButton = new JButton("Prev");

 nextButton = new JButton("Next");

 lastButton = new JButton("Last");

 navigationPanel.add(firstButton);

 navigationPanel.add(prevButton);

 navigationPanel.add(nextButton);

 navigationPanel.add(lastButton);

Murach’s Beginning Java 2

 page 308

 addButton.addActionListener(this);

 updateButton.addActionListener(this);

 deleteButton.addActionListener(this);

 exitButton.addActionListener(this);

 firstButton.addActionListener(this);

 prevButton.addActionListener(this);

 nextButton.addActionListener(this);

 lastButton.addActionListener(this);

 codeField.addKeyListener(this);

 titleField.addKeyListener(this);

 priceField.addKeyListener(this);

 titleField.getDocument().addDocumentListener(this);

 priceField.getDocument().addDocumentListener(this);

Part 3 of this figure shows the code in the BookPanel class that controls the layout for the panel. Here,
the first statement sets the layout for the BookPanel class to a Grid Bag layout, and the second
statement creates a GridBagConstraints object. Then, the third and fourth statements set the weigthx
and weighty constraints to control how extra space is distributed, and the fifth statement sets the ipadx
constraint so there will be a minimum of 10 pixels of horizontal space between components.

The next three groups of code add all the components to the layout. To do that, this code uses a helper
method called getConstraints that’s coded near the bottom of this page right after the BookPanel
constructor. This method sets the gridx, gridy, gridwidth, and gridheight fields in a single line of code so
it’s easier to set these constraints.

After the components are added to the BookPanel class, the open method of the BookIO class is called.
This method opens the file that contains the book data. Then, the moveFirst method of the BookIO class
is called. This method sets the currentBook instance variable equal to the first book in the file. Since
these BookIO methods may throw a FileNotFoundException and an IOException, the constructor uses a
try/catch statement to catch these exceptions. Then, the last two statements of the constructor call
helper methods named performBookDisplay and enableButtons that are shown in part 4 of this figure.
These methods display the data for the current book in the text fields and enable or disable the
appropriate buttons.

Figure 12-20: The Book Maintenance application (part 3 of 5)
The code for the Book Maintenance application (continued)

 setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 c.weightx = 100;

 c.weighty = 100;

 c.ipadx = 5;

 c.anchor = GridBagConstraints.EAST;

Murach’s Beginning Java 2

 page 309

 c = getConstraints(c, 1, 1, 1, 1);

 add(codeLabel, c);

 c = getConstraints(c, 1, 2, 1, 1);

 add(titleLabel, c);

 c = getConstraints(c, 1, 3, 1, 1);

 add(priceLabel, c);

 c.anchor = GridBagConstraints.WEST;

 c = getConstraints(c, 2, 1, 3, 1);

 add(codeField, c);

 c = getConstraints(c, 2, 2, 3, 1);

 add(titleField, c);

 c = getConstraints(c, 2, 3, 3, 1);

 add(priceField, c);

 c.anchor = GridBagConstraints.CENTER;

 c = getConstraints(c, 1, 4, 4, 1);

 add(updatePanel, c);

 c = getConstraints(c, 1, 5, 4, 1);

 add(navigationPanel, c);

 try{

 BookIO.open();

 currentBook = BookIO.moveFirst();

 }

 catch (FileNotFoundException e){

 JOptionPane.showMessageDialog(null, "FileNotFoundException");

 System.exit(1);

 }

 catch (IOException e){

 JOptionPane.showMessageDialog(null, "IOException");

Murach’s Beginning Java 2

 page 310

 }

 performBookDisplay();

 enableButtons(true);

 }

 private GridBagConstraints getConstraints(GridBagConstraints c,

 int x, int y, int width, int height){

 c.gridx = x;

 c.gridy = y;

 c.gridwidth = width;

 c.gridheight = height;

 return c;

 }

Part 4 of this figure starts with the two helper methods that are called by the last two statements of the
constructor in part 3. Here, the performBookDisplay method sets the three text fields so they contain the
data for the current book. Because the third field is formatted by the currency object, it will include a
dollar sign when it is displayed.

Then, the enableButtons method enables or disables the buttons of the user interface depending on the
value that’s passed to the method. If a true value is passed to the method, all of the buttons except the
Update button are enabled. But if a false value is passed to the method, the Update button is the only
button that’s enabled (except for the Exit button, which is always enabled). That prevents a user from
clicking on another button such as the Next button when the user has begun updating the data for a
book.

After the two helper methods, you can see the start of the code that implements the actionPerformed
method of the ActionListener interface. This is the method that handles all the events that are caused by
clicking on one of the buttons. Since the statements within this method call methods that throw
exceptions, a try/catch statement has been coded around all of the statements in this method. That way,
you only have to code a single try clause with three catch clauses to catch all of the possible exceptions
that may be thrown when a user clicks on a button.

Within the actionPerformed method, the first statement returns the source of the event. Then, if/else
statements execute the appropriate code for each button. For instance, the first if block calls the close
method of the BookIO class and exits the user interface if the user clicks the Exit button. This call to the
close method is necessary, even though this method is also called from the windowClosing method of
the BookFrame class, because calling the System.exit method doesn’t generate a windowClosing
event.

Then, the next four else if blocks display the data for the appropriate book when the user clicks the First,
Prev, Next, or Last buttons. To do that, each block calls a method from the BookIO class to return a
Book object. Then, it sets the currentBook instance variable equal to this Book object, and it calls the
performBookDisplay and enableButtons methods to display the book and enable all buttons except the
Update button.

The last else if block in this part is the code that’s executed when the user clicks on the Add button.
Within this block, the first statement moves the focus to the code text field, and the second statement
enables the Update button and disables all the other buttons except the Exit button. Then, the next

Murach’s Beginning Java 2

 page 311

three statements clear the three text fields, and the last statement sets the addFlag instance variable to
true. Although this code doesn’t actually add a book, it does prepare the user interface to add a record.
Later, after the user enters a code, title, and price for the book and clicks on the Update button, the
code for the Update button adds the book.

Figure 12-20: The Book Maintenance application (part 4 of 5)
The code for the Book Maintenance application (continued)

 private void performBookDisplay(){

 codeField.setText(currentBook.getCode());

 titleField.setText(currentBook.getTitle());

 priceField.setText(currency.format(currentBook.getPrice()));

 }

 private void enableButtons(boolean flag1){

 boolean flag2 = false;

 if (flag1 == false) flag2 = true;

 updateButton.setEnabled(flag2);

 addButton.setEnabled(flag1);

 deleteButton.setEnabled(flag1);

 firstButton.setEnabled(flag1);

 nextButton.setEnabled(flag1);

 prevButton.setEnabled(flag1);

 lastButton.setEnabled(flag1);

 }

 public void actionPerformed(ActionEvent e){

 try{

 Object source = e.getSource();

 if (source == exitButton){

 BookIO.close();

 System.exit(0);

 }

 else if (source == firstButton){

 currentBook = BookIO.moveFirst();

Murach’s Beginning Java 2

 page 312

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == prevButton){

 currentBook = BookIO.movePrevious();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == nextButton){

 currentBook = BookIO.moveNext();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == lastButton){

 currentBook = BookIO.moveLast();

 performBookDisplay();

 enableButtons(true);

 }

 else if (source == addButton){

 codeField.requestFocus();

 enableButtons(false);

 codeField.setText("");

 titleField.setText("");

 priceField.setText("");

 addFlag = true;

 }

Part 5 of this figure starts with the else if block that’s executed when the user clicks on the Update
button. Here, the first three statements remove the dollar sign from the price text field and convert it to a
double value (see chapter 9 if you don’t understand the use of the priceString methods). Then, the
fourth statement uses this double value and the values that are stored in the code and title fields to
create a Book object. After that, two if statements check the addFlag variable to determine whether to
add or update the book. If the addFlag variable is false, the updateRecord method of the BookIO class
is called to update the data for the current book. But if the addFlag variable is true, the addRecord
method is used to add the current book to the file or database and the addFlag variable is set to false.
Finally, this else if block sets the currentBook equal to the book that has just been added or updated,

Murach’s Beginning Java 2

 page 313

and the helper methods are called to display the data for that book and to enable all of the buttons
except the Update button.

The last else if block shows the code that’s executed when the user presses the Delete button. Within
this block, the first statement calls the deleteRecord method from the BookIO class. This method
deletes the current record from the file or database. Then, the next two statements move the focus to
the Next button and perform the doClick method for this button, which causes the event handler for this
button to set the current record to the next record and display its data.

After the actionPerformed method, the next three methods implement the KeyListener interface,
although the keyPressed method is the only method that contains any statements. Here, the first
statement returns the key code that indicates the key that was pressed by the user. Then, this method
uses an if statement to see if the user pressed the Escape key. If so, the focus is moved to the code text
field, the current record is displayed, and all buttons except the Update button are enabled. This has the
effect of returning the values in the three text fields to what they were before they were modified. In part
2 of this figure, you can see that the key listener has only been added to the three text fields, so
pressing the Escape key will only work when the focus is on one of those fields.

The last three methods in this figure implement the DocumentListener interface. Here, the code includes
three methods, even though the insertUpdate and removeUpdate methods are the only methods that
contain any statements. These are the methods that are called when the user edits the text in either the
title or price fields. Then, the statements within these methods disable all buttons except the Update and
Exit buttons. To enable the other buttons, the user must either finish the update by clicking on the
Update button or press the Escape key. Since the document listener has only been added to the title
and price fields, this code isn’t executed when the user edits the text in the code field.

* * *

Now, you should take some time to reflect on the code for this user interface. Although each book object
consists of just three fields, this gives you a good idea of what you need to do when you develop an
interface for objects with many fields. At this time, you should also do your best to understand every line
of code in this application because that’s the best way to master Java. If you need to refer back to
earlier portions of this chapter or book, by all means do so.

Figure 12-20: The Book Maintenance application (part 5 of 5)
The code for the Book Maintenance application (continued)

 else if (source == updateButton){

 String priceString = priceField.getText();

 if (priceString.charAt(0) == ‘$’)

 priceString = priceString.substring(1);

 double price = Double.parseDouble(priceString);

 Book book = new Book(codeField.getText(),

 titleField.getText(), price);

 if (addFlag == false){

 BookIO.updateRecord(book);

 }

 if (addFlag == true){

 BookIO.addRecord(book);

 addFlag = false;

Murach’s Beginning Java 2

 page 314

 }

 currentBook = book;

 performBookDisplay();

 enableButtons(true);

 }

 else if(source == deleteButton){

 BookIO.deleteRecord(currentBook.getCode());

 nextButton.requestFocus();

 nextButton.doClick();

 }

 }

 catch (FileNotFoundException fnfe){

 JOptionPane.showMessageDialog(this, "FileNotFoundException");

 }

 catch (NumberFormatException nfe){

 JOptionPane.showMessageDialog(this, "NumberFormatException");

 }

 catch (IOException ioe){

 JOptionPane.showMessageDialog(this, "IOException");

 }

 }

 public void keyPressed(KeyEvent e){

 int keyCode = e.getKeyCode();

 if (keyCode == KeyEvent.VK_ESCAPE){

 codeField.requestFocus();

 performBookDisplay();

 enableButtons(true);

 }

 }

 public void keyReleased(KeyEvent e){}

Murach’s Beginning Java 2

 page 315

 public void keyTyped(KeyEvent e){}

 public void insertUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void removeUpdate(DocumentEvent e){

 enableButtons(false);

 }

 public void changedUpdate(DocumentEvent e){}

}

Perspective
In this chapter, you learned how to work with some new controls and the events generated by these
controls. In addition, you learned how to use the most sophisticated layout manager available from the
Java API, and you learned how to handle low-level events. In short, you’ve learned all of the essential
skills for working with graphical user interfaces. This means that you should now be able to develop
significant user interfaces on your own.

Summary
 An event is an object that’s generated by user actions or by system events. An event

listener is an object that implements the listener interface.
 A semantic event is an event that’s related to a specific component like clicking on a

button. In contrast, a low-level event is a less specific event like clicking the mouse.
 To handle an event, you must implement the appropriate listener interface. Then, you

must add an object created from the listener class to the appropriate component by
using the addXXXListener method, and you must code the methods of the listener
interface.

 A combo box lets a user select an item from a drop-down list of items, and a list box lets
a user select one or more items from a list of items.

 You can add a component like a list box to a scroll pane, and you can add a border to
any component.

 You can create a text area that can store one or more lines of text, and you can use
many of the same techniques to work with text fields and text areas.

 You can create two or more radio buttons that you can add to a button group. Then, the
user can select one of the buttons in the group. You can also create a check box that
lets a user check or uncheck the box.

 The Grid Bag layout manager is the most sophisticated and flexible layout manager.
When you use the Grid Bag layout manager, you use the fields of the
GridBagConstraints class to align components in a grid.

 To make it easier to code the listener interfaces for low-level events, the Java API
includes adapter classes that contain empty methods for all of the methods in the
listener interface.

 An anonymous class that uses the WindowAdapter class is commonly used to handle
the window closed event for an interface.

Terms
event list box check box

listener scroll pane Grid Bag layout manager

event handler class border focus event

Murach’s Beginning Java 2

 page 316

semantic event text field keyboard event

low-level event text area adapter class

control radio button anonymous class

combo box button group

Objectives
 Code graphical user interfaces that use combo boxes, list boxes, scroll panes, text

areas, radio buttons, and check boxes. Then, write code that responds to the semantic
events that are generated when a user interacts with these components.

 Use the Grid Bag layout manager to position components on a frame, panel, or other
type of container.

 Write code that handles low-level events like focus events and keyboard events, and
use adapter classes whenever they are appropriate.

Exercise 12-1: Code the Book Maintenance user interface
1. Use the Explorer to review the files in the c:\java\ch12\book directory. It should

include a data file named books.dat and three class files: Book, BookIO, and
BookFrame.

2. Open the code for the BookFrame class that’s in the c:\java\ch12\book directory.
Then, edit its code so it displays the user interface for the Book Maintenance
application that’s shown in figure 12-19.

3. Compile and run this code to make sure that it works correctly. This should also
compile the Book and BookIO classes. When the application runs, it should display a
dialog box like the one in figure 12-19, and it should allow you to add, edit, and
delete the books that are stored in the books.dat file.

Exercise 12-2: Enhance the Book Order application

1. Open the code for the Book class that’s in the c:\java\ch12\order directory. Then,
read through this code to make sure you understand it. It uses the readRecord
method of the BookIO class to get the code, title, and price for each book from the
books.dat file that’s stored in this directory.

2. Open the code for the BookOrderFrame class that’s in the c:\java\ch12\order
directory. Then, edit this code so it uses a combo box to select the title instead of
having the user enter a code as shown in figure 12-3. To return the array of book
titles, use the static readTitles method of the BookIO class. Since this method throws
an IOException, you should place it in a try/catch block.

3. Compile and run this code to make sure that it works correctly. It should display a
dialog box like the one in figure 12-3; it should make an accurate calculation; and it
should respond to any exceptions that are thrown due to bad input from the user. In
addition, the combo box should display all the books that are stored in the books.dat
file.

Exercise 12-3: Enhance the Loan Calculator application

1. Open the code for the FinancialCalculations class that’s in the c:\java\ch12\loan
directory and read through it to make sure you understand how this class works.
Notice that this class now contains another method called calculateLoanAmount.

2. Open the code for the LoanCalculatorFrame class that’s saved in the
c:\java\ch12\loan directory. Using the skills and coding style that you learned in this
chapter, modify this class so it uses two radio buttons as shown in figure 12-8.

3. Compile this code and run the application to make sure that it works correctly. It
should let you calculate the monthly payment on a loan or calculate the value of the
loan based on a series of monthly payments, and it should catch any exceptions that
are thrown when the user enters invalid data.

Chapter 13: How to work with menus

Murach’s Beginning Java 2

 page 317

In the last two chapters, you learned how to code graphical user interfaces at a professional level. Now,
in this chapter, you’ll learn how to add menus to those interfaces, and you’ll learn how to handle the
events that are generated when a user selects an item from a menu. Although you won’t need to use
menus with every interface, they do provide another way for users to find the commands they’re looking
for.

Essential skills for working with menus
This topic presents the basic skills that you need for working with menus. After it shows you how to add
menus and submenus to a frame, it shows how to handle the events that are generated by these
components. Then, it shows you two ways to allow the user to select menu items with the keyboard. But
first, it shows you the hierarchy of Swing classes that you can use to work with menus.

The hierarchy of classes for working with menus
Figure 13-1 shows the Swing hierarchy that you can use to work with menus. Since all of these classes
ultimately inherit the JComponent class, they work much like the components you learned about in the
last two chapters. Also, since menus and menu items inherit the AbstractButton class, they work much
like the other buttons including buttons created from the JButton, JCheckBox, and JRadioButton
classes.

This figure also summarizes three common methods of the AbstractButton class. Although these
methods can be used with any class that inherits the AbstractButton class, the isSelected and
setSelected methods are commonly used with the JRadioButtonMenuItem and JCheckBoxMenuItem.
On the other hand, the doClick method is commonly used with the JButton class.

Figure 13-1: The hierarchy of classes for working with menus
The hierarchy of classes for working with menus

Summary of these classes

Murach’s Beginning Java 2

 page 318

Common methods of the AbstractButton class

Note
The JButton, JCheckBox, and JRadioButton classes also inherit the
AbstractButton class.

How to add menus
Figure 13-2 shows how to add a menu bar that contains menus to a top-level container such as a frame
or an applet. To access a menu, the user can click on the name of the menu in the menu bar. Then, the
menu drops down from the menu bar.

The example in this figure shows how to add two menus to a frame. Here, the first two statements use
the JMenu class to create the File menu and the Records menu. The next three statements use the
JMenuBar class to create the menu bar and to add the two menus to the menu bar. And the last
statement adds the menu bar to the frame. After this example, you can see a summary of the
constructors and methods that can be used to add menus to an interface.
When you use menus, you usually create them in the constructor of the frame class and add them to
the content pane. Then, if you want to synchronize the menu items with the buttons in the interface, you
should create the buttons in the frame class too. That makes it easier to do the synchronization. When
you use menus, then, you probably won’t want to divide the code of your interface into a frame class
and a panel class as shown in chapters 11 and 12.

Figure 13-2: How to add menus
An application with a menu bar and two menus

Code that adds two menus to a frame

JMenu fileMenu = new JMenu("File");

JMenu recordsMenu = new JMenu("Records");

Murach’s Beginning Java 2

 page 319

JMenuBar menuBar = new JMenuBar();

menuBar.add(fileMenu);

menuBar.add(recordsMenu);

setJMenuBar(menuBar);

Constructors and methods needed to add a menu to a frame

Description

 The menu bar in an interface is the bar below the title bar. A menu is one of the lists
that drops down from a menu bar.

 To select a menu, the user can click on the menu name in the menu bar.
 You usually create the menu bar and the menus in the constructor of the frame class

and add these items to its content pane. When you use menus, it also makes sense
to develop the rest of the interface in the frame class rather than a separate panel
class. This makes it easier to synchronize the menus and the buttons (see figure
13-4).

 You can use the techniques in this chapter to work with normal user interfaces or with
applets. To learn more about applets, you can read chapter 15.

How to add menu items
Figure 13-3 shows how to add menu items to the two menus defined in the last figure. In the user
interface that’s shown, you can see the four menu items of the Records menu. Here, the third and fourth
items are separated by a separator, and the second item is disabled. To select an enabled menu item,
the user can click on it.

In the code example, you can see how the menu items are added to the two menus. Here, the first
statement declares the five menu items that will be added. Since you usually want to be able to access
these menu items throughout the entire class, they’re usually declared as instance variables of the
class. Then, the next three statements create the Exit menu item and add it to the File menu. And the
last eleven statements create the four items of the Records menu and add those items to that menu.
This code uses the addSeparator method of the JMenu class to add a separator between the Delete
and Move items, and it uses the setEnabled method of the JMenuItem class to disable the Update
button.

This figure also summarizes the constructors and methods that you can use to work with menu items.
To start, you can use either of the constructors of the JMenuItem class to create a menu item. Then,
you can call any of the methods of the menu item to enable it, disable it, retrieve its text, or add an
action listener to it. Finally, you can use the add method of the JMenu class to add the item to the menu,
and you can use the addSeparator method to place a separator between menu items.

Figure 13-3: How to add menu items to menus
An application with a menu that contains four menu items

Murach’s Beginning Java 2

 page 320

Code that adds menu items to the two menus

private JMenuItem exitMenuItem, addMenuItem, updateMenuItem,

 deleteMenuItem, moveMenuItem;

JMenu fileMenu = new JMenu("File");

exitMenuItem = new JMenuItem("Exit");

fileMenu.add(exitMenuItem);

JMenu recordsMenu = new JMenu("Records");

addMenuItem = new JMenuItem("Add");

updateMenuItem = new JMenuItem("Update");

deleteMenuItem = new JMenuItem("Delete");

moveMenuItem = new JMenuItem("Move");

recordsMenu.add(addMenuItem);

recordsMenu.add(updateMenuItem);

recordsMenu.add(deleteMenuItem);

recordsMenu.addSeparator();

recordsMenu.add(moveMenuItem);

updateMenuItem.setEnabled(false);

Common constructors of the JMenuItem class

Common methods of the JMenuItem class

Murach’s Beginning Java 2

 page 321

Methods from the JMenu class that work with menu items

Description

 A menu item is one of the items in a menu. A separator is a line that separates two
items.

How to handle menu item events
Figure 13-4 shows how to handle the events that are generated when a user selects a menu item. To
start, this figure shows two ways to add an action listener to a menu item. The first way shows how to
add an action listener to a menu item when you want the current object from the BookFrame class to
listen for the event that’s generated when a user selects a menu item. The second way shows how to
add an action listener to a menu item when you want an object from the BookPanel class to listen for
the event that’s generated when a user selects a menu item.

To decide how to structure your code, you need to determine the amount of interaction and
synchronization that’s necessary between the menu items and the other controls that are displayed on
the frame. Then, if you find that you need access to variables that refer to menu items and other
controls at the same time, you need to structure your code so all of these controls are available as
instance variables of the class that defines the frame. This differs from the structure of the code in the
last two chapters, which divided the code for an interface into a frame and a panel class.

The next two examples show two ways to code the event handler for menu events. In the first
actionPerformed method, the first statement retrieves the source of the event as an object of the Object
class. Next, an if statement checks to see whether the object is an instance of the JMenuItem class. If it
is, the next two statements cast the object to the JMenuItem type and use the getText method to return
the text that corresponds to the item. Then, a series of if statements executes the doClick methods of
the buttons that correspond with the menu selections. This avoids unnecessary duplication of code and
insures that the application will execute the same code whether the user selects the menu item or the
button.

In the second actionPerformed method, the getActionCommand of the ActionEvent class is used to get
the string that’s used as text in the menu item that triggered the event. In other words, this one
statement replaces the two statements that get the same result in the first event handler. Otherwise,
these methods work the same.

The last example in this figure shows the code that synchronizes the buttons that are displayed on the
frame with the state of the menu items. To use code like this, though, the menu items and buttons must
both be stored in the same class. For example, this code will work if the menu items and buttons are
declared as instance variables of the BookFrame class. That way, the enableButtons method will have
access to all the buttons and menu items and can enable or disable each button or item depending on
the boolean value that’s passed to the method.

Figure 13-4: How to handle menu item events
Two ways to add a listener to a menu item

When the current frame is the listener

addMenuItem.addActionListener(this);

When a panel defined by another class is the listener

BookPanel panel = new BookPanel();

addMenuItem.addActionListener(panel);

One way to code the event handler for menu item events

public void actionPerformed(ActionEvent e){

Murach’s Beginning Java 2

 page 322

 Object source = e.getSource();

 if (source instanceof JMenuItem){

 JMenuItem item = (JMenuItem) source;

 String text = item.getText();

 if (text.equals("Add"))

 addButton.doClick();

 if (text.equals("Update"))

 updateButton.doClick();

 // code for other menu items
 }
 // code for other buttons
}

Another way to code the event handler for menu item events

public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 if (source instanceof JMenuItem){

 String item = e.getActionCommand();

 if (item.equals("Add"))

 addButton.doClick();

 if (item.equals("Update"))

 updateButton.doClick();

 // code for other menu items
Code that synchronizes buttons and menu items

private void enableButtons(boolean flag){

 addButton.setEnabled(flag);

 addMenuItem.setEnabled(flag);

 updateButton.setEnabled(!flag);

 updateMenuItem.setEnabled(!flag);

 deleteButton.setEnabled(flag);

 deleteMenuItem.setEnabled(flag);

 // code for other buttons and menu items
}

A useful method of the ActionEvent class

Murach’s Beginning Java 2

 page 323

Description

 If you want to synchronize the menu items with the buttons, you should create both
the items and the buttons in the frame class instead of dividing the code for the
interface into a frame and a panel class.

How to create submenus
Figure 13-5 shows how to create a submenu that drops down from an item in another menu. Here, a
submenu drops down from the Move item in the Records menu.

In the code for adding this submenu to the Records menu, you can see that the first statement declares
the menu items of the submenu as instance variables of the class. Then, the next nine statements
create a Move menu using the JMenu and JMenuItem classes, and the last statement adds the Move
menu to the Records menu. Later, when you run the application, an arrow is displayed to the right of the
Move menu to indicate that it is a submenu of the Records menu.

Although submenus are easy to create, they force the user to drill down through the menus, which
makes the submenu items more difficult to find. That’s why you should avoid using submenus if you
can. In practice, though, submenus let you pack more choices into less space, which is sometimes what
you need to do.

Figure 13-5: How to create submenus
An application with a submenu

Code that adds a submenu to a menu

JMenuItem firstMenuItem, prevMenuItem, nextMenuItem, lastMenuItem;

JMenu moveMenu = new JMenu("Move");

firstMenuItem = new JMenuItem("First");

prevMenuItem = new JMenuItem("Prev");

nextMenuItem = new JMenuItem("Next");

lastMenuItem = new JMenuItem("Last");

moveMenu.add(firstMenuItem);

moveMenu.add(prevMenuItem);

moveMenu.add(nextMenuItem);

moveMenu.add(lastMenuItem);

Murach’s Beginning Java 2

 page 324

recordsMenu.add(moveMenu);

Description
 A submenu is a menu that drops down from a menu item in another menu.
 The advantage of using submenus is that it lets you pack more items in less space.
 The disadvantage of using submenus is that the user has to drill down deeper to find

the menu items.

How to set keyboard mnemonics
Figure 13-6 shows how to set the keyboard mnemonics for menus and menu items so the user can use
keystrokes to select menus and menus items. Then, the user can press the Alt key plus a menu’s
underlined letter to pull down the menu. And the user can press a menu item’s underlined letter to select
the menu item.
The first example shows how to specify that the keyboard mnemonic for the File menu is the letter F.
For this to work, the File menu must first be created by the JMenu constructor. Then, the setMnemonic
method that the JMenu class ultimately inherits from the AbstractButton class specifies the mnemonic.
Since this method isn’t case sensitive, the user can use either uppercase or lowercase letters.
The second example shows how to specify that the keyboard mnemonics for the Exit and Add menu
items are the letters x and A. To add these mnemonics, you use the constructor of the JMenuItem class
that’s shown at the bottom of this figure. When you use this constructor, you can use uppercase or
lowercase characters for the second argument and the result isn’t case-sensitive. Since the JMenuItem
class is also derived from the AbstractButton class, you can use the setMnemonic method to set
keyboard mnemonics for menu items too.

If you’re using SDK1.4, you can use the setDisplayedMnemonicIndex method to determine which
occurrence of a character you want underlined. For instance, if you use the setMnemonic method on a
button that contains the text “Save As”, the first “a” is automatically underlined. To underline the second
“a”, you can then call the setDisplayedMnemonicIndex method with an index argument of 5.

Figure 13-6: How to set keyboard mnemonics
An application with keyboard mnemonics

Code that adds keyboard mnemonics to a menu

fileMenu.setMnemonic(‘F’);

Code that adds keyboard mnemonics to two menu items

JMenuItem exitMenuItem = new JMenuItem("Exit", ‘x’);

JMenuItem addMenuItem = new JMenuItem("Add", ‘A’);

How to add keyboard mnemonics to menus and menu items

Murach’s Beginning Java 2

 page 325

Description

 If you want the user to be able to select menus and menu items with the keyboard,
you can provide keyboard mnemonics for the menus and menu items.

 To pull down a menu that contains an underlined letter, the user can hold down the
Alt key and press the letter. Then, the user can select any item on the menu by
pressing its underlined letter.

 To use the setDisplayedMnemonicIndex method included in SDK1.4, you must first
call the setMnemonic method. Then, you can use the setDisplayedMnemonicIndex
method to specify the index of the character you wish to be underlined.

How to set accelerator keys
Figure 13-7 shows how to set accelerator keys for menu items. In the interface that’s shown, these keys
have been added to the Add, Update, and Delete items of the Records menu. So it’s easy for the user
to find out what they are, the key combinations are shown to the right of the menu items in the menus.
For instance, the accelerator keys for the Update item are Ctrl+U.

The code example shows how to add accelerator keys to the Add and Update menu items. Here, the
first statement uses the setAccelerator method to add Ctrl+U as the accelerator for the Update menu
item. To do this, this method calls the static getKeystroke method from the KeyStroke class, and it uses
fields from the KeyEvent and Event classes.

The second statement in this example works the same way except that it uses a plus sign to add both
the Ctrl and Alt keys to the keystroke combination. When working with accelerator keys, you need to
make sure that the accelerator keys that you use for menu items don’t conflict with the accelerator keys
that are already defined for other components of the application. For example, the Ctrl+X, Ctrl+C, and
Ctrl+V keys are commonly used by text components to cut, copy, and paste text so you shouldn’t use
these keys for menu items.

Figure 13-7: How to set accelerator keys
An application with accelerators

Code that adds accelerators to two menu items

updateMenuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_U,

 Event.CTRL_MASK));

addMenuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_A,

 Event.CTRL_MASK + Event.ALT_MASK));

A method that sets an accelerator to a JMenuItem object

Murach’s Beginning Java 2

 page 326

A static method of the KeyStroke class that returns a KeyStroke object

Fields for the key codes in the KeyEvent class

VK_A VK_B VK_C … VK_Z

Fields for the modifiers in the Event class

SHIFT_MASK CTRL_MASK ALT_MASK

Description
 If you want the user to be able to select a menu item without pulling down a menu,

you can add an accelerator key for that item.
 When you plan the accelerator keys for menu items, be sure that they don’t conflict

with they key combinations that are used for other purposes.
 The Keystroke class is stored in the javax.swing package, the KeyEvent class is

stored in the java.awt.event package, and the Event class is stored in the java.awt
package.

Advanced skills for working with menus
This topic presents some advanced skills for working with menus and menu items. First, you’ll learn how
to add special menu items that work like radio buttons and check boxes to menus. Then, you’ll learn
how to create pop-up menus that appear when you click the right mouse button.

How to work with radio button menu items
Figure 13-8 shows how to add radio button menu items to a menu. These items have some
characteristics of the radio buttons that you learned about in chapter 12 and some characteristics of the
menu items that you learned about earlier in this chapter.

The first code example shows the code that adds two radio button menu items to the Calculate menu.
Here, the first statement declares these items as instance variables of the class that defines the frame.
That way, these items will be available throughout the entire class. Then, the next four statements
create the Calculate menu, a button group, and the two items. After that, the next four statements add
the items to the button group and to the menu, and the last two statements add an action listener to the
menu items.

The second code example shows how to handle the events that are generated when the user clicks on
one of the radio button items. This code is similar to the code that handles the other menu item events.
Because JRadioButtonMenuItem is a subclass of JMenuItem, the first if statement can check to see
whether the source is a JMenuItem object.

The rest of this figure summarizes two constructors that you can use to create radio button menu items.
To create an unselected radio button menu item, you can use the first constructor. To create a selected
radio button menu item, you can use the second constructor.

Figure 13-8: How to work with radio button menu items
An application with two radio button menu items

Murach’s Beginning Java 2

 page 327

Code that adds two radio button menu items to a menu

private JRadioButtonMenuItem paymentItem, amountItem;

JMenu calculateMenu = new JMenu("Calculate");

ButtonGroup group = new ButtonGroup();

paymentItem = new JRadioButtonMenuItem(

 "Monthly Payment", true);

amountItem = new JRadioButtonMenuItem(

 "Loan Amount");

group.add(paymentItem);

group.add(amountItem);

calculateMenu.add(paymentItem);

calculateMenu.add(amountItem);

paymentItem.addActionListener(this);

amountItem.addActionListener(this);

The method that handles the radio button menu item events

public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 if (source instanceof JMenuItem){

 String item = e.getActionCommand();

 if (item.equals("Monthly Payment")){

 paymentField.setText("");

 paymentField.setEditable(false);

 amountField.setEditable(true);

Murach’s Beginning Java 2

 page 328

 amountField.requestFocus();

 }

 if (item.equals("Loan Amount")){

 // code for the Loan Amount item
 }
 }
}

Common constructors of the JRadioButtonMenuItem class

How to work with check box menu items
Figure 13-9 shows how to work with check box menu items. These components have some
characteristics of the check boxes that you learned about in chapter 12 and some characteristics of the
menu items that you learned about earlier in this chapter.

The first code example shows how to add a check box menu item to a menu. Here, the first statement
declares the check box menu item as an instance variable of the class that defines the frame. That way,
the check box menu item is available throughout the entire frame. Then, the next three statements add
the check box menu item to the Window menu, and the last statement adds an action listener to the
check box menu item.

The second code example shows how to handle the event that’s generated when a user clicks on the
check box menu item. In short, you just code an actionPerformed method within the ActionListener
class like you do for all other menu items. However, this code example also uses the isSelected method
to check to see if the button is selected. If it is, the code calls the setResizable method to make the
current frame resizable. Since the isSelected method is defined in the AbstractButton class, this method
is available to all buttons and menu items.

The rest of this figure summarizes the constructors that you can use to create a check box menu item.
To create an unselected check box menu item, you can use the first constructor. To create a selected
check box menu item, you can use the second constructor.

Figure 13-9: How to work with check box menu items
An application with a check box menu item

Code that adds a check box menu item to a menu

private JCheckBoxMenuItem resizableItem;

JMenu windowMenu = new JMenu("Window");

Murach’s Beginning Java 2

 page 329

resizableItem = new JCheckBoxMenuItem("Resizable", true);

windowMenu.add(resizableItem);

resizableItem.addActionListener(this);

The method that handles the check box menu item event

public void actionPerformed(ActionEvent e){

 Object source = e.getSource();

 if (source instanceof JMenuItem){

 String item = e.getActionCommand();

 if (item.equals("Resizable")){

 if (resizableItem.isSelected())

 setResizable(true);

 else

 setResizable(false);

 }

 }

}

Common constructors of the JCheckBoxMenuItem class

How to work with pop-up menus
Figure 13-10 shows how to work with pop-up menus that appear whenever a user presses the pop-up
trigger (which is usually the right mouse button). For instance, the screen at the top of this figure shows
a pop-up menu that contains two menu items, the Resizable item and the Exit item. Part 1 of this figure
shows the code that adds this pop-up menu to the interface, and part 2 summarizes the constructors
and methods that you need for working with these menus.

The code example shows all of the code that you need to create and display a pop-up menu. Here, the
first three statements declare the pop-up menu and the two items on the pop-up menu. Usually, these
variables are declared as instance variables of the current class. Then, the next eight statements create
the items, add them to the pop-up menu, and add action listeners to them.

The last two statements in this example add a mouse listener to the content pane. Here, the first
statement returns the content pane. Then, the second statement adds the mouse listener to this pane.
In this case, the mouse listener is an anonymous class that’s a new instance of the MouseAdapter
class. Within this anonymous class, the mouseReleased method contains the code that’s executed
when a mouse button is released. Within this method, an if statement checks to see if the event should
trigger a pop-up menu. Usually, this means that the if statement checks if the right mouse button was
clicked. If so, this method uses the show method of the pop-up menu to display the pop-up menu. To do

Murach’s Beginning Java 2

 page 330

that, it uses three methods of the MouseEvent class to display the pop-up menu at the coordinates
where the user released the right mouse button.

Figure 13-10: How to work with pop-up menus (part 1 of 2)
An application with a pop-up menu

Code that adds a pop-up menu to a content pane

private JPopupMenu popupMenu;

private JCheckBoxMenuItem resizablePopupItem;

private JMenuItem exitPopupItem;

popupMenu = new JPopupMenu();

resizablePopupItem = new JCheckBoxMenuItem("Resizable", true);

exitPopupItem = new JMenuItem("Exit");

popupMenu.add(resizablePopupItem);

popupMenu.addSeparator();

popupMenu.add(exitPopupItem);

resizablePopupItem.addActionListener(this);

exitPopupItem.addActionListener(this);

Container contentPane = getContentPane();

contentPane.addMouseListener(new MouseAdapter(){

 public void mouseReleased(MouseEvent e){

 if (e.isPopupTrigger())

 popupMenu.show(e.getComponent(), e.getX(), e.getY());

 }

});

Description
 To handle a mouse event, you can use an anonymous class as shown above. As you

learned in the last chapter, the MouseAdapter class implements all the methods of
the MouseListener interface as empty methods. That way, you only need to override
the code for the mouseReleased method.

Murach’s Beginning Java 2

 page 331

 If you add the mouse listener to the content pane, then all the mouse events below
the menu bar are handled by this listener. In this example, the pop-up menu is
displayed when the user clicks the right mouse button anywhere in the content
pane.

Part 2 of this figure summarizes the constructors and methods that you can use to work with pop-up
menus. To start, you can use the constructor of the JPopupMenu class to create a pop-up menu. Then,
you can use the methods of the JPopupMenu class to work with a pop-up menu.

Below the constructors and methods of the Popup class, this figure shows the five methods of the
MouseListener interface. Typically, you can use the MouseAdapter class to implement all five of these
methods. Then, you can override the mouseReleased method as shown on the previous page. If
necessary, though, you can also code any of the other methods of the MouseListener interface.

To display a pop-up menu, you need to know if the pop-up trigger generated the event. In addition, you
may need to know what component was clicked, and you may need to know the x and y coordinates of
where the click was released. To get this information, you can use the four methods of the MouseEvent
class.

Figure 13-10: How to work with pop-up menus (part 2 of 2)
Common constructor of the JPopupMenu class

Common methods of the JPopupMenu class

The MouseListener interface

Common methods of the MouseEvent class

Note
All x and y coordinates are measured in pixels.

Murach’s Beginning Java 2

 page 332

Perspective
Now that you’ve finished this chapter, you should be able to add menus to a frame and to handle the
events that are generated when a user selects an item from a menu. For many user interfaces, that
should be all that you need to know. In the next chapter, though, you can learn how to use fonts, colors,
images, and shapes to improve the appearance of your applications.

Summary
 You can add a menu bar to a frame or an applet, and you can add menus to the menu

bar. Then, you can add menu items and menu separators to the menus.
 If you create the menus in the class that defines the frame, you typically handle all of the

menu events within that class.
 If you add a menu to another menu, the menu system will display it as a submenu.
 When you set keystroke mnemonics for menus and menu items, the users can select

menus by holding down Alt and pressing the underlined letter for the menu. Then, the
users can select menu items by pressing the underlined letter for the menu item.

 When you set accelerator keys for menu items, the users can select items by pressing
their key combinations.

 You can add radio button menu items and check box menu items to menus. These
items work much like radio buttons and check boxes.

 You can create a pop-up menu that appears when the user right-clicks anywhere on a
component.

Terms
menu bar

menu

menu item

separator

submenu

keyboard mnemonic

accelerator key

radio button menu item

check box menu item

pop-up menu

Objectives
 Write code that (1) adds a menu bar and a complete system of menus to an application

and (2) handles the events that are generated when the user selects an item from the
menu system.

 Write code that (1) displays a pop-up menu when the user right-clicks on a component
and (2) handles the events that are generated when the user selects an item from the
pop-up menu.

 Identify these terms: menu, menu item, submenu, and pop-up menu.
 Distinguish between these terms: keyboard mnemonics and accelerator keys.

Exercise 13-1: Add menus to the Book Maintenance application
1. Open the code for the BookFrame class that’s in the c:\java\ch13\book directory.

Notice that this code has been restructured so the BookFrame class contains all
the code for the user interface.

2. Edit this class so it displays the File and Record menus that are described in figures
13-3 through 13-7. When you’re done, the menu items should do the same actions
that are performed by the buttons of the frame. In addition, the menu items should
have keyboard mnemonics and accelerator keys.

3. Compile and run this code to make sure that it works correctly. In particular, you
should synchronize the menu items with the buttons so the application enables and
disables them appropriately.

Murach’s Beginning Java 2

 page 333

Exercise 13-2: Add menus to the Loan Calculator application
1. Open the code for the LoanCalculatorFrame class that’s in the c:\java\ch13\loan

directory. Notice how this code is structured so the LoanCalculatorFrame class
contains all the code for the user interface.

2. Edit this class so the frame will display a File menu with an Exit menu item. Then, edit
the code so the frame will display a Calculate menu like the one shown in figure 13-
8. To do that, you should convert the existing radio buttons to menu items.

3. Compile and run this code to make sure that it works the way it did in the last chapter,
but with the radio buttons on the Calculate menu, not on the frame.

4. Edit this class so the frame will display a pop-up menu like the one in figure 13-10. To
handle the event that’s generated when the user selects the Resizable check box
menu item, you’ll need to add code like the code in figure 13-9.

5. Compile and run this code to make sure that it works correctly. You should be able to
use the pop-up menu to exit the application and to allow the frame to be resized.

Chapter 14: How to work with fonts, colors, images, and
shapes
In the last three chapters, you learned how to use components such as labels, text boxes, and menu
items to display text in a graphical user interface. Now, you’ll learn how to work with fonts, colors,
images, and shapes. Although you won’t need these features for many of the user interfaces that you
develop, you should at least know what’s available.

How to work with fonts and colors
This topic shows how to work with fonts and colors. But first, it explains how Java displays components,
and it shows how to display text on a component.

How components are painted
Figure 14-1 shows how Java paints Swing and AWT components. Every time Java displays a top-level
container such as a frame or applet, it paints all the components within the container. Java also repaints
these components when a container appears after it has been hidden.

To do that, Java automatically calls the paint method for each component. For AWT components, Java
automatically calls the update and paint methods. For Swing components, the AWT paint method also
calls the paintComponent method.

If you want to display graphics on an AWT component, you can override the paint method. Similarly, if
you want to display graphics on a Swing component, you can override its paintComponent method. If,
for example, you want to display an image on a panel, you can create a class that inherits the JPanel
class and override the paintComponent method to display the image.

For both AWT and Swing components, you shouldn’t call the paint method directly. Instead, when you
want to force Java to repaint a component, you should call the component’s repaint method. If, for
example, you want an image to be displayed after a user clicks on a button, you can invoke the repaint
method within the if statement that handles the button event.

Each of the methods presented in this figure has a Graphics object as a parameter. This object
represents the component that is going to be painted or repainted. Note, however, that you don’t create
this type of object by calling a constructor. Instead, Java creates this type of object automatically and
passes it to the method that it calls. As you will see, this type of object has many methods that let you
set fonts, colors, images, and shapes.

Murach’s Beginning Java 2

 page 334

The state of a Graphics object can be referred to as the component’s graphics context, or its graphics
rendering context. This context includes its font and color. In the next pages, you’ll learn how to change
the graphics context for Java components.

Figure 14-1: How components are painted
How Java paints a Swing component

repaint() --->

 update(Graphics g) --->

 paint(Graphics g) --->

 paintComponent(Graphics g) ---> COMPONENT DRAWN

Methods of the Component class used for painting

Methods of the JComponent class used for painting

Description

 When a top-level container such as a frame or applet first appears, Java paints all the
components in the container. If a container is minimized and then restored, Java
automatically repaints all the components in the container by calling the paint
method for each component.

 When you want to repaint a component within a program, you can call its repaint
method.

 To display text, images, or shapes on a Swing component, you can override the
component’s paintComponent method. To display text, images, or shapes on an
AWT component, you can override the component’s paint method.

 When Java invokes the update, paint, or paintComponent method, a Graphics object
is automatically passed to it. This object represents the component that is going to
be painted or repainted.

 The state of a Graphics object can be referred to as the component’s graphics
context, or its graphics rendering context. This context includes its font and color.

 In this chapter, you’ll learn how to use many of the methods of the Graphics class to
work with fonts, colors, images, and shapes.

How to display text on a component
For most applications, you use label components to display text. To illustrate how you can work with
graphics, though, figure 14-2 shows how to use the Graphics class to display text on a component. This
figure starts with an interface that displays text in a panel within a frame.

The first code example defines the panel that displays this text. To start, it declares a class named
TextPanel that inherits the JPanel class. Then, the single method in this class overrides the
paintComponent method of the JPanel class. Within this method, the first statement calls the
paintComponent method of the superclass (the JPanel class). This statement ensures that you don’t
accidentally interfere with any necessary painting that’s done by the superclass.

The last two statements within this paintComponent method create a String object and call the
drawString method of the Graphics object, which in this case is the panel. This method displays the text
30 pixels to the right and 40 pixels down from the upper left corner of the panel. Because the font and
color haven’t been changed, this text will be printed with the font and color of the current graphics
context.

Murach’s Beginning Java 2

 page 335

The second code example shows some of the code that defines the frame that displays the TextPanel
panel. By now, this type of code should be familiar to you. In short, this code defines the frame, creates
a TextPanel object, and displays the TextPanel object on the content pane of the frame.

Figure 14-2: How to display text on a component
An example that displays text

A class that overrides the paintComponent method for a panel

class TextPanel extends JPanel{

 public void paintComponent(Graphics g){

 super.paintComponent(g);

 String text = "The quick brown fox jumped over the lazy dog.";

 g.drawString(text, 30, 40);

 }

}

A class that displays the panel within a frame

public class TextFrame extends JFrame{

 public TextFrame(){

 // code that defines the frame
 TextPanel panel = new TextPanel();
 contentPane.add(panel);
 }
}

A method of the Graphics class that renders text

Description

 Most of the time, you use labels and other text components to display text. However,
you can override the paintComponent method of a Swing component or the paint
method of a non-Swing component to display a string.

 To display text on a component, create your own class that inherits the component’s
class. Then, override its paint or paintComponent method with your own method. At
the start of this method, you should call the paint or paintComponent method of the
superclass so the superclass can run that method.

How to set fonts
Figure 14-3 shows how to set the font for the graphics context and for individual components. First, this
figure shows some examples that set fonts. Then, it summarizes the fields, constructors, and methods
that you can use to set fonts.

Murach’s Beginning Java 2

 page 336

Since fonts differ from computer to computer, the Java API provides some logical fonts that always map
to a font available on the local computer. For example, the SansSerif font will map to a sans serif font
that’s available on the current system, such as Helvetica or Arial. As a result, when you use the logical
font names in this figure, you can be sure that they’ll be available on all systems.
In case you aren’t familiar with font terminology, serifs are the top and bottom lines that finish off the
main strokes of a letter as in this letter M. In contrast, a sans serif font doesn’t have serifs as in this
letter M. In this book, the text font has serifs, but the headings don’t.

The first example shows how to use the Font class to create a font. Here, the first statement creates a
font that has serifs, bold style, and a size of 16 points. To do that, the first argument specifies a logical
font, the second argument specifies the style, and the third argument specifies the size. In contrast, the
second statement creates a font from the Helvetica font family with a plain style and a size of 12 points.
To do that, the first argument specifies a string that indicates the name of the font family name. The
third statement in this example shows how you can use the plus sign (+) to combine the bold and italic
styles.

The second example shows how to set the font for the graphics context. This shows the
paintComponent method that you learned about in the last figure with two new statements that set the
font for the graphics context. Here, the second statement creates the font, and the third statement calls
the setFont method of the Graphics object to set the font for the graphics context. Then, the text that’s
displayed by the fifth statement will use the font that’s specified in the graphics context.

The third example shows how to set the font for the text that’s displayed on a button. To do that, you call
the setFont method from the button. Since this method is stored in the Component class, you can call it
from any component.

The fourth example shows how to retrieve all the fonts that are available on the current system. Here,
the first two statements create a GraphicsEnvironment object. Then, the third statement returns an array
of strings that represent the font family names that are available on that system. As a programmer, you
can use this array to print or display the font families so you know what you can work with on a specific
system.

Figure 14-3: How to set fonts
How to set fonts

Code that creates fonts

Font boldSerif16 = new Font("Serif", Font.BOLD, 16);

Font helvetica12 = new Font("Helvetica", Font.PLAIN, 12);

Font font = new Font("Dialog", Font.BOLD + Font.ITALIC, 8);

Code that sets the font for a graphics context

public void paintComponent(Graphics g){

 super.paintComponent(g);

 Font font = new Font("Dialog", Font.BOLD + Font.ITALIC, 20);

 g.setFont(font);

 String text = "The quick brown fox jumped over the lazy dog.";

 g.drawString(text, 30, 40);

}

Code that sets the font of a component

Font font = new Font("SansSerif", Font.BOLD, 16);

JButton addButton = new JButton("Add");

Murach’s Beginning Java 2

 page 337

addButton.setFont(font);

Code that gets a list of the available fonts from the current system

GraphicsEnvironment ge = null;

ge = GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fonts = ge.getAvailableFontFamilyNames();

A common constructor of the Font class

Logical font names

Static fields of the Font class used to set the style

PLAIN BOLD ITALIC

Classes and methods that set fonts

Two methods of the GraphicsEnvironment class

How to work with font metrics
The height and width of a displayed string depends on the font family, style and size of the font that’s
used to display it. As a result, it’s often hard to specify the x and y coordinates when you use the
drawString method to draw text on a component. That’s why figure 14-4 shows how to use the
FontMetrics class to find the width and height of a string. Then, you can use this information to position
the text on a component. In this figure, for example, you can see how to center a string on a component
and how to wrap a string to a second line.

The first example shows how to center a string on a component. Once the first four statements create
the font and the string, the fifth statement creates a FontMetrics object. Then, the sixth statement uses
the stringWidth method of the FontMetrics object to return the width of the string in pixels, and the
seventh statement uses the getHeight method to return the height of the string in pixels. The last three
statements get the height and width of the panel in pixels and use those numbers to calculate the x and
y coordinates needed by the drawString method to center the string horizontally and vertically. When
you use this technique to center a string vertically, the baseline of the leftmost character is positioned on

Murach’s Beginning Java 2

 page 338

the centerline. This means that the text may not appear centered, but rather positioned above the
centerline.
The second example shows how to use the FontMetrics class to wrap a string to the next line. If you’ve
read chapter 9, you should be able to follow this code without too much trouble. This code could be
substituted for the last statement of the first example. Then, the two examples combined would both
wrap and center the string.

The code in the second example splits the original string into lines that don’t exceed the width of the
panel minus 20 pixels. This is done by the first for loop, and each of these lines is put into one element
of a vector named strings. Then, the second for loop uses the drawString method to draw each string in
the vector on a separate line of the panel. Note, however, that this doesn’t split the lines between words;
it splits the lines whenever the next character will cause the line to exceed the line width.

After the examples, this figure summarizes some of the constructors and methods that you can use to
work with font metrics. To create a FontMetrics object, you can use either of the methods of the
Graphics object or the constructor of the FontMetrics class. Then, you can use the methods of the
FontMetrics class to return the number of pixels for the height and width of a string in the current font.

Figure 14-4: How to work with font metrics
How to work with font metrics

Code that centers a string

public void paintComponent(Graphics g){

 super.paintComponent(g);

 Font f = new Font("SansSerif", Font.BOLD + Font.ITALIC, 16);

 g.setFont(f);

 String text = "The quick brown fox jumped over the lazy dog.";

 FontMetrics fm = g.getFontMetrics();

 int widthString = fm.stringWidth(text);

 int heightString = fm.getHeight();

 int widthPanel = this.getWidth();

 int heightPanel = this.getHeight();

 g.drawString(text, (widthPanel - widthString) / 2,

 (heightPanel - heightString) / 2);

}

Code that wraps a string to the next line

int widthLine = widthPanel - 20;

Vector strings = new Vector();

String tempString = "";

int maxLineWidth = 0;

for (int i = 0; i < text.length(); i++){

 tempString += text.charAt(i);

Murach’s Beginning Java 2

 page 339

 maxLineWidth += fm.charWidth(text.charAt(i));

 if ((maxLineWidth >= widthLine) || (i==text.length() - 1)){

 strings.add(tempString);

 maxLineWidth = 0;

 tempString = "";

 }

}

int lines = strings.size();

int y = (heightPanel - (heightString * lines)) / 2;

for (int i = 0; i < lines; i++){

 String line = (String) strings.get(i);

 g.drawString(line, 10, y + i * heightString);

}

Methods of the Graphics class that return a FontMetrics object

Constructors and methods of the FontMetrics class

How to set colors
Figure 14-5 shows how to set the color in a graphics context or for a component. To start, this figure
shows some code examples that you can use to set colors. These examples use methods from the
Graphics and Component classes that accept objects from the Color class. When you work with colors,
you’ll often use the fields of the Color or SystemColor class to set colors.

The first example shows how to create a color. Here, the first statement uses a field of the Color class to
create a Color object for the color red. Then, the second statement uses a field of the SystemColor
class to create a Color object that stores the color that’s used by the system for window objects. This
color will vary depending on how each system is configured. In contrast to the first two statements that
use predefined fields to create colors, the third statement uses a constructor of the Color class to create
the color yellow. To create yellow, this statement uses the maximum amount (255) of both red and
green and no blue. In practice, though, you won’t need to create your own colors unless you need to
create colors that aren’t already defined by one of the fields of the Color or SystemColor classes.

The second example shows how to set the color for the graphics context. Here, the first statement calls
the setColor method from the Graphics object to set the color for the graphics context to red. As a

Murach’s Beginning Java 2

 page 340

result, the text that’s printed by the second statement will be red. This color will stay in effect until it’s
changed by another statement like the third statement.

The third example shows how to set the foreground and background colors of components. Here, the
first statement sets the background color for the Exit button to green so the button will be green. Then,
the second statement sets the foreground color to blue so the text will be blue.

In general, the default colors for the components are adequate for most programs so you won’t need to
change them. If you do want to change them, though, you should consider using colors that are
available from the SystemColor class, which has more than 20 color fields. That way, the colors that you
use will be consistent with the other colors that are used for the interface.

Figure 14-5: How to set colors
How to set colors

Code that creates colors

Color red = Color.red;

Color windowColor = SystemColor.window;

Color yellow = new Color(255, 255, 0);

Code that sets the color in a graphics context

g.setColor(Color.red);

g.drawString("This text is red!", 30, 30);

g.setColor(Color.blue);

g.drawString("This text is blue!", 30, 70);

Code that sets the color of components

exitButton.setBackground(Color.green);

exitButton.setForeground(Color.blue);

Fields of the Color class

black darkGray lightGray pink yellow

blue gray magenta red

cyan green orange white

Five fields of the SystemColor class

window menu menuText deskTop windowBorder

A constructor of the Color class

A method of the Graphics class that sets colors

Murach’s Beginning Java 2

 page 341

Methods of the Component class that set colors

The Fonts and Colors application
To show you how all of this works in the context of a complete application, figure 14-6 presents the
Fonts and Colors application. It is a simple application that lets the user change the font family, style,
size, and color of the text that’s displayed.

The user interface

Part 1 of this figure shows the user interface for this application. As you can see, this interface has three
combo boxes that let the user select the font family, font size, and color. It also has two check boxes
that let the user select the bold and italic font styles. When the user changes any of these controls, the
application changes the appearance of the text that’s displayed.

The code

Part 1 of this figure continues with the code that defines the frame for the application. By now, you
should be familiar with this type of code. This code defines the FontsFrame class that defines the frame,
and it displays a panel of the FontsPanel class within the frame.

Part 2 of this figure presents the code for the start of the FontsPanel class. After it declares that the
FontsPanel implements the ItemListener class, it declares the instance variables for the class. These
instance variables include the combo boxes and check boxes of the application as well as an instance
variable for a Font object and an instance variable for a Color object.

Within the constructor for the class, the first five statements create a combo box that contains all font
names available to the current system. The next twelve statements create a combo box that contains
seven possible font sizes, a combo box that contains four possible colors, a bold check box, and an
italic check box. The rest of the statements add these components to a panel and add the panel to the
north region of the current panel. Notice that the constructor sets the combo boxes and the current font
so they specify a black, 18 point, sans serif font.

Part 3 of this figure starts with the code for the itemStateChanged method that’s executed when the
user generates an event by changing an item on the user interface. For each of these events, the
statements within this method set the font family, font style, font size, and color based on the user’s
selections. Then, the last statement calls the repaint method of the current object (the BookPanel
object). This method calls a chain of methods that eventually calls the paintComponent method of the
current object.

The statements within the paintComponent method set the current font and color of the graphics context
based on the user’s selections. The statements after that use font metrics to get the width and height of
the string. And the last statement draws the string in the center of the panel.

Figure 14-6: The Fonts and Colors application (part 1 of 3)
The user interface

Murach’s Beginning Java 2

 page 342

The code

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class FontsFrame extends JFrame{

 public FontsFrame(){

 setTitle("Fonts and Colors");

 Toolkit tk = Toolkit.getDefaultToolkit();

 Dimension d = tk.getScreenSize();

 int width = 500;

 int height = 175;

 setBounds((int) (d.width-width)/2,

 (int) (d.height-height)/2, width, height);

 addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }

 });

 Container contentPane = getContentPane();

 FontsPanel panel = new FontsPanel();

 contentPane.add(panel);

 }

 public static void main(String[] args){

Murach’s Beginning Java 2

 page 343

 FontsFrame frame = new FontsFrame();

 frame.show();

 }

}

Figure 14-6: The Fonts and Colors application (part 2 of 3)

class FontsPanel extends JPanel implements ItemListener{

 JComboBox fontComboBox, sizeComboBox, colorComboBox;

 JCheckBox boldCheckBox, italicCheckBox;

 Font font;

 Color color;

 public FontsPanel(){

 GraphicsEnvironment ge;

 ge = GraphicsEnvironment.getLocalGraphicsEnvironment();

 fontComboBox = new JComboBox(ge.getAvailableFontFamilyNames());

 fontComboBox.setSelectedItem("SansSerif");

 fontComboBox.addItemListener(this);

 String[] sizes = {"8", "10", "12", "14", "16", "18", "20"};

 sizeComboBox = new JComboBox(sizes);

 sizeComboBox.setSelectedItem("18");

 sizeComboBox.addItemListener(this);

 String[] colors = {"Black", "Red", "Blue", "Green"};

 colorComboBox = new JComboBox(colors);

 colorComboBox.setSelectedItem("Black");

 colorComboBox.addItemListener(this);

 boldCheckBox = new JCheckBox("Bold");

Murach’s Beginning Java 2

 page 344

 boldCheckBox.addItemListener(this);

 italicCheckBox = new JCheckBox("Italic");

 italicCheckBox.addItemListener(this);

 JPanel northPanel = new JPanel();

 northPanel.add(fontComboBox);

 northPanel.add(sizeComboBox);

 northPanel.add(colorComboBox);

 northPanel.add(italicCheckBox);

 northPanel.add(boldCheckBox);

 setLayout(new BorderLayout());

 add(northPanel, BorderLayout.NORTH);

 font = new Font("SansSerif", Font.PLAIN, 18);

 }

Figure 14-6: The Fonts and Colors application (part 3 of 3)

 public void itemStateChanged(ItemEvent e){

 String fontFamily = (String) fontComboBox.getSelectedItem();

 int style = Font.PLAIN;

 String sizeInt = (String) sizeComboBox.getSelectedItem();

 int size = Integer.parseInt(sizeInt);

 String colorString = (String) colorComboBox.getSelectedItem();

 if (colorString.equals("Black"))

 color = Color.black;

 else if (colorString.equals("Blue"))

 color = Color.blue;

 else if (colorString.equals("Red"))

 color = Color.red;

 else if (colorString.equals("Green"))

Murach’s Beginning Java 2

 page 345

 color = Color.green;

 if ((boldCheckBox.isSelected()) && (italicCheckBox.isSelected()))

 style = Font.BOLD + Font.ITALIC;

 else if (boldCheckBox.isSelected())

 style = Font.BOLD;

 else if (italicCheckBox.isSelected())

 style = Font.ITALIC;

 font = new Font(fontFamily, style, size);

 repaint();

 }

 public void paintComponent(Graphics g){

 super.paintComponent(g);

 g.setFont(font);

 g.setColor(color);

 String text = "The quick brown fox jumped over the lazy dog.";

 FontMetrics fm = g.getFontMetrics();

 int widthPanel= getWidth();

 int heightPanel = getHeight();

 int widthString = fm.stringWidth(text);

 int heightString = fm.getHeight();

 g.drawString(text, (widthPanel - widthString)/2,

 (heightPanel-heightString)/2);

 }

}

How to work with images and icons
In this topic, you’ll learn how to work with images and icons. First, you’ll learn how to use the Graphics
object to display images. Then, you’ll learn how to display a special type of image known as an icon
within certain types of components such as frames and buttons.

How to display images
Figure 14-7 shows how to use the Graphics object to display an image in a component. After it shows
some code examples that work with images, this figure summarizes some methods of the Toolkit and
Graphics class that you can use to display images.

Murach’s Beginning Java 2

 page 346

When you work with images in Java, you need to know that Java only supports images in the GIF or
JPG file formats. Before you can work with images in another format, then, you must convert them to
GIF or JPG format.

The first example shows how to create an Image object. Here, the first statement creates a Toolkit
object. Then, the next four statements use the Toolkit object to retrieve the image for the Murach logo.
Each of these statements uses a slightly different string to specify the location of the image. The second
statement points to the current directory, the third statement points to the file in the c:\logos directory,
the fourth statement points to the file in the logos subdirectory of the current directory, and the fifth
statement points to the file one directory up from the current directory.

The second example shows how to draw an image on a component. Typically, this code is located
within the paintComponent method for a Graphics object. Here, the first statement displays the image
for the Murach logo. This statement specifies the x and y coordinates for the logo and identifies the
current object as the ImageObserver. When executed, this code displays a logo like the one shown at
the top of the figure. Since no height and width are specified for this image, this code uses the number
of pixels that are saved in the file for the height and width. In other words, this statement sizes the
image at 100%. In contrast, the second statement sizes the image to the specified width and height so
the image is adjusted to that size when it’s displayed. To set the width and height of the image to the
same dimensions as the component, the getWidth and getHeight methods can be used. These two
methods belong to the Component class and can be used to return the current width and height of any
component. In this example, these methods return the dimensions of the component with this graphics
context.

When Java loads an image, it notifies the ImageObserver object whenever more information about the
image becomes available. Since the Component class implements the ImageObserver interface, any
component can act as the observer. So for most applications, you can specify the current object as the
ImageObserver object.

Figure 14-7: How to display images
An example that displays an image

Code that creates Image objects

Toolkit tk = Toolkit.getDefaultToolkit();

Image murachLogo1 = tk.getImage("MurachLogo.gif");

Image murachLogo2 = tk.getImage("C:\\logos\\MurachLogo.gif");

Image murachLogo3 = tk.getImage("logos\\MurachLogo.gif");

Image murachLogo4 = tk.getImage("..\\MurachLogo.gif");

Code that draws an image in the paintComponent method

g.drawImage(murachLogo, 30, 40, this);

g.drawImage(murachLogo, 0, 0, getWidth(), getHeight(), this);

Methods of the Toolkit class that work with images

Murach’s Beginning Java 2

 page 347

Methods of the Graphics class that draw images

Description

 Java only supports the GIF and JPEG image formats. So, before you can use images
with other formats, you need to convert them to the GIF or JPEG format.

 Besides the two drawImage methods, the Graphics class contains four other
drawImage methods that allow other options. For more information about these
methods, you can look them up in the documentation for the Java API.

 The ImageObserver object receives information about an image as the image is
being loaded. Since the Component class implements the ImageObserver interface,
you can use any component as the ImageObserver object. This implementation of
the ImageObserver interface lets the component be repainted as more of the image
becomes available.

How to display icons
Figure 14-8 shows how to get images and display them as icons in components. In general, icons are
small images that are specifically designed to fit on a frame, button, or menu item. To illustrate, this
figure starts with a frame that has an icon in its title bar plus two buttons that contain icons. After the
code examples show how to create and set icons, this figure summarizes some of the constructors and
methods of the ImageIcon class that you can use to work with icons.

The first example shows how to set an icon for a frame. Here, the first two statements use the
ImageIcon class to return an Image object for an icon. Alternatively, you could use the Toolkit class to
return the Image object as shown in the last figure. However, it’s recommended that you use the
ImageIcon class to return Image objects when working with Swing components. No matter how the
Image object is returned, though, the third statement calls the setIconImage method to set the icon for
the current object, which is the frame. This code displays the icon in the upper left corner of the frame
and in the taskbar as shown in this figure.

The second example shows how to set an icon for a button. Here, the first statement creates an
ImageIcon object. Then, the second statement creates a button, and the third statement uses the
setIcon method to set the icon for the button shown in the user interface. Note, however, that you can
use similar code to add icons to any class derived from the AbstractButton class, which includes menu
items, check boxes, and radio buttons.

You can also display images on Swing components, such as labels, by using a constructor that has an
Icon object argument. When you use this constructor, the specified image is displayed full size on the
component. If you use this technique, you can prevent interfering with the painting process by overriding
the paintComponent method.

Figure 14-8: How to display icons
An example that displays three icons

Murach’s Beginning Java 2

 page 348

A taskbar that shows the icon for a minimized frame

Code that sets the icon of a frame in its constructor

ImageIcon murachIconImage = new ImageIcon("MurachIcon.gif");

Image murachIcon = murachIconImage.getImage();

setIconImage(murachIcon);

Code that adds an icon to a button

ImageIcon buttonIcon = new ImageIcon("MurachIcon.gif");

JButton createOrdersButton = new JButton("Create Book Orders");

createOrdersButton.setIcon(buttonIcon);

Some methods that set icons

Some constructors and methods of the ImageIcon class

Description

 Since the ImageIcon class implements the Icon interface, you can use an object of
the ImageIcon class anywhere an Icon object is accepted.

 If you add a large icon to a component, the component will grow to fit the icon. For
instance, if you add a large image as an icon to a button, then the button will appear
large enough to fit the image inside it.

How to draw and fill shapes with the Graphics class
In this topic, you’ll learn how to draw and fill shapes using methods of the Graphics class. This is an
older technique for working with shapes that was introduced in version 1.0 of Java. Then, in the next
topic, you’ll learn how to use a newer technique that was introduced in version 1.2 of Java.

Murach’s Beginning Java 2

 page 349

In general, you should use the newer technique whenever possible. But for certain types of programs,
such as older applets, you may need to use the Graphics class.

How to draw shapes with the Graphics class
Figure 14-9 shows how to draw shapes with the Graphics class. To start, this figure shows a frame that
displays seven types of shapes. Then, this figure shows three examples that draw these shapes, and it
summarizes the methods of the Graphics and Polygon classes that you can use to draw shapes. You
can use these methods when you override the paint or paintComponent methods.

The first example shows how to draw lines, rectangles, ovals, and arcs. If you compare the statements
with the methods below and the shapes above, you should be able to figure out how each statement
works. For instance, the second statement draws a rectangle that starts 120 pixels to the right and 30
pixels down from the upper left corner of the panel, and this rectangle has a width of 70 pixels and a
height of 40 pixels. Similarly, the fifth statement draws an open arc that starts 30 pixels to the right and
90 pixels down from the upper left corner of the panel, and this arc starts at an angle of 30 degrees and
extends for 120 degrees.

The second example shows one way to draw a triangle. Here, the first two statements create the three x
and y points for the triangle, and the third statement uses a constructor of the Polygon class to create a
triangle from these three points. Then, the last statement uses the drawPolygon method of the Graphics
class to draw the triangle.

Similarly, the third example shows one way to create a diamond shape. Here, the first statement creates
a Polygon object that doesn’t contain any points, and the next four statements use the addPoint method
of the Polygon object to add four points. Then, the last statement uses the drawPolygon method of the
Graphics class to draw the diamond.

The rest of this figure presents methods of the Graphics class that you can use to draw shapes on a
component. Most of these methods are self-explanatory. Before you can use the drawPolygon method,
though, you must use the constructors and methods of the Polygon class to create an appropriate
Polygon object.

Figure 14-9: How to draw shapes with the Graphics class
An example that displays shapes

Code that draws lines, rectangles, and ovals

g.drawLine(100,30,30,70);

g.drawRect(120,30,70,40);

g.drawRoundRect(210,30,70,40,30,30);

g.drawOval(300,30,70,40);

g.drawArc(30,90,70,40,30,120);

Murach’s Beginning Java 2

 page 350

Code that draws a triangle

int[] xPoints = {120,155,190};

int[] yPoints = {130,90,130};

Polygon triangle = new Polygon(xPoints, yPoints, 3);

g.drawPolygon(triangle);

Code that draws a diamond

Polygon diamond = new Polygon();

diamond.addPoint(210,110);

diamond.addPoint(245,90);

diamond.addPoint(280,110);

diamond.addPoint(245,130);

g.drawPolygon(diamond);

Methods of the Graphics class that draw shapes
drawLine(intX1, intY1, intX2, intY2)
drawRect(intX, intY, intWidth, intHeight)
drawRoundRect(intX, intY, intWidth, intHeight, intArcWidth, intArcHeight)
drawOval(intX, intY, intWidth, intHeight)
drawArc(intX, intY, intWidth, intHeight, intStartAngle, intArcAngle)
drawPolygon(Polygon)

Constructors and methods of the Polygon class
Polygon()
Polygon(xPointsArray, yPointsArray, intNumberOfPoints)
addPoint(intX, intY)

How to fill shapes with the Graphics class
Figure 14-10 shows how to fill shapes. To start, it shows a frame that shows six figures that have been
filled. Then, it shows three code examples that use the fill method to both draw and fill those shapes.
These code examples show that the only difference between drawing shapes and filling shapes is that
you use the fillXXX method instead of the drawXXX method. As a result, the code shown in this figure
and the methods summarized at the bottom of this figure should be review.

When you call one of the fillXXX methods, the color that’s used depends on the graphics context. By
default, the graphics context uses black, but you can use the setColor method of the Graphics object to
change the fill color. For example, you can use a statement like this
g.setColor(Color.red);

to change the fill color to red. Then, all fillXXX methods that are called after this statement will use red
until another statement changes the color again.

Figure 14-10: How to fill shapes with the Graphics class
An example that displays filled shapes

Murach’s Beginning Java 2

 page 351

Code that fills lines, rectangles, and ovals

g.fillRect(30,30,70,40);

g.fillRoundRect(120,30,70,40,30,30);

g.fillOval(210,30,70,40);

g.fillArc(30,90,70,40,30,120);

Code that fills a triangle

int[] xPoints = {120,155,190};

int[] yPoints = {130,90,130};

Polygon triangle = new Polygon(xPoints, yPoints, 3);

g.fillPolygon(triangle);

Code that fills a diamond

Polygon diamond = new Polygon();

diamond.addPoint(210,110);

diamond.addPoint(245,90);

diamond.addPoint(280,110);

diamond.addPoint(245,130);

g.fillPolygon(diamond);

Methods of the Graphics class that fill shapes
fillRect(intX, intY, intWidth, intHeight)
fill3DRect(intX, intY, intWidth, intHeight, booleanRaised)
fillRoundRect(intX, intY, intWidth, intHeight, intArcWidth, intArcHeight)
fillOval(intX, intY, intWidth, intHeight)
fillArc(intX, intY, intWidth, intHeight, intStartAngle, intArcAngle)
fillPolygon(Polygon)

Description
 The fill methods work just like the draw methods except that they both draw and fill

the shape.
 The color that’s used to fill a shape is the color of the graphics context.

Murach’s Beginning Java 2

 page 352

How to draw and fill shapes with the Java2D API
Version 1.2 of Java introduced some new classes for working with graphics known as the Java2D API.
These classes use an architecture that’s more consistent with the principles of object-oriented
programming. In addition, these classes provide advanced drawing capabilities that go beyond the
capabilities that are available from the Graphics class. Although the advanced features of the Java2D
API go beyond the scope of this book, this topic shows you how to use the Java2D API to draw the
same shapes that you learned how to draw with the Graphics class.

An introduction to the Java2D API
Figure 14-11 introduces you to the Java2D API. To start, it shows that the Graphics2D class inherits the
Graphics class. Then, it shows some of the packages that the Java2D API uses, and it summarizes
some of the classes that the Java2D API uses to work with shapes.

When you use the Graphics class to draw shapes, you use a method of the Graphics class to draw a
shape. When you use the Java2D API to work with shapes, you first create a shape from a class. Then,
you call a method of the Graphics2D class to draw the shape. This is an approach that’s more
consistent with the principles of object-oriented design, and this makes it easier to work with shapes.

The summary in this figure shows some of the classes that you can use to define shapes. All of these
classes are located in the java.awt.geom package, and the superclasses are abstract classes. To create
an object from these classes, you must use the appropriate subclass, which is an inner class of the
superclass. Although these subclasses work similarly, they accept different types of arguments. All of
these classes implement the Shape interface.

Figure 14-11: A summary of the packages and classes in the Java2D API
The graphics hierarchy

Other packages used by the Java2D API

java.awt.font java.awt.color

java.awt.geom java.awt.image

java.awt.print java.awt.image.renderable

Some classes of the java.awt.geom package

Murach’s Beginning Java 2

 page 353

Description

 The Graphics2D class was introduced with JDK1.2 as part of the Java2D API. The
Java2D API provides graphic capabilities that go beyond the capabilities of the
Graphics class. Both of these classes are stored in the java.awt package.

 All of the classes shown in this figure implement the Shape interface. As a result, you
can use objects created from these classes anywhere a Shape object is accepted.

 All of the subclasses shown in this figure are inner classes of the abstract superclass.
For example, the Line2D.Double and Line2D.Float classes are inner classes of the
abstract Line2D class.

How to draw and fill shapes with the Java2D API
Part 1 of figure 14-12 shows how to use the Graphics2D class to draw and fill shapes, and part 2 of this
figure summarizes the constructors you need to use to create shapes. To start, part 1 shows a frame
that displays some shapes that are filled and some that aren’t. Then, after this part of the figure shows
examples that draw and fill these shapes, it summarizes the two methods of the Graphics2D class that
you can use to draw and fill shapes.

The first example shows how to create Shape objects from the Java2D shapes. Here, the first statement
creates a line object from the Line2D.Double class. The second statement creates a rectangle object
from the Rectangle2D.Double class. And so on. These statements work because all of the Java2D
shape objects implement the Shape interface.

The second example shows how to use the Graphics2D object to draw one of these Shape objects.
Within the paintComponent method, the first statement casts the Graphics parameter to an object of the
Graphics2D type. Then, the second statement creates an ellipse, and the third statement calls the draw
method from the Graphics2D object with the Shape object as the argument.

The third example shows a statement that fills an ellipse instead of drawing an ellipse. If you wanted to
display a filled ellipse, you could use this statement instead of the third statement in the second
example.

The fourth example shows how to draw a triangle. Here, the first three statements use two arrays and
the Polygon class to create a triangle. This code is exactly the same as the code presented in the last
topic. However, the fourth statement uses the fill method of the Graphics2D object to fill the Polygon.

Figure 14-12: How to draw and fill shapes using the Java2D API (part 1 of 2)
An example that displays shapes and filled shapes

Murach’s Beginning Java 2

 page 354

Code that creates Java2D shapes

Shape line = new Line2D.Double(100,30,30,70);

Shape rectangle = new Rectangle2D.Double(120,30,70,40);

Shape roundRectangle = new RoundRectangle2D.Double(210,30,70,40,30,30);

Shape ellipse = new Ellipse2D.Double(30,90,70,40);

Shape arc = new Arc2D.Double(120,90,70,40,30,120,Arc2D.CHORD);

A method that uses the Graphics2D context to draw a shape

public void paintComponent(Graphics g){

 Graphics2D g2D = (Graphics2D) g;

 Shape ellipse = new Ellipse2D.Double(30,90,70,40);

 g2D.draw(ellipse);

}

Code that uses the Graphics 2D context to fill a shape

g2D.fill(ellipse);

Code that creates and fills a triangle

int[] xPoints = {210,245,280};

int[] yPoints = {130,90,130};

Polygon triangle = new Polygon(xPoints, yPoints, 3);

g2D.fill(triangle);

Methods of the Graphics2D class that draw and fill shapes

Murach’s Beginning Java 2

 page 355

Description
 Since the paintComponent method accepts a Graphics object, you must first cast this

object to a Graphics2D object in order to use Java2D API features.
 Since the Polygon class implements the Shape interface, you can supply an object of

the Polygon class to the draw or fill method.
Part 2 of figure 14-12 summarizes the constructors for the shapes used in part 1. In addition, it
summarizes the three fields of the Arc2D class that you can use as the type argument of the Arc2D
constructor. Since each of the constructors accepts arguments similar to those for the corresponding
draw method in the Graphics class, this figure should be review. For example, the Rectangle2D.Double
constructor accepts position and size arguments similar to those for the drawRect method in the
Graphics class. And the Ellipse2D.Double constructor accepts arguments similar to those for the
drawOval method.

When you use the Arc2D class, you need to supply a type argument. To do that, you can use one of the
three fields from the Arc2D class summarized in this figure. If you don’t want any lines joining the two
end points, you use an open arc. If you want one straight line joining the two end points, you use a
chord arc. And if you want one line from each end of the arc to the center of the circle that the arc is a
part of, you use a pie arc.

Figure 14-12: How to draw and fill shapes using the Java2D API (part 2 of 2)
Constructors of the Java2D API classes

Line2D.Double(doubleX1, doubleY1, doubleX2, doubleY2)
Line2D.Float(floatX1, floatY1, floatX2, floatY2)
Ellipse2D.Double(doubleX, doubleY, doubleWidth, doubleHeight)
Ellipse2D.Float(floatX, floatY, floatWidth, floatHeight)
Rectangle2D.Double(doubleX, doubleY, doubleWidth, doubleHeight)
Rectangle2D.Float(floatX, floatY, floatWidth, floatHeight)
RoundRectangle2D.Double(doubleX, doubleY, doubleWidth, doubleHeight,
 doubleArcWidth, doubleArcHeight)
RoundRectangle2D.Float(floatX, floatY, floatWidth, floatHeight,
 floatArcWidth, floatArcHeight)
Arc2D.Double(doubleX, doubleY, doubleWidth, doubleHeight,
 doubleStartAngle, doubleExtentAngle, intType)
Arc2D.Float(floatX, floatY, floatWidth, floatHeight,
 floatStartAngle, floatExtentAngle, intType)

Arc types from the Arc2D class

OPEN CHORD PIE

Description
 The arguments for the constructors of the Java2D API classes are similar to those for

the draw methods in the Graphics class.
 When you use a constructor of the Arc2D class, you can use the arc type fields as

the last argument to indicate how you want the arc drawn.

The Shapes application
To show how all of this code works in the context of a complete application, figure 14-13 presents the
Shapes application. Although this application serves no practical purpose, it does illustrate some of the
coding issues.

The user interface

The user interface lets the user select a shape from a combo box that lists five shapes. Then, the
application displays the selected shape below the combo box.

The code

After the user interface, you can see the code for the ShapesPanel class of this application. This class
defines the panel that is displayed within the frame that’s defined by the ShapesFrame class. Since the
ShapesFrame class works like the FontsFrame class shown earlier in this chapter, it isn’t shown in this
figure.

Murach’s Beginning Java 2

 page 356

The ShapesPanel class begins by declaring that it implements the ItemListener interface. Then, it
declares two instance variables. The first instance variable refers to the combo box while the second
instance variable refers to the Shape object that’s created when the user selects an item from the
combo box.

Within the constructor for the class, the first four statements create the combo box and add an item
listener to it. Then, the fifth statement sets the initially selected shape to a rectangle, and the sixth
statement initializes the instance variable for the Shape object to a Rectangle2D.Double object.

When the user selects an item from the combo box, the itemStateChanged method handles the
ItemEvent object that’s generated. Within this method, the first statement returns the string for the
selected shape, and the second statement sets the x and y coordinates, the width, and height for the
shape. Then, a series of if/else statements create an appropriate shape object and assign it to the
instance variable for the Shape object. The last statement in this method calls the repaint method, which
eventually calls the paintComponent method.

Here again, it is the paintComponent method that actually draws the current Shape object. Since this
method is automatically called when the frame is first displayed, it initially draws the rectangle that’s
defined in the constructor for the panel. Then, whenever a user selects an object, this method draws
that object. To do that, the third statement in this method calls the draw method of the Graphics2D
object, and it supplies the Shape object instance variable as the argument.

Figure 14-13: The Shapes application
The user interface

The code for the ShapesPanel class

class ShapesPanel extends JPanel implements ItemListener{

 JComboBox shapeComboBox;

 Shape shape;

 public ShapesPanel(){

 String[] shapes = {"Rectangle", "Round Rectangle", "Ellipse",

 "Arc", "Triangle"};

 shapeComboBox = new JComboBox(shapes);

 shapeComboBox.addItemListener(this);

 add(shapeComboBox);

Murach’s Beginning Java 2

 page 357

 shapeComboBox.setSelectedItem("Rectangle");

 shape = new Rectangle2D.Double(30, 40, 200, 60);

 }

 public void itemStateChanged(ItemEvent e){

 String shapeString = (String)shapeComboBox.getSelectedItem();

 int x = 30, y = 40, w = 200, h = 60;

 if (shapeString.equals("Rectangle"))

 shape = new Rectangle2D.Double(x, y, w, h);

 else if (shapeString.equals("Round Rectangle"))

 shape = new RoundRectangle2D.Double(x, y, w, h, 40, 40);

 else if (shapeString.equals("Ellipse"))

 shape = new Ellipse2D.Double(x, y, w, h);

 else if (shapeString.equals("Arc"))

 shape = new Arc2D.Double(x, y, w, h, 30, 210, Arc2D.CHORD);

 else if (shapeString.equals("Triangle")){

 int[] xPoints = {x, (x+w)/2, w};

 int[] yPoints = {y+h, y, y+h};

 shape = new Polygon(xPoints, yPoints, 3);

 }

 repaint();

 }

 public void paintComponent(Graphics g){

 super.paintComponent(g);

 Graphics2D g2D = (Graphics2D) g;

 g2D.draw(shape);

 }

}

Murach’s Beginning Java 2

 page 358

Perspective
In this chapter, you’ve learned how to work with fonts, colors, images, and shapes. Skills like these are
occasionally useful when you create normal user interfaces. As you will see in the next chapter, though,
they can also be used with applets.

Summary
 To access the graphics context for a Swing component, you inherit the component and

override its paintComponent method. Then, you can use the Graphics object to set fonts
and colors, to draw text, to draw shapes, and to fill shapes.

 You can set the font for the graphics context or for a component. To make sure that a
font maps to a font that’s available on the current system, you can use one of the logical
fonts provided by the Java API.

 You can use font metrics to determine the height of a specific font or the length of a
string with a specific font.

 You can set the color for the graphics context or for the foreground or background of a
specific component.

 You can display JPG or GIF images within Java programs, and you can display icons
within frames and most types of buttons including menu items, radio buttons, and check
boxes.

 You can use the methods of the Graphics class to draw and fill shapes such as lines,
rectangles, ovals, and triangles. However, the Java API also provides a newer, more
sophisticated technology known as the Java2D API that can accomplish the same
tasks.

Terms
paint logical font

graphics context icon

graphics rendering context Java2D API

Objectives
 Write code that sets fonts and colors.
 Write code that displays images and adds icons to frames and buttons.
 Write code that displays shapes.

Exercise 14-1: Create the Fonts and Colors application
1. Open the code for the FontsFrame class that’s in the c:\java\ch14\fonts directory.

Then, compile and run this code. When you do, the application should allow you to
select a font family, size, style, and color, but it won’t display the text with the
appropriate selections.

2. Fix this code so it does display the text the right way. Then, compile and run this
application to make sure that it works correctly.

Exercise 14-2: Enhance the Shapes application

1. Open the code for the ShapesFrame class that’s in the c:\java\ch14\shapes directory.
Then, compile and run this code. It should work as shown in figure 14-13.

2. Add a checkbox that lets the user fill the shape. Then, add a color combobox that lets
the user select a color for the shape. When you’re done, the user interface should
look like this:

Murach’s Beginning Java 2

 page 359

3. Add the event handling code that makes this user interface work correctly.

Exercise 14-3: Add an icon to the Book Order application

1. Open the code for the BookOrderFrame class that’s in the c:\java\ch14\book
directory. Then, edit this class so the frame displays the icon in the MurachIcon.gif
file that’s in the c:\java\ch14\book directory. When you’re done, the frame should
look like this:

2. Compile and test the application to make sure it works correctly.

Chapter 15: How to develop applets
The last four chapters of this book have shown you how to develop user interfaces for applications that
are run in the traditional way. That is, the applications are installed on each user’s computer or on a
network server so they can be run on each user’s computer.
In this chapter, you’ll learn how to develop an applet, a special type of application that can be stored in a
web page and run within a web browser. Applets are unique to the Java language, and they helped fuel
the remarkable growth and hype of Java in its early days.

An introduction to applets
This topic gives you the background information you need for working with applets. To start, it shows
two types of applets and describes the inheritance chain for working with applets. Then, it summarizes
some deployment and security issues, plus the four methods that control the execution of every applet.

Two versions of the Loan Calculator applet
In chapter 11, you learned how to create the Loan Calculator application. In this chapter, you’ll learn
how to convert that application to an applet, and you’ll learn how to place the applet within a web page
that’s defined by the Hypertext Markup Language (HTML). Then, when a web browser views the HTML
page, the applet will run within the web browser.
Figure 15-1 shows two versions of the Loan Calculator applet when it’s viewed within the Internet
Explorer. The first version shows the Loan Calculator applet as a Swing applet. This applet uses the
Swing components that you learned about in chapter 11. The second version shows the Loan
Calculator applet as an AWT applet. This applet uses AWT components instead of Swing components.
Note that there’s little visual difference when the applets are running, although the code is different.
Why would you want to create AWT applets instead of Swing applets? Because both the Internet
Explorer and Netscape web browsers contain Java virtual machines (JVMs) that can run AWT applets.
As a result, anyone with one of these web browsers can run AWT applets. In contrast, neither web
browser currently supports Swing applets. To get around this problem, Sun has created a plug-in that

Murach’s Beginning Java 2

 page 360

lets either web browser run Swing applets, but this plug-in needs to be installed on every client system
that’s going to use the applets. This, of course, limits the use of Swing applets.

Figure 15-1: An introduction to applets
The Loan Calculator applet (Swing version)

The Loan Calculator applet (AWT version)

The inheritance chain for applets
Figure 15-2 presents the inheritance chain for applets. This shows that you can use the Applet class to
define an AWT applet, or you can use the JApplet class to define a Swing applet. Either way, you can
use the methods from the Component and Container classes to work with the applet, to place other
components on the applet, and to handle the events that are generated for the applet. Since you’ve
already learned how to use these classes, this means that you already have most of the skills that you
need for developing applets.

Figure 15-2: The inheritance chain for applets
The inheritance chain for applets

Murach’s Beginning Java 2

 page 361

Summary of these classes

Description

 An applet is a special type of application that’s included as part of an HTML page and
runs within a browser.

 To create an applet, you define a class that inherits the Applet or JApplet class.

Applet deployment issues

After Java 1.0 was released, both the Internet Explorer and Netscape browsers included a Java virtual
machine (JVM) that could run Java 1.0. This allowed anyone with one of these web browsers to access
applets and run them. Unfortunately, neither browser has kept up with the new versions of Java. As a
result, most browsers support Java 1.0 and many browsers support Java 1.1, but few support Java 1.2
and later versions.
To allow the Internet Explorer and Netscape browsers to run Swing applets that use the latest features
of Java, Sun created a tool called the Java Plug-in that extends the browser’s capabilities. If the
appropriate Java Plug-in is installed on a system, the browser on that system can run Swing applets
that use the most current version of Java. Of course, this creates a deployment issue. That’s one of the
reasons that web programmers today often use HTML forms, CGI scripts, and animated GIFs instead of
applets.
With that as background, figure 15-3 presents two options for deploying applets. On one hand, you can
create AWT applets that use only the features from Java 1.0 and perhaps a few features of Java 1.1.
This makes the applet easy to deploy, but it prevents you from using the newer features of Java. In
addition, since different browsers contain slightly different JVMs, you may need to debug your
application for each type of browser.

On the other hand, you can create Swing applets that use the new features of Java. In this case,
though, you must make sure that the Java Plug-in is installed on each user’s machine. Although you
can do that for internal systems that are only used by your own employees, it’s often difficult or

Murach’s Beginning Java 2

 page 362

impractical to do that for external systems that are used by customers or other types of users. That’s
why Swing applets are used the most for intranets.

Incidentally, when you install SDK versions 1.3 and later, the Java Plug-in is automatically installed on
your system. As a result, you don’t have to worry about this deployment issue as you develop and test
Swing applets.

Figure 15-3: Applet deployment issues
Two options for deploying applets

1. Write Swing applets and install the Java Plug-in on all of the client machines.
2. Write AWT applets using just the features of Java 1.0 or 1.1.

Swing applets
Pros

 Swing applets can use Swing components.
 Swing applets can use all of the current Java features.

Cons

 The developer needs to run the HTML Converter program on the HTML

page before the applet can be viewed with a browser.
 The Java Plug-in must be installed on the client machines before the users

can view the applet within a browser.
AWT applets
Pros

 No conversion is necessary for the HTML page.
 The Java plug-in isn’t needed to view the applet within a browser.

Cons

 AWT applets can’t use Swing components.
 AWT applets can’t use any Java features that were introduced after Java

1.1. In most cases, it’s best to stick to the Java features of Java 1.0.
 AWT applets are more difficult to debug.

Description
 Most web browsers, including most versions of Microsoft Internet Explorer and

Netscape, contain a Java virtual machine that can run applets written in Java 1.0
and 1.1.

 When the Java Plug-in is installed on a client machine, the Internet Explorer and
Netscape browsers can run the most current version of Java.

 When you download and install the SDK, the Java Plug-in is automatically installed
on your machine so you can run the applets within your browser.

 Swing applets work best when you control the client environment as in an intranet
environment. Then, you can make sure the Java Plug-in is installed on each user
machine.

Applet security issues

Since applets were designed to be downloaded from an Internet server and to be run on client systems,
they have more security restrictions than applications. This prevents applets from intentionally or
accidentally damaging the client system.
Figure 15-4 lists some of these security restrictions. This shows that an applet can’t access any files or
databases on the client system, and it can’t access much information about the client system. In fact, an
applet can only access the information it needs to run, such as the Java version and type of operating
system that’s used by the client.
Although applets have strong security restrictions by default, you can loosen these security restrictions.
To do that, you can create signed applets that show that the applets comes from a trusted source.
Then, an applet could, for example, read files from the client system’s hard drive. Signed applets,
though, are an advanced topic that goes beyond the scope of this book.

Murach’s Beginning Java 2

 page 363

If you’re wondering whether applets can read and write files on Internet, intranet, and network servers,
the answer is, Yes. However, applets can’t ordinarily do the read and write operations themselves. They
can, though, send and receive data from other programs located on the host server. This way, another
program can read and write files and transfer the data back and forth to the applet. Of course, this
requires some networking techniques that aren’t presented in this beginning book. That’s why this
chapter focuses on applets that don’t read and write files or databases on servers.

Figure 15-4: Applet security issues
What an applet can’t do

 Read, write, or delete files or databases on the client system.
 Access information about the files or databases on the client system.
 Run programs on the client system.
 Access system properties for the client system except the Java version, the name

and version of the operating system, and the characters used to separate
directories, paths, and lines.

 Make network connections to other servers available to the client system.
What an applet can do

 Display user interface components and graphics.
 Send keystrokes and mouse clicks back to the applet’s server.
 Make network connections to the applet’s server.
 Call public methods from other applets on the same web page.

Description
 To prevent applets from damaging a client system or from making it possible to

damage a client system, security restrictions limit what an applet can do.
 To overcome these security restrictions, you can create a signed applet. This

indicates that the applet comes from a trusted source. Then, you can add rights to
the signed applet.

Four methods of an applet
Figure 15-5 introduces the four methods of the Applet class that are used to control the execution of any
applet. Since the browser automatically calls these methods, you don’t need to call them. However, you
do need to override them in some cases.
In all but the simplest applets, for example, you’ll override the init method to initialize the applet as
shown in the next figure. Also, since the start and stop methods are typically used with threads, you’ll
learn more about them in chapter 20.

Figure 15-5: Four methods of an applet
Four methods of the Applet class

Description

 Since the browser or the Applet Viewer calls these methods when needed, you never
need to call them. However, you may need to override them to get your applet to
work properly.

 Figure 15-6 shows how to override the init method.
 Chapter 20 shows how to override the start and stop methods.

How to develop Swing applets
In this topic, you’ll learn how to develop and test a Swing applet by using a procedure like the one at the
start of figure 15-6. After you learn how to code a Swing applet, you’ll learn how to code the HTML page
for the applet, how to test the applet with the Applet Viewer, how to convert the HTML page so it will run
on Internet Explorer and Netscape, and how to test the applet within a browser.

Murach’s Beginning Java 2

 page 364

How to convert a Swing application to a Swing applet
Instead of showing how to code a Swing applet from scratch, the second procedure in figure 15-6
shows how to convert a Swing application to a Swing applet. This procedure highlights the differences
between the code for an applet and the code for an application. Then, this figure shows the code that
results when the Loan Calculation application of chapter 11 is converted to an applet.

In step 1 of the conversion procedure, you modify the class so it extends the JApplet class instead of
the JFrame class, and you override the init method to initialize the applet. This method then performs
some of the same operations that were in the frame’s constructor.

In step 2, you remove any code that sets the frame’s size, location, or title because the applet’s HTML
page will accomplish these tasks. You remove any code that’s used to exit the frame because an applet
runs within a browser, not within a frame. And you remove the main method for the frame if there is one.

The code in this figure shows the Swing version of the Loan Calculation applet. Within the
LoanCalculatorApplet class, the init method displays a LoanCalculatorPanel object on the content pane
of the applet. Within the LoanCalculationPanel class, most of the code is the same as it was in the Loan
Calculator application. The only difference is that all references to the Exit button have been removed.
For example, this code doesn’t contain an instance variable that refers to the Exit button. As a result,
the actionPerformed method for the panel doesn’t handle the event that’s generated when the user
clicks on the Exit button.

Figure 15-6: How to develop a Swing applet
A procedure for developing a Swing applet

1. Code and compile the Swing applet.
2. Code the HTML page for the applet.
3. Test the applet with the Applet Viewer.
4. Use the HTML Converter to convert the HTML page for the applet.
5. Test the HTML page with a browser.

How to convert a Swing application to a Swing applet
1. Extend the JApplet class instead of the JFrame class, and convert the constructor

of the JFrame class so it becomes the init method of the JApplet class.
2. Remove (1) any code that sets the title, size, and position of the frame; (2) any

code that’s used to exit the frame; and (3) the main method if one exists.
The code for a Swing applet

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.*;

public class LoanCalculatorApplet extends JApplet{

 public void init(){

 Container contentPane = getContentPane();

 JPanel panel = new LoanCalculatorPanel();

 contentPane.add(panel);

 }

}

class LoanCalculatorPanel extends JPanel implements ActionListener{

Murach’s Beginning Java 2

 page 365

 private JTextField amountTextField, rateTextField, yearsTextField,

 paymentTextField;

 private JLabel amountLabel, rateLabel, yearsLabel, paymentLabel;

 private JButton calculateButton;

 public LoanCalculatorPanel(){

 // code that defines the LoanCalculatorPanel without an Exit button
 }

 public void actionPerformed(ActionEvent e){
 Object source = e.getSource();
 if (source == calculateButton){
 double amount = Double.parseDouble(amountTextField.getText());
 double rate = Double.parseDouble(rateTextField.getText())/12/100;
 int months = Integer.parseInt(yearsTextField.getText())*12;
 double payment = FinancialCalculations.calculateMonthlyPayment(
 amount, months, rate);
 NumberFormat currency = NumberFormat.getCurrencyInstance();
 paymentTextField.setText(currency.format(payment));
 }
 }
}

How to code the HTML page for an applet
Figure 15-7 shows how to place the class file for an applet within an HTML page. To start, this figure
shows the code for an HTML page that places the class file for the Loan Calculator application within an
HTML page. Then, it summarizes seven basic HTML tags that you can use to place an applet within an
HTML page. Last, it summarizes five attributes of the APPLET tag that you can use to provide additional
information about the applet.

To code an HTML tag, you start with a tag name (like <HTML>) and end with the tag name preceded by
a slash (like </HTML>). As you code, you’ll often need to nest one tag within another tag. For instance,
the HTML tag marks the start and end of an HTML page so all of the other tags are nested within it.
Similarly, the BODY tag is coded around all of the code that makes up the body of the HTML page. This
is where you place text, images, applets, and so on. In this figure, for example, the H1 tag displays
“Loan Calculator” as a level-1 heading. Then, the APPLET tag tells the browser to display the specified
applet with the specified width and height.

Within an APPLET tag, you code the attributes that provide additional information about the applet. In
particular, you use the CODE attribute to specify the class file for the applet, and you use the WIDTH
and HEIGHT attributes to specify the size of the applet in pixels. After the attributes, you can supply text
that will be displayed when the user is unable to load the applet.

To enter and edit an HTML page, you can use any text editor, but you must save the HTML page in a
file with HTML as the extension. Of course, you can do this with a general-purpose editor like NotePad
or a special-purpose editor like TextPad.

Unfortunately, the APPLET tag that’s described in this figure doesn’t work for Swing applets. That’s
because the Java Plug-in doesn’t recognize the APPLET tag. Before you can view a Swing applet in a
browser, you must convert the APPLET tag to the OBJECT tag that’s used by the Internet Explorer or
the EMBED tag that’s used by Netscape. In addition, when you use these two tags, you need to provide
some complex attributes that aren’t described in this figure. Fortunately, Sun provides a tool called the
HTML Converter that can be used to convert the APPLET tag to the appropriate OBJECT and EMBED
tags. In a moment, you’ll learn how to use this tool.

Figure 15-7: How to code the HTML page for an applet
How to place an applet in an HTML page

Murach’s Beginning Java 2

 page 366

<HTML>

<TITLE>Loan Calculator</TITLE>

<BODY>

<H1>Loan Calculator</H1>

<APPLET CODE = "LoanCalculatorApplet.class"

 WIDTH = 240

 HEIGHT = 175>

If you can’t see this applet, your web browser may not be Java-enabled.

</APPLET>

</BODY>

</HTML>

Some HTML tags

Some attributes for working with the APPLET tag

File naming convention
AppletClassName.html
Description

 The Hypertext Markup Language (HTML) is the language that’s used to create web
pages. Each HTML tag begins with the tag name and ends with the tag name
prefixed by a forward slash. Within a tag, you can set the attributes for the tag.

 Although HTML isn’t case sensitive, the Java applet filename is.
 Figure 15-9 shows how to use the HTML Converter to convert an APPLET tag to the

OBJECT and EMBED tags.

Murach’s Beginning Java 2

 page 367

How to view an applet with the Applet Viewer
Although you can’t view a Swing applet in a browser until you convert the APPLET tag to the
appropriate OBJECT and EMBED tags, figure 15-8 shows how to view a Swing applet with the Applet
Viewer. This is a tool that’s included in the Java SDK, and it can read the APPLET tag.

To run the Applet Viewer from the command prompt, you enter the command shown in this figure. To do
that, you start the command prompt and navigate to the directory that holds the class file for the applet
and the HTML page for the applet. Then, you enter the appletviewer command followed by the file name
of the HTML page.

To run the Applet Viewer from TextPad, you select the Run Java Applet command from the Tools menu.
If you’re using TextPad, though, you don’t even need to create the HTML page before selecting this
command. That’s because TextPad will automatically create a temporary HTML page for you if one
doesn’t already exist. But if an HTML page does exist, TextPad will provide a dialog box that lets you
select that HTML page.

Note that when you use this viewer, only the applet is displayed. Any other text that’s included in the
HTML file is ignored. Nevertheless, this is a quick way to test an applet before you do the final testing
using a web browser.

Figure 15-8: How to view an applet with the Applet Viewer
An applet in the Applet Viewer

How to run the Applet Viewer from the command prompt

c:\java\ch15\swing>appletviewer LoanCalculator.html

How to run the Applet Viewer from TextPad
 Select the Run Java Applet command from the Tools menu or press Ctrl+3. If no

HTML page exists in the current directory, TextPad will automatically create a
temporary one. But if an HTML page exists, TextPad will let the Applet Viewer use
it.

Description
 The Applet Viewer that’s included in the SDK lets you test an applet before you run it

in a browser.
 When you run the Applet Viewer, you will see the applet but you won’t see any other

elements that are defined by the HTML page.

How to use the Java Plug-in HTML Converter
Before a web browser can use the Java Plug-in to run a Swing applet, you must convert the APPLET
tag to the OBJECT and EMBED tags. Since these tags are difficult to code, Sun has created a tool
called the Java Plug-in HTML Converter that can automatically make this conversion for you as
described in figure 15-9. Although this converter is included with SDK versions 1.3.1 and later, you must
download the converter for earlier versions from the Java web site. Just make sure to use the converter
that corresponds to the version of Java that you’re using.

To start the converter, you start the command prompt and navigate to the directory that holds the
converter. For versions 1.3.1 and later, a JAR file that contains the converter is located in the lib
subdirectory of the jdk. Then, you can execute the command in step 2 of this figure. If you have trouble
starting the converter, you can refer to the documentation that’s available from the Java web site.

Murach’s Beginning Java 2

 page 368

Once the dialog box for the HTML Converter appears, you can specify the file or files that you want to
convert. Since the converter replaces your original HTML files with the converted ones, the originals are
placed in the backup directory that you specify. Once you specify the files to convert and the backup
directory, you can click on the Convert button. Then, a dialog box will appear that tells you how many
files were successfully converted.

Figure 15-9: How to use the Java Plug-in HTML Converter
The Java Plug-in HTML Converter

How to use the Plug-in HTML Converter

1. Start the command prompt and navigate to the directory that holds the
htmlconverter.jar file. If you’re using SDK versions 1.3.1 or later, this file is located
in C:\jdkXXX\lib.

2. Start the converter with the following command:
java –jar htmlconverter.jar -gui

3. To convert all HTML files in a directory, click on the Browse button and navigate
to the directory. Then, click on the Convert button.

Description
 You should use the Java Plug-in HTML Converter that corresponds to the SDK

version that’s running on your system.
 Although the Java Plug-in HTML Converter is included with SDK versions 1.3.1 and

later, it’s not included with SDK versions 1.3 and earlier. If you’re using one of these
earlier versions, you’ll need to download its HTML Converter from the Java web
site.

The code for the converted HTML page
Figure 15-10 shows the converted HTML code for the HTML file in figure 15-7. This shows that the
converter adds the OBJECT tag and the EMBED tag to the HTML page and that it specifies several
complex attributes for each tag. As a result, both the Internet Explorer and Netscape can read this
HTML page.

Murach’s Beginning Java 2

 page 369

Note that the HTML Converter didn’t change any code outside of the APPLET tag. Note too that the
APPLET tag that was in the original HTML page has been included as a comment in the new HTML
page.

Once the HTML is converted, you can still view the applet with the Applet Viewer. However, due to a
bug in the Applet Viewer, two Applet Viewer windows may appear.

Figure 15-10: The code for the converted HTML page
The HTML file in figure 15-7 after the conversion process

<HTML>

<TITLE>Loan Calculator</TITLE>

<BODY>

<h1>Loan Calculator</h1>

<!—"CONVERTED_APPLET"—>

<!— CONVERTER VERSION 1.3 —>

<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

WIDTH = 240 HEIGHT = 175

codebase="http://java.sun.com/products/plugin/1.3/jinstall-13-win32.

cab#Version=1,3,0,0">

<PARAM NAME = CODE VALUE = "LoanCalculatorApplet.class" >

<PARAM NAME="type" VALUE="application/x-java-applet;version=1.3">

<PARAM NAME="scriptable" VALUE="false">

<COMMENT>

<EMBED type="application/x-java-applet;version=1.3"

CODE = "LoanCalculatorApplet.class" WIDTH = 240 HEIGHT = 175

scriptable=false pluginspage="http://java.sun.com/products/plugin/1.3/

plugin-install.html"><NOEMBED></COMMENT>

If you can’t see this applet, your web browser may not be Java-enabled.

</NOEMBED></EMBED>

</OBJECT>

<!—

<APPLET CODE = "LoanCalculatorApplet.class" WIDTH = 240 HEIGHT = 175>

If you can’t see this applet, your web browser may not be Java-enabled.

</APPLET>

—>

Murach’s Beginning Java 2

 page 370

<!—"END_CONVERTED_APPLET"—>

</BODY>

</HTML>

Description
 The HTML conversion results in an HTML page that uses scripting to allow both

Internet Explorer and Netscape to read the page…even though these browsers use
different tags for working with applets.

 The conversion only affects the code within the APPLET tag.
 The converted page has the original APPLET tag within an HTML comment. An

HTML comment starts with <!-- and ends with -->.
 If you attempt to view your applet in the Applet Viewer after this conversion process,

the applet may appear twice since the Applet Viewer doesn’t recognize the
comments and doesn’t ignore the original APPLET tag.

How to test a Swing applet
Since the Java Plug-in is automatically installed on your system, you can view a Swing applet in your
browser as shown in figure 15-11. Then, you can test the Swing applet to make sure it runs properly
within a browser. As you do that, you can use the Java Console to view debugging information.

If you’re using version 1.3.1 and you run a Swing applet within a browser, the Java Console icon is
displayed in the taskbar. Then, you can display the Java Console by double-clicking on this icon. Note,
however, that you can also display the Java Console each time you run a Swing application by
changing a system setting. And you should be able to display the Java Console by using one of the
menus of your web browser.

If you’re using version 1.3 or earlier, the Java Console icon won’t be displayed in the taskbar. Then, you
can use one of the other methods to display this console.

Once you’ve displayed the Java Console, you can use it to view any debugging information that the
applet has printed to the console using println statements as well as any exceptions that have been
thrown by the applet at run time. For example, the Java Console shown in this figure begins by
displaying some general information about the current system and a list of commands that you can use
to work with the Java Console. Then, it displays three lines that were printed to the console by println
statements in the applet, followed by the description of an exception that was thrown by the applet at
run time.

If you can’t view the Java Console after trying the techniques described in the figure, your browser may
have disabled the Java Console. To enable it, you can check the “Enable Java Console” checkbox
located in your browser’s advanced options.

Figure 15-11: How to test a Swing applet
A Swing applet with the Java Console displayed

Murach’s Beginning Java 2

 page 371

How to test a Swing applet

1. Start your web browser and test the applet to make sure it’s working correctly.
2. If necessary, display the Java Console to view the output from println statements

or information about any exceptions that have been thrown.
How to display the Java Console

 If you’re using SDK version 1.3.1 or later, double-click on the Java Console icon in
the task bar.

 To automatically display the Java Console each time you run an applet in a web
browser, go to the Control Panel, double-click on the Java Plug-in icon, and select
the Show Java Console check box.

 You should also be able to display the Java Console by selecting the Java Console
command from one of your web browser’s menus. For the Internet Explorer, select
this command from the View menu. For Netscape, select this command from the
Tools submenu of the Communicator menu.

How work with the Java Console
 You can press any of the letters shown in the Java Console to execute the related

command. Although most of these letters execute advanced functions that go
beyond the scope of this book, you can press c to clear all messages from the Java
Console window, and you can press q to close the Java Console window.

How to develop AWT applets
This topic shows how to develop AWT applets that only use the features of Java 1.0, or possibly Java
1.1. All of the most recent versions of the Internet Explorer and Netscape can run this type of applet
without using the Java Plug-in. As figure 15-12 shows, the procedure for developing an AWT applet is
similar to developing a Swing applet, but you don’t have to use the HTML converter to convert the
HTML code.

How to convert a Swing application to an AWT applet
The second procedure shown in figure 15-12 shows how to convert a Swing application to an AWT
applet rather than showing how to develop an AWT applet from scratch. This highlights the differences

Murach’s Beginning Java 2

 page 372

between the code for an AWT applet and the code for a Swing application. Then, this figure shows the
code that results when the Loan Calculation application of chapter 11 is converted to an AWT applet.

The procedure in this figure is similar to the procedure that’s used to convert a Swing application to a
Swing applet, but there are a few differences. In step 1, you must import the java.applet package so you
can access the Applet class, and you extend the Applet class instead of the JApplet class. In step 3,
you must replace all Swing components with their corresponding AWT components. To do that, you can
usually delete the J at the start of a component name, so a component like JLabel becomes the Label
component. In addition, you can remove the import Swing package statement. In step 4, you need to
make sure that you aren’t using any classes or methods that were introduced after Java 1.1. In fact,
depending on the web browsers that you need to support, you may need to limit your code to the
classes and methods of Java 1.0 only.

With that in mind, the code in this figure uses Java 1.0 only. Within the init method, the three statements
add a LoanCalculatorPanel object to the center region of the Border layout. Within the
LoanCalculatorPanel class, the instance variables use AWT components instead of Swing components.
And within the actionPerformed method, the first two statements don’t use the parseDouble method
from the Double class because that method was added in version 1.2 of Java. To fix this problem, the
code uses the doubleValue method to return a double value from a new Double object that’s created
from a text field.

Figure 15-12: How to develop an AWT applet
A procedure for developing an AWT applet

1. Code and compile the AWT applet.
2. Code the HTML page for the applet.
3. Test the applet using the Applet Viewer or a browser.

How to convert a Swing application to an AWT applet
1. Import the java.applet package; extend the Applet class instead of the JFrame

class; and convert the constructor of the JFrame class so it becomes the init
method of the Applet class.

2. Remove (1) any code that sets the title, size, and position of the frame; (2) any
code that’s used to exit the frame; and (3) the main method if one exists.

3. Replace all Swing components with the corresponding AWT elements.
4. Remove any Java code that uses classes or methods that were introduced after

Java 1.0.
A Java 1.1 version of the LoanCalculation applet

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.text.*;

public class LoanCalculatorApplet extends Applet{

 public void init(){

 Panel panel = new LoanCalculatorPanel();

 setLayout(new BorderLayout());

 add(panel, BorderLayout.CENTER);

 }

}

Murach’s Beginning Java 2

 page 373

class LoanCalculatorPanel extends Panel implements ActionListener{

 private TextField amountTextField, rateTextField, yearsTextField,

 paymentTextField;

 private Label amountLabel, rateLabel, yearsLabel, paymentLabel;

 private Button calculateButton;

 public LoanCalculatorPanel(){

 // code that defines the LoanCalculatorPanel without an Exit button
 // using AWT components instead of Swing components
 }

 public void actionPerformed(ActionEvent e){
 double amount = new Double(amountTextField.getText()).doubleValue();
 double rate = new Double(rateTextField.getText()).doubleValue()/12/100;
 int months = Integer.parseInt(yearsTextField.getText())*12;
 double payment = FinancialCalculations.calculateMonthlyPayment(
 amount, months, rate);
 NumberFormat currency = NumberFormat.getCurrencyInstance();
 paymentTextField.setText(currency.format(payment));
 }
}

How to test an AWT applet
Figure 15-13 shows how to test an AWT applet by running it in a browser. If you’re using version 1.3.1
or later this works essentially the same as if you’re testing a Swing applet. If you’re using version 1.3 or
earlier, though, you need to disable the Java Plug-in before you test your AWT applets. Otherwise, your
browser will use the Java Plug-in so it will support all of the current features of Java, which will prevent
you from testing the AWT applet properly.

In this example, the debugging information in the Java Console starts with two lines of text that the
applet printed to the console using println statements. Then, it shows an exception that was thrown by
the applet when the Calculate button was clicked. This exception was thrown because the applet
attempted to use the parseDouble method of the Double class to parse the Loan Amount and Yearly
Interest Rate text fields, but this version of the Java virtual machine doesn’t include this method (which
was introduced in version 1.2). As a result, the message says that the method doesn’t exist.

Figure 15-13: How to test an AWT applet
An AWT applet with the Java Console displayed

Murach’s Beginning Java 2

 page 374

How to test an AWT applet using SDK 1.3.1 or later

1. Start your web browser and test the applet to make sure it’s working correctly.
2. If necessary, display the Java Console to view the output from println statements

or information about any exceptions that are thrown,
How to test an AWT applet using SDK 1.3 or earlier

1. Disable the Java Plug-in if it’s installed on your system. To do that, go to the
Control Panel, double-click on the Java Plug-in icon, and deselect the Enable
Java Plug-in check box.

2. Start your web browser and test the applet. If necessary, display the Java
Console to view any debugging information.

More skills for working with applets
This topic describes some skills that are often used to work with applets. First, you’ll learn how to locate
resources such as images that are stored on remote servers. Then, you’ll learn how to use JAR files to
improve the download time of your applets.

How to work with URLs
Figure 15-14 shows how to use a Uniform Resource Locator (URL) to locate resources such as
directories and files on a remote server such as an Internet server, an intranet server, or a network
server. As you can see, a URL has three parts. The first part specifies the protocol that’s used. For the
Internet and intranets, the most common protocol is Hypertext Transfer Protocol (HTTP), but another
common protocol is File Transfer Protocol (FTP). The second part of a URL specifies the host machine.
And the third part specifies the path that represents a directory or file on the host machine.
The examples in this figure show three ways to specify a URL for the MurachLogo GIF file that’s stored
on the server for the Murach web site. The first example shows how to use an absolute URL that
specifies the entire name of the resource, while the second and third examples show how to use a
relative URL to specify the name of a resource relative to another URL. For instance, the first statement
in the second example creates an absolute URL that refers to the root directory on the host machine.

Murach’s Beginning Java 2

 page 375

Then, the second statement uses a relative URL to specify the location of the graphic file relative to the
first URL. Similarly, the statement in the third example uses the getCodeBase method of the Applet
class to return the URL of the directory that holds the applet class, which becomes part of a relative
URL.

After the examples, this figure summarizes the constructors and methods of the URL and Applet
classes that you can use to create URLs. To create a URL object, you can use either of the constructors
for the URL class. Since this class is located in the java.net package, you should import this package
when you’re working with URLs. And since both of these constructors throw a checked exception of the
MalformedURLException type, you must either throw or catch this exception when you code a
constructor for a URL.
To return a URL object from the class that defines an applet, you can use either of the two methods of
the Applet class. The first method returns the code base, the directory that stores the class file for the
applet. The second method returns the document base, the directory that stores the HTML file for the
applet. Unless the CODEBASE attribute of the APPLET tag specifies another directory, the code base
and the document base will be the same directory. Since these two method belong to the Applet class,
they are usually called in the init method.

Figure 15-14: How to work with URLs
The components of a URL

Code examples that use the URL constructors
Example 1: An absolute URL

URL logoURL = new URL("http://www.murach.com/images/MurachLogo.gif");

Example 2: A relative URL

URL murachURL = new URL("http://www.murach.com");

URL logoURL = new URL(murachURL, "images/MurachLogo.gif");

Example 3: Another relative URL

URL logoURL = new URL(getCodeBase(), "images/MurachLogo.gif");

The URL class

java.net.URL

Common constructors of the URL class

Two methods of the Applet class that work with URLs

Murach’s Beginning Java 2

 page 376

Description
 A Uniform Resource Locator (URL) locates resources on a remove server such as an

Internet server, an intranet server, or even a network server.
 An absolute URL specifies the entire name of the resource. A relative URL specifies

the name of a resource relative to another URL.
 The code base is the directory that stores the class files for an applet. The document

base is the directory that stores the HTML file for the applet. Unless the
CODEBASE attribute of the APPLET tag specifies a code base, the code base and
the document base refer to the same directory.

 Both of the constructors of the URL class shown in this figure throw a checked
exception of the MalformedURLException type. As a result, you must throw or catch
this exception when you work with URLs.

How to display images in applets
Figure 15-15 shows how to display an image within an applet. To start, this figure shows two code
examples. Then, this figure summarizes the constructors and methods that you can use to display
images in applets.

The first example shows a class that displays an image in a Swing applet. Within the init method for this
applet, the first statement creates an object of the URL class that locates the image file. To do so, this
statement uses the getCodeBase method described in the last figure. Since the constructor for the URL
class throws a MalformedURLException, this example uses a try/catch statement to catch this
exception. Then, the next four statements create an ImageIcon object from the URL object, place the
ImageIcon in a label component, and display the label on the content pane of the applet.

The second example shows a class that displays an image in an AWT applet. To do so, this class
overrides the paint method of the Applet class. Within the paint method, the first statement uses the
getImage method of the Applet class to create an Image object. Then, the second statement uses the
drawImage method of the Graphics class to display the image on the applet.

The rest of this figure summarizes the constructors and methods that you can use to display images in
applets. For Swing applets, you can use the constructor of the ImageIcon class to create an ImageIcon
object from a URL object. For AWT applets, you can use the getImage method of the Applet class to
return an Image object. Either way, you can use the getCodeBase method described in the last figure to
return a URL object for the directory that stores the class file for the applet.

Figure 15-15: How to display images in applets
A code example that adds an image to a Swing applet

public class ImageApplet extends JApplet{

 public void init(){

 try{

 URL imageURL = new URL(getCodeBase(), "images/MurachLogo.gif");

 ImageIcon labelIcon = new ImageIcon(imageURL);

 JLabel label = new JLabel(labelIcon);

 Container contentPane = getContentPane();

 contentPane.add(label);

 }

 catch(MalformedURLException e){

 System.out.println("Can’t find image URL.");

 }

Murach’s Beginning Java 2

 page 377

 }

}

A code example that adds an image to an AWT applet

public class ImageApplet extends Applet{

 public void paint(Graphics g){

 Image image = getImage(getCodeBase(), "images/MurachLogo.gif");

 g.drawImage(image, 30, 40, this);

 }

}

A constructor of the ImageIcon class

Two methods of the Applet class that load images

Description

 To work with images in Swing applets, you can use the ImageIcon class to create an
ImageIcon object. Then, you can add the ImageIcon object to a component to
display it.

 To work with AWT applets, you can use the getImage method of the Applet class to
return an Image object. Then, you can override the paint method in the Applet class,
to display the image.

How to work with JAR files
Figure 15-16 shows how to work with Java Archive files, or JAR files. As you may remember, a JAR file
contains one or more files and it stores these files in a compressed format. When you work with applets
that need to access more than one file, using a JAR file can dramatically improve the download time of
the applet. If, for example, an applet consists of several class files and an image file, you can store all of
these files in a single JAR file. Then, the browser only needs to make one HTTP request to get the JAR
file from the server. Besides that, the compressed files won’t take as long to download.

Since the JAR tool is automatically installed as part of the SDK, you can use the JAR command to
create and update a JAR file, to list the contents of a JAR file, and to extract files from a JAR file. To use
this command, you start with the command name. Then, you enter one or more of the six options that
are summarized in this figure. For example, to create a JAR file with verbose output, you specify the c to
create the file, f to specify the name of the file, and v to specify verbose output. After that, you must
specify the name of the JAR file followed by any files you want to include in the JAR file. To do this, you
can use the wildcard character (*) to specify all files of a particular type. For example, you can use
*.class to add all of the class files in a directory to the JAR file.

The examples in this figure show how to work with the JAR command. Here, the first example shows
how to create a JAR file named LoanApplet.jar that contains all of the class files in the current directory
and all of the GIF files in the images subdirectory. The second example shows how to add the
MurachLogo.GIF file to that JAR file, assuming that this file is stored in the images subdirectory. The

Murach’s Beginning Java 2

 page 378

third example shows how to extract these files from that JAR file. And the fourth example shows how to
list the contents of that JAR file. Since you usually want to get feedback about each JAR command, you
typically use the verbose output option, especially when working with the create, update, and extract
options.

The two screens in this figure show the results of some typical JAR commands. In the first screen, the
verbose output of the JAR command shows that the command added three class files to the JAR file,
and it shows how much the JAR tool was able to compress these files. In the second screen, the JAR
command lists the contents of a JAR file without verbose output.

Figure 15-16: How to work with JAR files
The syntax for using the JAR tool at the command line
jar [options] JARFileName File1 File2 File3 ...
Common options of the JAR tool

An example that creates a JAR file

C:\java\ch15\swing\loan>jar cfv LoanApplet.jar *.class images/*.gif

An example that updates a JAR file

C:\java\ch15\swing\loan>jar ufv LoanApplet.jar images/MurachLogo.gif

An example that extracts files from a JAR file

C:\java\ch15\swing\loan>jar xfv LoanApplet.jar

An example that list the contents of a JAR file

C:\java\ch15\swing\loan>jar tf LoanApplet.jar

The result when you create a JAR file with verbose output

The result when you list the contents of the JAR file

Description

 To specify all files with a certain extension, you can use the * wildcard.

Murach’s Beginning Java 2

 page 379

 To use the JAR tool, start the command prompt and navigate to the directory that
stores the files you want to archive. Then, you can issue the JAR command. If
necessary, you can also use a relative path name to identify files.

How to include JAR files in an HTML page
Once you create a JAR file that contains all of the files needed by an applet, you can specify the JAR
file in the HTML page that contains the applet as shown in figure 15-17. Before you include a JAR file,
though, you should make sure that the users of your applet have browsers that can use JAR files.
Although most modern browsers can read JAR files, older browsers that only support Java 1.0 can’t use
JAR files.

The code in this figure shows how to use the ARCHIVE attribute of the APPLET tag to specify a JAR file
that contains the files for the applet. Notice that you still need to use the CODE attribute to specify the
class file that defines the applet so the browser knows what file to execute to start the applet. Then,
every time it needs another file, it looks for that file in the JAR file. If it can’t find it there, it will look for
the file on the server. However, since connecting to the server for additional files significantly increases
the download time for your applets, you should try to include all the files that the applet needs within the
JAR file.

Figure 15-17: How to include JAR files in an HTML page
How to include a JAR file in an HTML page

<HTML>

<TITLE>Loan Calculator</TITLE>

<BODY>

<APPLET ARCHIVE = "LoanApplet.jar"

 CODE = "LoanCalculatorApplet.class"

 WIDTH = 240

 HEIGHT = 175>

</APPLET>

</BODY>

</HTML>

Description
 To improve the download time for your applets, you can place all the files needed by

the applet in one JAR file. Then, you can include the JAR file within the applet by
specifying the file name in the ARCHIVE attribute. Otherwise, the applet gets the
files from the server, which is much slower.

 Browsers that can only run Java 1.0 applets can’t use JAR files.

Perspective
In this chapter, you learned how to develop both Swing and AWT applets that can be run within a web
browser. You also learned about some of the limitations of applets that have led web programmers to
use other methods for developing web applications. One of the most important of these trends is toward
the use of Java Server Pages and servlets for web applications...and that’s going to be the subject of
the next book in this series.
In chapter 20, you can learn how to develop an applet that works with threads. There, you will see that
you can use threads to create applets that display animations and other types of multimedia effects. But
there again, it’s usually more practical to use other methods to get the same effects.

Murach’s Beginning Java 2

 page 380

Summary
 An applet is a special type of application that’s stored in a web page on a remote server

and runs within a web browser on a client machine.
 You can use the Hypertext Markup Language (HTML) to create a web page. Within the

HTML file, you use tags to define the elements of the page. And within some tags, you
define attributes that provide additional information.

 If you use the JApplet class to create a Swing applet, you can use Swing components
and all of the current features of Java. To distribute this type of applet, you must run the
HTML Converter on the HTML page that contains the applet, and you must install the
Java Plug-in on all systems that will use the applet.

 Most web browsers contain a Java virtual machine (JVM) that can run AWT applets that
use only the features of Java 1.0. Many web browsers, though, also support some of the
features of Java 1.1.

 Since applets are downloaded from remote servers and run on client machines, they
have stricter security restrictions than applications. To get around these restrictions, it’s
possible to create a signed applet.

 To test an applet but not its HTML page, you can use the Applet Viewer. To test an
applet and its HTML page, you run the HTML page from a web browser. Then, you can
use the Java Console to get debugging information.

 To specify a remote resource, you can use a Uniform Resource Locator (URL). An
absolute URL specifies the complete path of a directory or file while a relative URL
specifies a path that’s relative to another URL.

 The code base for an applet is the directory that stores the class file for the applet. The
document base for an applet is the directory that stores the HTML file for the applet.

 You can use a Java Archive file (JAR file) to store one or more files in a compressed
format. To download an applet as efficiently as possible, you should store all files
needed by the applet in a JAR file.

Terms
applet Java Console

web page Java Plug-in HTML converter

Hypertext Markup Language (HTML) Uniform Resource Locator (URL)

Swing applet Hypertext Transfer Protocol (HTTP)

AWT applet File Transfer Protocol (FTP)

Java virtual machine (JVM) absolute URL

Java Plug-in relative URL

signed applet code base

tag document base

attribute Java Archive file (JAR file)

Applet Viewer

Objectives
 Develop a Swing or AWT applet from scratch, or convert a Swing application to a Swing

or AWT applet.
 Code an HTML page that uses the APPLET tag to specify the filename, width, and

height of an applet.
 Use the Applet Viewer to test an applet.
 For a Swing applet, use the HTML Converter to convert the APPLET tag to the OBJECT

and EMBED tags that are used by the Internet Explorer and by Netscape.
 Test a Swing or AWT applet by running it in a web browser. If necessary, use the Java

Console to get debugging information.
 Use a URL to specify a directory or file that’s located on a remote server.
 Display an image in an applet.
 Use JAR files to compress and store all files that are needed by an applet. Then, specify

the JAR file in the HTML page that contains the applet.
 Describe the deployment issues for Swing and AWT applets.
 Describe the security restrictions of applets.

Murach’s Beginning Java 2

 page 381

Exercise 15-1: Develop the Swing Loan Calculator applet
1. Convert the code for the Loan Calculator application that’s stored in the

c:\java\ch15\swing\loan directory to a Swing applet as in figure 15-6. Then, compile
the application.

2. Code an HTML page that displays the applet as in figure 15-7. Then, save this file as
“LoanCalculator.html” in the c:\java\ch15\swing\loan directory.

3. Use the Applet Viewer to view the applet as in figure 15-8.
4. Run the HTML Converter as in figure 15-9 to convert the HTML page.
5. Use your web browser to test the HTML page and the applet as in figure 15-11. Since

the Java Plug-in is automatically installed when you install the SDK, the browser
should work properly. While you’re testing, you should display the Java Console.

Exercise 15-2: Develop the AWT Loan Calculator applet

1. Convert the code for the Loan Calculator application that’s in the
c:\java\ch15\awt\loan directory to an AWT applet as in figure 15-12. Then, compile
the application.

2. Code an HTML page that displays the applet as in figure 15-7. Then, save this file as
“LoanCalculator.html” in the c:\java\ch15\awt\loan directory.

3. Use the Applet Viewer to view the applet as in figure 15-8.
4. Use your web browser to test the HTML page and the applet as shown in 15-13.

While you’re testing, you should display the Java Console.

Exercise 15-3: Enhance the Swing applet

1. Open the Swing version of the Loan Calculator applet that’s in the
c:\java\ch15\swing\loanApplet directory. Then, add the icon that’s stored in the
images subdirectory to the Calculate button as in figure 15-15.

2. Use the JAR tool to create a JAR file that contains all class files needed by the Loan
Calculator applet and all image files needed by the applet as in figure 15-16. Then,
modify the HTML page so it uses this JAR file as described in figure 15-17. To do
this, you may want to code a simple HTML page, then run it through the Java
HTML converter. This way, you can run the Swing applet within a browser.

Section IV: Java for file input and output
In a typical business application, the data for business objects is saved in disk files or databases so it
can be retrieved whenever it is needed. In this section, then, you’ll learn how to use Java for writing data
to disk files and reading data from disk files.
In chapter 16, you’ll be introduced to file input and output and the two types of files that the Java API
provides for: text files and binary files. Then, in chapter 17, you can learn how to work with text files.
And in chapter 18, you can learn how to work with binary files and random-access versions of binary
files.
Note, however, that you don’t have to read all three of these chapters in sequence. After you read
chapter 16, you can read either chapter 17 or chapter 18.

Chapter List
Chapter 16: An introduction to file input and output
Chapter 17: How to work with text files
Chapter 18: How to work with binary files

Chapter 16: An introduction to file input and output
In the last section, you learned how to create user interfaces that get input from the user. Unless you
save that data to a file or database, though, the data is lost when the user exits the program. That’s why
Java provides a variety of classes that let you write data to a file and read data from a file.

In this chapter, you’ll be introduced to the concepts and terms that you need for working with files as
well as the two types of files that Java provides for. You’ll also learn how to use the File class with either
type of file. Then, in the next two chapters, you’ll learn how to write the code that reads data from and
writes data to either type of file.

Murach’s Beginning Java 2

 page 382

An introduction to file input and output
This topic introduces you to file input and output in Java. It shows how streams and files work, how to
layer streams, and how to handle the three types of exceptions that are commonly thrown when working
with file input and output.

How files and streams work
Figure 16-1 presents the two types of files and the two types of streams that you use when you do I/O
operations (or file I/O) in Java. In a text file, all of the data is stored as text characters with one character
per byte on disk. Often, the fields and records in this type of file are separated by delimiters like tabs,
bars, or end of line characters. In the text file in this figure, the fields are separated by bars and the
records by end of line characters.
In contrast, the data in a binary file can include seven primitive types of data plus object data. In the
example in this figure, you can see that two bytes are used for each character in the code and title fields
of a Book object. However, the third field is a numeric data type so it doesn’t display properly in a text
editor. Also, since the records in a binary file don’t end with end of line characters, one record isn’t
displayed on each line when a binary file is opened by a text editor.
To handle I/O operations, Java uses streams. You can think of a stream as the flow of data from one
location to another. For instance, an output stream can flow from the internal memory of an application
to a disk file, and an input stream can flow from a disk file to internal memory. When you work with a
text file, you use a character stream. When you work with a binary file, you use a binary stream.

Although this chapter shows you how to use streams with disk files, Java also uses streams with other
types of devices. For instance, you can use an output stream to send data to a PC monitor or a network
connection. In fact, the System.out and System.err objects are the standard output streams that are
used for printing data to the console. Similarly, you can use an input stream to read data from a source
like a keyboard or a network connection. In fact, the System.in object is a standard input stream that is
used for reading data from the keyboard.

Since the primary numeric data types can be stored in a binary file, this type of file is more efficient for
applications that work with numeric data. In contrast, the numeric data in a text file has to be parsed to
the primitive types before it can be used in arithmetic operations. That’s one reason why binary files are
used for most business applications. When an application works primarily with text data, though, text
files can also be efficient.

When you save a text or binary file, you can use any extension for the file name. In this book, though,
txt is used as the extension for all text files and dat for all binary files. For instance, the text file in this
figure is named books.txt, and the binary file is named books.dat.

Figure 16-1: How files and streams work
A text file that’s opened by a text editor

A binary file that’s opened by a text editor

Two types of files

Murach’s Beginning Java 2

 page 383

Two types of streams

Description

 An input file is a file that is read by a program; an output file is a file that is written by
a program. Input and output operations are often referred to as I/O operations or file
I/O.

 A stream is the flow of data from one location to another. To write data to a file or a
screen from internal storage, you use an output stream. To read from a file or the
keyboard into internal storage, you use an input stream.

 To read and write text files, you use character streams. To read and write binary files,
you use binary streams.

 Streams are not only used with disk devices, but also with input devices like
keyboards and network connections and output devices like PC monitors and
network connections.

How to layer streams
To create one stream that has all the functionality that you need for an application, it’s common to layer
two or more streams into a filtered stream. This is illustrated by the diagram in figure 16-2. Here, the
PrintWriter class is layered with the FileWriter class to create an output stream for a text file. In this
case, the PrintWriter class is used to write strings and numbers to a character stream, but this stream
doesn’t know where to write the data. That’s why it’s layered with the FileWriter class, which converts
the characters in the character stream to bytes and writes those bytes to the specified text file.

In the code examples, you can see how you layer streams in Java. Quite simply, you use an object of
one class as the argument for the constructor of another. For instance, a FileWriter object is used as the
argument of the PrintWriter constructor in the first example.
In the second and third examples, a block of internal memory known as a buffer is layered with two
other streams. This can be referred to as a buffered stream. When you use this type of stream for
output, the data is stored in the buffer before it is written to the output device. Then, when the buffer is
full, all of the data in the buffer is flushed to the disk file in a single I/O operation. Similarly, when you
use a buffer for input, a full buffer of data is read in a single I/O operation.

The benefit if buffering is that it reduces the number of I/O operations that are done by a disk device. If,
for example, a buffer can hold 4000 bytes of data, only one write or read operation is required to flush or
fill the buffer. In contrast, if the data is written or read one field at a time, 4000 bytes might require
hundreds of I/O operations. For each I/O operation, though, the disk has to rotate to the starting disk
location. Since this rotation is extremely slow relative to internal operations, buffering dramatically
improves the performance of I/O operations. That’s why you should use buffers for all but the most
trivial disk operations.

Figure 16-2: How to layer streams
How to layer two or more streams

stream A + stream B + … = filtered stream

How to layer the PrintWriter and FileWriter streams

Murach’s Beginning Java 2

 page 384

Code that layers two streams for a text file

PrintWriter out = new PrintWriter(

 new FileWriter("books.txt"));

Code that layers two streams with a buffer for a text file

PrintWriter out = new PrintWriter(

 new BufferedWriter(

 new FileWriter("books.txt")));

Code that layers two streams with a buffer for a binary file

DataOutputStream out = new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream("books.dat")));

Description
 The java.io package contains classes that can be used to create different types of

streams that have different types of functionality. In SDK1.4, the java.nio package
contains classes and other packages that provide fast buffered I/O, character set
conversions, new I/O exception classes, and overall improved I/O performance.

 To get the functionality you need for a stream, you often need to combine, or layer,
two or more streams. When you layer two or more streams, you create a filtered
stream.

 To make disk processing more efficient, you can use a buffered stream by adding a
block of internal memory called a buffer to the stream. Then, output data is stored in
the buffer before it is written to a file, and input data is read into the buffer before it
is processed by a program.

 When an output buffer is full, the program flushes the buffer, which means that it
sends the data in the buffer to the I/O device. When an input buffer is full, the
program stops reading data from the I/O device into the buffer.

 Buffers significantly improve the performance of disk operations because they reduce
the number of device operations.

How to work with I/O exceptions
If you’ve read chapter 10, you know the basic skills for handling exceptions. Now, figure 16-3
summarizes the three types of checked exceptions that must be handled when you’re working with
certain I/O operations, and it shows a typical way to handle these types of exceptions. In the next two
chapters, you can use code like this to handle these exceptions.

All exceptions that are thrown by classes that perform I/O operations inherit the IOException class. In
particular, an EOFException is thrown when a program attempts to read beyond the end of a file, and a
FileNotFoundException is thrown when a program attempts to open a file that doesn’t exist.

Murach’s Beginning Java 2

 page 385

The example in this figure shows how to handle these exceptions. Here, the code attempts to read data
from a file. As a result, the constructors and methods in the code throw all three types of I/O exceptions.
To catch these exceptions, this example uses a single try/catch statement to catch the IOException.
This works because both the FileNotFoundException and the EOFException are a type of IOException.

Note, however, that this example doesn’t have separate catch blocks for FileNotFoundException and
EOFException. Instead, it uses code that prevents these types of exceptions from being thrown. After a
File object is created that identifies a file, an if statement checks whether the file exists and proceeds
accordingly if it doesn’t. This prevents the FileNotFoundException. Then, if the file does exist, a loop
reads the records in the file as long as the string that’s returned by the readLine method isn’t a null
value, which means that the end of the file hasn’t been reached. If it has, the loop ends, which prevents
the EOFException.

Figure 16-3: How to work with I/O exceptions
Common I/O exception classes

The common I/O exceptions

Code that handles I/O exceptions

try{

 File data = new File("grades.txt");

 if (data.exists()){

 BufferedReader in = new BufferedReader(

 new FileReader(data));

 String line = in.readLine();

 while(line != null){

 System.out.println(line);

 line = in.readLine();

 }

 in.close();

 }

Murach’s Beginning Java 2

 page 386

 else

 System.out.println("The grades.txt file doesn’t exist");

}

catch(IOException e){

 System.out.println("An IOException has occurred.");

}

Description
 All exceptions that are thrown by classes that perform I/O operations inherit the

IOException class.
 For efficiency, it’s best to prevent some exceptions from ever occurring instead of

catching them with catch blocks. That’s why the code above prevents the EOF and
FileNotFound exceptions from occurring.

How to work with the File class
In this topic, you’ll learn how to use the File class to work with directories and files. This is useful
whether you’re working with text files or binary files. Then, in the next two chapters, you’ll learn how to
use File objects with those types of files.

How to create a File object
Figure 16-4 shows how to create File objects. After it shows some examples that create File objects, it
summarizes three constructors and one field of the File class.

In the first group of examples, all of the statements create File objects for Windows systems. In that
case, the backslash is use to separate the parts of a path. To code one backslash in Java, though, you
need to use the \\ escape sequence.
The first four statements in this group of examples show how to use the first File constructor. Here, the
first statement creates a File object that refers to a file in the current directory. The second statement
uses an absolute pathname to specify the entire path and filename for the file. And the third statement
uses a relative pathname to specify the path and filename for the file relative to the current directory. In
this case, the File object refers to a file located in the files subdirectory of the current directory.
The fourth statement in this group shows how to use the Universal Naming Convention (UNC) to specify
a file on a remote computer. To do that, you code two backslashes (\\\\), followed by the host name and
the share name. In this case, the File object refers to a file located on a computer named server on the
C share drive in the editorial directory.

The fifth statement in this group shows how to use the second File constructor. Here, the first argument
refers to the parent pathname, while the second one refers to the child pathname. In this case, the first
argument refers to the directory and the second argument refers to the file.

The last two statements in this group show how to use the third File constructor. Here, the first
statement creates a File object that refers to a directory. Then, the second statement creates a File
object that refers to a file located in that directory.

Although Windows uses a backslash (\) to separate files, Unix uses a forward slash (/). How then do
you create File objects that will work on either type of system? By using the separator field of the File
class. This is illustrated by the last example in this figure. Then, the Java virtual machines will interpret
the code the right way for each type of system.

Figure 16-4: How to create a File object
The File class

java.io.File

Examples that create File objects for Windows systems

Murach’s Beginning Java 2

 page 387

File file = new File("books.txt");

File file = new File("C:\\java\\ch16\\files\\books.txt");

File file = new File("files\\books.txt");

File file = new File("\\\\server\\c\\editorial\\books.txt");

File file = new File("..\\files", "books.txt");

File dir = new File("C:\\java\\ch16\\files");

File file = new File(dir, "books.txt");

An example that uses the separator field

File file = new File("files" + File.separator + "books.txt");

Common constructors of the File class

A field of the File class

Description

 To identify the name and location of a file, you can use an absolute pathname to
specify the entire path for a file, or you can use a relative pathname to specify the
path of the file relative to another directory.

 To code a backslash as a String literal, you must use the escape sequence (\\).
 To create a File object that represents a file on a remote computer, you can use the

Universal Naming Convention (UNC). To do that, code two backslashes (\\\\)
followed by the hostname and the share name.

 Windows uses a backslash to separate directories, while Unix uses a forward slash.
To write code that will run on either system, you can use the separator field of the
File class as the separator.

Methods of the File class
Figure 16-5 summarizes some of the methods of the File class that you can use for working with files
and directories. For more information about these methods, you can use the documentation of the Java
API.

The first group in this figure presents some common methods that you can use to test a file or directory.
You can use the first three methods to check whether a file exists and whether you can read or write the
file. You can use the next two methods to test whether the pathname refers to a file or a directory.

The second group presents some methods that you can use to get information about a file or directory.
To return the name of the file or directory, for example, you can use the getName method. To return the
pathname of the file or directory, you can use the next three methods. To return the length of the file in
bytes or the time that the file was last modified, you can use the length and lastModified methods. And
to return arrays that describe the available drives, directories, and files, you can use the listRoots,
listFiles, and list methods.

Murach’s Beginning Java 2

 page 388

The last group presents some methods that you can use to work with files and directories. For instance,
you can use the setReadOnly method to create a file or directory that only allows read operations, and
you can use the delete method to delete a file or directory. Before you can delete a directory, though,
the directory must be empty. Since all four of the methods in this group return a boolean value that
indicates whether the operation was successful, you can write code that checks the return values
whenever you need to know if the method ran successfully.

Figure 16-5: Methods of the File class
Methods that check a File object

Methods that get information about a File object

Methods that work with File objects

Murach’s Beginning Java 2

 page 389

Code examples that work with directories and files
Figure 16-6 presents four examples that show how to work with files and directories. These examples
illustrate several important skills.

The first example shows how to get information about a file. Here, the first statement creates a File
object that refers to a file. Then, an if statement checks whether the file exists. If so, five statements
print information about the file to the console. Otherwise, a single statement prints a message that says
that the file doesn’t exist.

The screen below the first example shows the result of the five statements that are executed when the
file exists. First, the getName method returns the name of the file specified in the constructor. Then, the
getPath method returns the pathname specified in the constructor. The next two statements show the
two ways a full pathname can be returned. Here, the getCanonicalPath returns the full pathname, while
the getAbsolutePath method returns the full pathname plus the relative pathname. Finally, the canWrite
method returns a true value to show that you can write data to the file.

The second example shows how to create a new file. To do this, the first statement creates a File
object. Then, the second statement calls the createNewFile method to create the file. If the file doesn’t
already exist, this statement will create the file.

The third example shows how to list the names of files and subdirectories in a directory. Here, the first
statement creates a File object that refers to a directory. Then, an if statement checks whether the
directory exists and whether it is a directory. If both are true, the first statement in the if block prints the
name of the directory to the console. Then, the second statement returns an array of strings that
contains the names of the files and subdirectories of that directory. And finally, a loop prints each
element of the array to the console. In this example, the directory only contains two files and one
subdirectory.

The last example shows how to return all drives available to a system. Here, the first statement uses the
static listRoots method of the File class to return an array of File objects. Then, a loop prints the
pathname for each root drive to the console. In this example, the system contains four drives: A, C, D,
and E.

Figure 16-6: Code examples that work with directories and files
Code that gets information about a file

File file = new File("..\\files\\books.txt");

if (file.exists()){v

 System.out.println("File name: " + file.getName());

 System.out.println("Path: " + file.getPath());

 System.out.println("Canonical path: " + file.getCanonicalPath());

Murach’s Beginning Java 2

 page 390

 System.out.println("Absolute path: " + file.getAbsolutePath());

 System.out.println("Is writable: " + file.canWrite());

}

else

 System.out.println("The " + file.getName() + " file doesn’t exist.");

Output of the above code

Code that creates a new file

File file = new File("newdata.txt");

file.createNewFile();

Code that lists the contents of a directory

File dir = new File("C:\\java\\ch16\\classes");

if ((dir.exists()) && (dir.isDirectory())){

 System.out.println("Directory: " + dir.getCanonicalPath());

 String[] files = dir.list();

 for (int i = 0; i < files.length; i++){

 System.out.println(files[i]);

 }

}

Output of the above code

Code that lists available roots

File[] myRoots = File.listRoots();

for (int i = 0; i < myRoots.length; i++){

 System.out.println(myRoots[i].getPath());

}

Output of the above code

Murach’s Beginning Java 2

 page 391

Perspective
In this chapter, you learned the concepts and terms that you need to read and write files. In addition,
you learned how to use the File class. Now, you can read chapter 17 to learn how to read and write text
files, or you can skip to chapter 18 to learn how to read and write binary files.

Summary
 In Java, a text file contains text characters, while a binary file can contain seven

primitive data types plus object data. As a result, binary files are used for most business
applications.

 In Java, you use character streams to read and write text files and binary streams to
read and write binary files. To get the functionality you need, you can layer two or more
streams, thus creating a filtered stream.

 A buffer is a block of memory that is used to store the data in a stream before it is
written to or after it is read from an I/O device. When an output buffer is full, its data is
flushed to the I/O device.

 Buffering significantly improves the efficiency of disk operations because it reduces the
number of operations that are done by a disk device. This means that less time is
wasted while a disk rotates to the starting location for a read or write operation.

 When you work with I/O operations, you’ll need to catch or throw three types of checked
exceptions: IOException, FileNotFoundException, and EOFException.

 To identify a file when you create a File object, you can use an absolute pathname or a
relative pathname. To identify a file on a remote computer, you can use the Universal
Naming Convention (UNC).

 The File class provides many methods that you can use to check whether a file or
directory exists, to get information about a File object, and to create or delete directories
and files.

Terms
input file output stream buffered stream

output file input stream flush

I/O operation character stream absolute pathname

file I/O binary stream relative pathname

text file layer Universal Naming Convention (UNC)

binary file filtered stream

stream buffer

Objectives
 Name and describe the two types of files that Java provides for.
 Explain why and how a filtered stream is created.
 Explain how a buffer for an output stream works and how it improves the performance of

an I/O operation.
 Name and describe the three common types of I/O exceptions.
 Write code that handles the three common types of I/O exceptions.
 Write code that uses the File class to get information about a file.

Exercise 16-1: Use the File class

This exercise guides you through the process of using the File class to get information about a file.
1. Open the FileTester class that’s in the c:\java\ch16\classes directory.
2. Inside the main method, create a File object that refers to the grades.txt file that’s in

the c:\java\ch16\files directory. To do this, you’ll need to import the java.io package
and you may want to refer to figure 16-6.

Murach’s Beginning Java 2

 page 392

3. Add an if statement that determines whether the file exists as in figure 16-3. If it does,
the application should print “File exists.” Otherwise, it should print “File does not
exist.” Then, compile and run the application to make sure it’s working properly.

4. Code statements that display information about the file as shown in figure 16-6. To do
this, you’ll need to write code that catches the IOException that may be thrown.
Then, compile and run the program to make sure it’s working properly.

5. Edit the code so it gets the same information from the books.txt file located in
c:\java\ch16\classes\files directory. Then, compile and run the program to make
sure it’s working properly.

Chapter 17: How to work with text files
In the last chapter, you learned some concepts and skills that apply to all I/O operations. Now, you’ll
learn how to create programs that write and read text files. Although text files are used infrequently for
business applications, they are appropriate for some applications. Since some of the examples in this
chapter use arrays, you should read the array portion of chapter 9 before you read this chapter.

How to write text files
To write a text file, you need to layer two or more classes to create a character output stream. That’s
why this topic begins with a general discussion of the classes that you can use to write text files. Then,
this topic describes the methods that you can use to write text files, and it shows several examples that
use these methods.

Classes that write character output streams
Figure 17-1 shows five of the classes that can be used to write text files. Although more classes for
writing text files exist, these are five of the most commonly used classes for working with text files, and
they’re the ones that you’ll learn how to use in this chapter.

In the Java API, all classes that are used to write text files descend from the abstract Writer class. You
can use the PrintWriter and FileWriter classes to convert the binary data in your program to a character
output stream and to write that stream to a file. To increase the efficiency of your I/O operations, you
can use the BufferedWriter class to create a buffer.
Although the OutputStreamWriter class isn’t covered in this chapter, you can use it to convert a
character output stream to a binary output stream. That of course is the type of output stream that you’ll
learn about in the next chapter.

Figure 17-1: Classes that write character output streams
A subset of the Writer hierarchy

Classes that write character output streams

Murach’s Beginning Java 2

 page 393

Description

 The Writer hierarchy includes more classes than the ones in this figure. To learn
more about them, you can check the documentation for the Java API. All classes in
the java.io package that end with Writer are members of the Writer hierarchy.

How to connect a character output stream to a file
Before you can write to a text file, you need to create a character output stream and you need to
connect that stream to a file as shown in figure 17-2. To do this, you must layer two or more of the
classes in the Writer hierarchy. In addition, it’s a good coding practice to create a buffer for the output
stream and to use the File class to create a File object.

The first example shows how to write text to a file without using a buffer or a File object. First, you
create a PrintWriter object that can print strings and other data types to an output stream. Then, you
create a FileWriter object that uses a string to specify the name and location of the file. Although the
output stream in this coding example uses fewer lines of code than the output stream in the second
example, it doesn’t process the data as efficiently and it isn’t as flexible.

The second example shows how to include a buffer and a File object in the output stream. Since a
buffer increases efficiency, you’ll want to include one for any serious application. Similarly, since a File
object lets you get information about the file that you’re working with, you’ll usually want to include one.
That’s why this example uses one variable to refer to the File object and another variable to refer to the
output stream.

The constructors in this figure should help you understand how to layer output streams. Here, you can
see that the PrintWriter constructor accepts any class derived from the Writer class. As a result, you can
supply a BufferedWriter object as an argument of the PrintWriter constructor. Similarly, since the
BufferedWriter constructor also accepts any Writer object, you can supply a FileWriter object as an
argument of the BufferedWriter constructor. Then, to create a FileWriter object, you can supply either a
File object or a String object that refers to a file.
Two of these constructors accept a second argument. If you set the second argument of the PrintWriter
constructor to true, you turn on the autoflush feature. Then, the buffer is flushed whenever the println
method is executed. If you set the second argument of the FileWriter constructor to true, you can
append data to the file. To use this constructor, though, the file name must be a String object, not a File
object. In this case, you can still create a File object to check the properties of the file, but you can’t use
it in the constructor.

Figure 17-2: How to connect a character output stream to a file
Classes used to connect a character output stream to a file

How to connect without a buffer or a File object (not recommended)

PrintWriter out = new PrintWriter(

 new FileWriter("books.txt"));

Murach’s Beginning Java 2

 page 394

How to connect with a buffer and a File object (preferred method)

File data = new File("books.txt");

PrintWriter out = new PrintWriter(

 new BufferedWriter(

 new FileWriter(data)));

Constructors of these classes

Description

 By default, when you use a buffer, the data is flushed to the disk device when the
buffer is full.

 If you set the second argument of the second PrintWriter constructor to true, the
autoflush feature is turned on. Then, the buffer is flushed each time the println
method is executed.

 If you set the second argument of the third FileWriter constructor to true, you can
append data to an existing file. This means that you can write data starting at the
end of the file.

How to write a text file
Figure 17-3 shows how to write a text file. To start, it shows a simple application that writes data to a
file. Then, it summarizes some of the methods of the PrintWriter class.

Within the main method of the TextWriterApp class, the first two statements create a File object and an
object that refers to a buffered output stream. Then, the statements that follow use the print and println
methods to write data to the buffer. Here, the first print statement writes a character representation of an
int value, the second print statement writes a character, and the third print statement writes a character
representation of a boolean value. Then, a println statement writes a string and follows it with an end of
line character that’s appropriate for the current platform.

After the println statement, a print statement writes another string to the file. Then, the last statement
calls the close method. This flushes all of the characters from the buffer to the file, and it frees any
resources used by the stream.

This figure also summarizes five methods of the PrintWriter class. Here, the first two methods write a
character representation of the argument type to the stream. Since both of these methods can accept
any of the argument types listed in this figure, they can convert any data type to a character
representation. If you supply an object as an argument, these methods call the toString method of the
object to return a string.

Note that the operation of the println method depends on whether the autoflush feature has been turned
on by using the second PrintWriter constructor in the last figure. If this feature is on, all of the characters
in the buffer are flushed to the file each time the println method is called. Otherwise, the buffer isn’t
flushed until it’s full.

The last three methods in this figure also have an effect on the buffer. Since the print and println
methods of the PrintWriter class don’t throw exceptions, you don’t need to throw or catch them.
However, you can use the checkError method to flush the buffer and check whether any errors occurred

Murach’s Beginning Java 2

 page 395

when using these methods. Once an error occurs, though, all checkError calls return a boolean value of
true.

In contrast, both the flush and close methods throw IOExceptions. Although you usually don’t need to
call the flush method, you can use it any time you want to flush all the data in the buffer to the file. On
the other hand, you should always use the close method when you’re done using a stream. Then, the
buffer will flush its data to the file before the stream closes. If you don’t call this method, you may lose
data that hasn’t been flushed to the file.

Figure 17-3: How to write a text file
A class that writes data to a text file

import java.io.*;

public class TextWriterApp{

 public static void main(String args[]) throws IOException{

 File data = new File("example.txt");

 PrintWriter out = new PrintWriter(

 new BufferedWriter(

 new FileWriter(data)));

 out.print(5);

 out.print(‘c’);

 out.print(true);

 out.println("Java");

 out.print("End of file");

 out.close();

 }

}

The file after it has been opened by a text editor

Common methods of the PrintWriter class

Murach’s Beginning Java 2

 page 396

Argument types accepted by the print and println methods

boolean char char[] String Object

int long double float

Description
 To write a character representation of a data type to an output stream, you use the

print and println methods of the PrintWriter class. If you supply an object as an
argument, those methods will call the toString method of the object.

 To prevent data from being lost, you should always close the stream when you’re
done using it. Then, the program will flush all data to the file before it ends.

Three examples that write text files
Figure 17-4 presents three examples that show how to write data to text files. This figure also shows
what the text files will look like when opened by a text editor.

The first example shows how to use the println method to write character representations of three
double values to a text file named doubles.txt. For the first double value, the println method converts the
eight-byte double value that’s used by Java to five one-byte character values. In this case, four of these
character values represent the four digits and one character represents the decimal point. Since this
example uses the println method for all three values, an end of line character follows each value.

The second example shows how to append a string and an object to a text file named log.txt. To start,
the FileWriter constructor creates a FileWriter object that can append data to the file. If no file named
log.txt exists in the current directory, this statement will create the file. Then, the print method prints a
string, and the println method prints a Date object that represents the current date and time. Using a
Date object as an argument of the println method automatically calls the toString method for that object.
The third example shows how to write records to a delimited text file. In this type of file, one type of
delimiter is used to separate the fields (or columns) that are written to the file, and another type of
delimiter is used to separate the records (or rows). In this example, the bar character (|) is used as the
delimiter for the fields, and the end of line character is used as the delimiter for records. Note, however,
that the tab character (\t) is commonly used as a field delimiter.

Figure 17-4: Three examples that write text files
An example that writes doubles to a text file

File data = new File("doubles.txt");

PrintWriter out = new PrintWriter(

 new BufferedWriter(

 new FileWriter(data)));

out.println(59.75);

out.println(23.70);

Murach’s Beginning Java 2

 page 397

out.println(92.22);

out.close();

The file opened in a text editor

An example that appends a string and an object to a text file

PrintWriter out = new PrintWriter(

 new BufferedWriter(

 new FileWriter("log.txt", true)));

out.print("This application was run on ");

Date today = new Date();

out.println(today);

out.close();

The file opened in a text editor

An example that writes a delimited text file

String[] names = {"Vicky Lewis", "Karen Doe", "Greg Smith"};

int[] grades = {94, 91, 86};

File data = new File("grades.txt");

PrintWriter out = new PrintWriter(new BufferedWriter(new

 FileWriter(data)));

for (int i = 0; i<names.length; i++){ //loops through each record

 out.print(names[i]);

 out.print(‘|’); //places a bar between each field

 out.println(grades[i]); //places a new line character after each record

}

out.close();

The file opened in a text editor

Murach’s Beginning Java 2

 page 398

How to read text files
Now that you’ve learned how to write text files, you’re ready to learn how to read those text files. To
start, this topic discusses how to work with the classes that read text input streams. Then, this topic
shows how to connect an input stream to a file, how to use the methods of an input stream to read a line
of text, and how to read delimited text files.

Classes that read character input streams
Figure 17-5 shows six classes that can be used to read character input streams. Of these classes, two
are abstract. Although these classes are only a subset of the entire Reader hierarchy, they include the
classes that are most commonly used to read character input streams.

In the Java API, all classes that are used to read character input streams descend from the abstract
Reader class. Of these classes, the BufferedReader and FileReader classes are the two most
commonly used classes. In some coding situations, though, the PushbackReader and
InputStreamReader classes are also useful.

Figure 17-5: Classes that read character input streams
A subset of the Reader hierarchy

Classes that read character input streams

Description

Murach’s Beginning Java 2

 page 399

 The Reader hierarchy includes more classes than the ones in this figure. To learn
more about them, you can check the documentation for the Java API. All classes in
the java.io package that end with Reader are members of the Reader hierarchy.

How to connect a character input stream to a file
Before you can read characters from a text file, you must connect the character input stream to a file.
Figure 17-6 shows how to do that with a buffer and a File object. Since the BufferedReader class
creates a buffer and provides methods that read data, you’ll almost always want to use this class. Then,
you’ll need to use the FileReader class to connect the character input stream to a file.

If you look at the constructors for the BufferedReader and FileReader classes, you can see why this
code works. Since the constructor for the BufferedReader object accepts any object in the Reader
hierarchy, it can accept a FileReader object that connects the stream to a file. However, the
BufferedReader object can also accept an InputStreamReader object, which can be used to connect the
character input stream to the keyboard or to a network connection rather than to a file.

Figure 17-6: How to connect a character input stream to a file
Classes used to connect a character input stream to a file

How to connect with a buffer and a File object

File data = new File("books.txt");

BufferedReader in = new BufferedReader(

 new FileReader(data));

Constructors of these classes

Description

 Although you can read files with the FileReader class alone, the BufferedReader
class improves efficiency and provides better methods for reading character input
streams.

How to read text files
Figure 17-7 shows how to read text files. To start, this figure shows a simple application that reads the
text file that’s created by the class in figure 17-3. Then, this figure summarizes the methods of the
BufferedReader class.

Within the main method of the TextReaderApp class, the first statement creates a File object. Then, an
if statement uses this File object to check if the file exists. If it does, the statements inside the if block
read the file. Otherwise, the else block prints a message to the console indicating that the file wasn’t
found.

Within the if block, the first statement creates a character input stream and connects that stream to the
file that’s specified in the File object. Then, a while loop reads each line in the file and prints these lines
to the console. When the readLine method attempts to read past the end of the file, it returns a null

Murach’s Beginning Java 2

 page 400

value, which causes the application to exit the loop and call the close method. This flushes the buffer
and closes the input stream.

The rest of this figure summarizes some of the methods of the BufferedReader class. Here, the
readLine method reads in one line of text as a string. Then, you can parse the numbers and other types
of data from the string as shown in the next two figures.

Although you can also use the read method to read a text file, it’s not commonly used. When this
method reads a character, it returns an int value that represents the ASCII code for the character. Then,
to get the character, you must cast the return type to a char value.

If you know the structure of the data in the input stream that you’re working with, you may occasionally
need to skip a specific number of characters. To do that, you can use the skip method. When you call
this method, it tries to move the cursor forward the specified number of characters without reading new
characters into the stream. However, if this method encounters the end of the file or can’t continue for
some other reason, it returns the actual number of characters that were skipped.

Figure 17-7: How to read text files
A class that reads text from a file

import java.io.*;

public class TextReaderApp{

 public static void main(String args[]) throws IOException{

 File data = new File("example.txt");

 if (data.exists()){

 BufferedReader in = new BufferedReader(

 new FileReader(data));

 String line = in.readLine();

 while(line != null){

 System.out.println(line);

 line = in.readLine();

 }

 in.close();

 }

 else

 System.out.println("File not found - example.txt");

 }

}

The output to the console

Murach’s Beginning Java 2

 page 401

Common methods of the BufferedReader class

An example that reads numbers from a text file
Figure 17-8 shows a coding example that reads numbers into a program from a text file. In particular, it
shows how to read the three double values that were written to a text file by the code in the first
example of figure 17-4. In this case, each double was written to a separate line in the text file. As a
result, you can use the readLine method to return a String object that contains each value. Then, you
can use the parseDouble method of the Double class to convert each String object to a double data
type.

Figure 17-8: An example that reads numbers from a text file
An example that reads numbers into a program from a text file

File data = new File("doubles.txt");

BufferedReader in = new BufferedReader(

 new FileReader(data));

String line = in.readLine();

while(line != null){

 double number = Double.parseDouble(line);

 System.out.println("Double: " + number);

 line = in.readLine();

}

in.close();

The output to the console

Murach’s Beginning Java 2

 page 402

Description

 When a text file contains just one numeric field per line, you can convert each field to
a primitive type as shown above.

 When a text file contains more than one field per line, you can use the
StringTokenizer class to parse each line into fields as shown in the next figure.
Then, you can convert the numeric fields into primitive types.

How to read delimited text files
When you’re working with delimited text files that contain more than one field in each line or record, you
can use the StringTokenizer class to parse each record into substrings, or tokens. Then, you can treat
each token as a field in a record. Figure 17-9 shows how this works.

When you create a StringTokenizer object, the first argument of the constructor supplies the string that
you wish to break into tokens. By default, the StringTokenizer object uses spaces, tabs, new lines, and
returns as the delimiters for finding the tokens. But if you want to specify your own delimiters, you can
code a second argument that contains a string of one or more characters that you want to use as
delimiters.

The first example in this figure shows how to use the StringTokenizer class to parse a string into tokens
and print the contents of each token. Here, the constructor identifies the tab (\t) and return (\r)
characters as the delimiters. As a result, the new object consists of three tokens. The first token is
WARP, the next token is War and Peace, and the last token is 14.95. Although this last token looks like
a number, remember that all of the tokens are actually strings. Then, to convert a numeric string to a
double type, you can use the parseDouble method of the Double class.
The second example shows how to use the StringTokenizer class to work with the delimited file named
grades.txt that was created by the third example in figure 17-4. Since the code in this figure is similar to
the code in the previous figures, you should understand most of it. The main difference is that you can
now use the StringTokenizer class to retrieve the individual fields of each record.

Inside the while loop, the first statement creates a StringTokenizer object for each line that is read with
the bar character (|) used as the field delimiter. Then, the next two statements use this object to return
one token for the name and one token for the grade. The last three statements in this loop convert each
grade from a string to an int type, print a line that shows the name and the grade for each record, and
read another line from the text file.

In the method summary in this figure, you can see that the methods for a StringTokenizer object let you
work with the tokens. When you call the nextToken method for the first time, for example, it returns the
first token in the string. Then, each subsequent call to the nextToken method returns the next token in
the string. If no more tokens are available, though, the nextToken method throws an exception. To
prevent this, you can call the countTokens or hasMoreTokens method to make sure you don’t issue the
nextToken method when there aren’t any more tokens.

Although this figure uses the StringTokenizer class to work with delimited text files, you can also use it
to work with other types of strings. Since it’s part of the java.util package, though, you should import this
package whenever you use this class.

Figure 17-9: How to read delimited text files
The StringTokenizer class

java.util.StringTokenizer

Code that shows how the StringTokenizer class works

String record = "WARP\tWar and Peace\t14.95";

String tokenDelimiter = "\t\n";

Murach’s Beginning Java 2

 page 403

StringTokenizer t = new StringTokenizer(record, tokenDelimiter);

int numberOfTokens = t.countTokens();

System.out.println("Number of tokens: " + numberOfTokens);

while (t.hasMoreTokens()){

 String token = t.nextToken();

 System.out.println(token);

}

Code that uses the StringTokenizer class to parse a text file

File data = new File("grades.txt");

BufferedReader in = new BufferedReader(

 new FileReader(data));

String line = in.readLine();

while (line != null){

 StringTokenizer t = new StringTokenizer(line, "|");

 String name = t.nextToken();

 String gradeString = t.nextToken();

 int grade = Integer.parseInt(gradeString);

 System.out.println(name + " " + grade);

 line = in.readLine();

}

in.close();

Common constructors of the StringTokenizer class

Common methods of the StringTokenizer class

Murach’s Beginning Java 2

 page 404

Description

 A token is a substring that has been extracted from a delimited string.

Perspective
In this chapter, you’ve learned how to read and write text files. You’ve also learned how to parse a
delimited text file into the fields and records that it is composed of. In the next chapter, you’ll learn how
to use many of the same skills as you read and write binary files.

Summary
 You can use the classes that end with Writer to create a character output stream that

can write data to a text file.
 When you use the BufferedWriter class to add a buffer to a character output stream, the

buffer is flushed when the buffer is full. However, if you turn the autoflush feature on, the
buffer is flushed each time the println method is executed.

 In a delimited text file, delimiters are used to separate the fields and records of the file.
 You can use the classes that end with Reader to create a character input stream that

can read data from a text file.
 You can use the StringTokenizer class to create an object that consists of the tokens

that are extracted from a delimited text file or record.

Terms
autoflush feature column

delimited text file record

delimiter row

field token

Objectives
 Write code that writes data from a program to a text file.
 Write code that reads data from a text file into a program.
 Write code that writes and reads delimited text files.

Exercise 17-1: Write and view text files

This exercise guides you through the process of writing three text files. Then, it has you open these files
in a text editor to see what you’ve written.

1. Open the TextWriterApp class that’s in the c:\java\ch17 directory. Then, add the code
for the TextWriterApp class that’s in figure 17-3, and compile and run this
application. When you’re done, open the example.txt file that you just created with
a text editor. It should contain the two lines of text shown in figure 17-3.

2. Open the LogWriterApp class that’s stored in the c:\java\ch17 directory. Then, modify
this class so it appends data to the file as in the second example of figure 17-4.
Next, compile the code and run the application two or more times. When you’re
done, open the log.txt file with a text editor. It should contain two or more lines of
text, one for the each time that you ran the application.

3. Open the GradesWriterApp class that’s in the c:\java\ch17 directory. Then, edit the
code so it prints the grades to a tab-delimited text file. To do that, you need to use
the tab character (\t) instead of the bar character (|). When you’re done, open the
grades.txt file with a text editor. It should have three lines of text. Although you

Murach’s Beginning Java 2

 page 405

probably won’t see the tab characters, your text editor uses these tabs to align the
data.

Exercise 17-2: Read text files

This exercise guides you through the process of reading three text files.
1. Open the TextReaderApp class that’s in the c:\java\ch17 directory. Then, edit the file

so it reads both lines of text in the example.txt file as in figure 17-7. When you
compile and run this application, it should print the two lines of text shown in this
figure.

2. Open the DoublesReaderApp class that’s in the c:\java\ch17 directory. Then, edit the
code for this class so it reads the three doubles from the doubles.txt file as in figure
17-8. When you compile and run this application, it should print three lines of text,
one for each double value.

3. Open the GradesReaderApp class that’s stored in the c:\java\ch17 directory. Then,
edit the code so it reads the grades from the tab-delimited text file. To do that, you
need to supply a second argument for the StringTokenizer constructor as in figure
17-9. When you compile and run this application, it should print the names of three
students and their grades to the console.

Chapter 18: How to work with binary files
In chapter 16, you learned some general concepts and skills that apply to all input and output
operations. In this chapter, you’ll learn how to create programs that read and write binary files. This is
the type of file that you’re most likely to use for business applications. Since working with this type of file
requires the use of arrays and vectors, you need to read chapter 9 before you read this chapter.

How to write binary files
To write a binary file, you need to use a combination of binary output streams. That’s why this topic first
presents an introduction to these streams. Then, this topic describes some of the methods that you can
use to write data from your program to a binary file. And finally, it presents some examples that write
data to a binary file.

Classes that write binary output streams
Figure 18-1 shows five classes and one interface that you can use to write binary output streams. You
can use the DataOutputStream and FileOutputStream classes to send data to a binary output stream
and to write that data to a binary file. Since the DataOutputStream class implements the DataOutput
interface, you can call the standard methods of this interface to send data to the output stream. Later in
this chapter, you’ll learn more about these methods.

In the Java API, all classes that write data to binary output streams descend from the abstract
OutputStream class. Most of these classes end with OutputStream and are stored in the java.io and
java.util.zip packages. Most of the classes that are used to add functionality to an output stream class
inherit the FilterOutputStream class. For instance, the BufferedOutputStream class adds functionality to
a stream by adding a buffer that allows the stream to be processed more efficiently.

Note, however, that the Java API also contains many other OutputStream classes that inherit the
FilterOutputStream class. To learn more about these classes, you can browse through the java.io and
java.util.zip packages in the documentation for the Java API.

Figure 18-1: Classes that write binary output streams
A subset of the OutputStream hierarchy

Murach’s Beginning Java 2

 page 406

Summary of these classes

Description

 The OutputStream hierarchy includes more classes than the ones in this figure. To
learn more about them, you can check the documentation for the Java API. All
classes in the java.io and java.util.zip packages that end with OutputStream are
members of the OutputStream hierarchy.

 Classes that inherit the FilterOutputStream class typically add functionality to an
existing output stream.

 The DataOutputStream class implements the DataOutput interface. As a result, you
can use the methods of that interface to send data to the output stream.

How to connect a binary output stream to a file
Before you can write data to a binary file, you need to create a binary output stream and you need to
connect that stream to a file. To do this, you must layer two or more streams in the OutputStream
hierarchy as shown in figure 18-2. It’s also a good coding practice to create a buffer for the output
stream and to create a File object for the file.

The first example shows how to connect your program to a file without using a buffer or File object.
First, you create a DataOutputStream object that can write data to a binary output stream. Then, you
supply an object of the FileOutputStream class as an argument of the DataOutputStream constructor.

The second example shows how to include a buffer and a File object in the output stream. Since a
buffer increases efficiency, you’ll want to include one for any serious application. Similarly, since a File
object allows you to get information about the file that you’re working with, you’ll usually want to include
one. That’s why this example uses one variable to refer to the File object and another variable to refer to
the output stream.

The constructors shown in this figure should help you understand how to layer output streams. Here,
you can see that the DataOutputStream constructor accepts an object created from any class that’s

Murach’s Beginning Java 2

 page 407

derived from the OutputStream class. As a result, you can supply a BufferedOutputStream object as an
argument of the DataOutputStream constructor. Similarly, since the BufferedOutputStream constructor
also accepts any OutputStream object, you can supply a FileOutputStream object as an argument of the
BufferedOutputStream constructor. In contrast, to create a FileOutputStream object, you can supply
either a File object or a String object that refers to a file.

If you use the first two constructors of the FileOutputStream class to create a file output stream, the
output stream will delete all data in the existing file before it writes the new data to the file. However, you
can use the third constructor of the FileOutputStream class to add data to the end of a file (append) by
setting the second argument to true. When you use this constructor, though, the filename must be a
String object, not a File object. If necessary, you can still create a File object to check the properties of
the file, but you can’t use it in the constructor of the FileOutputStream class.

Figure 18-2: How to connect a binary output stream to a file
Classes used to connect a binary output stream to a file

How to connect without a buffer or a File object (not recommended)

DataOutputStream out = new DataOutputStream(

 new FileOutputStream("books.dat"));

How to connect with a buffer and File object (preferred method)

File data = new File("books.dat");

DataOutputStream out = new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream(data)));

Constructors of these classes

Description

 Although a buffer isn’t required, it makes output operations more efficient.
 By default, the FileOutputStream constructors overwrite the entire file. To append

data to a file, use the last FileOutputStream constructor in this figure and set the
second argument to true.

How to work with the DataOutput interface
Figure 18-3 shows the most commonly used methods of the DataOutput interface. Since most of the
classes that write data to a binary output stream implement this interface, you can use these methods to
write data to a binary file. Earlier in this chapter, you learned that the DataOutputStream class
implements this interface. Later in this chapter, you’ll learn how to work with another class that
implements this interface.

Murach’s Beginning Java 2

 page 408

You can use the first seven methods in this figure to write primitive data types to a binary output stream.
For example, you can use the writeInt method to write an int value to a binary output stream. To read
these data types, you sometimes need to know how many bytes each data type uses. That’s why this
figure includes the number of bytes that each of these methods uses.
You can use the last two methods in this figure to write strings to a binary output stream. When you use
the writeChars method, it writes two bytes per character. When you use the writeUTF method, it starts
by writing a two-byte number that indicates the length of the string. Then, it writes the UTF (Universal
Text Format) representation of the string. Although this usually writes each ASCII character as one byte,
it may write some Unicode characters as two or three bytes. In general, you can use the writeUTF
method whenever it’s okay to write strings with lengths that vary. But when you need to write strings that
have equal lengths, you need to use the writeChars method. Later in this chapter, you’ll learn why.

All of these methods throw an IOException that’s checked by the compiler. As a result, you must either
throw or catch this exception. Otherwise, you won’t be able to compile your code.

Figure 18-3: How to work with the DataOutput interface
Methods of the DataOutput interface

Description

 Since the DataOutputStream class implements the DataOutput interface, you can call
the methods shown above from a DataOutputStream object.

 The writeUTF method uses the Universal Text Format (UTF). First, this method writes
a two-byte number for the number of bytes in the string. Then, it writes the
characters using the Universal Text Format. For most strings, UTF uses one byte
per character.

How to write a binary file
Figure 18-4 shows how to write data to a binary file. To start, it shows a class that uses the
DataOutputStream class to write data to a binary file. Then, it shows three methods of the
DataOutputStream class that go beyond the methods of the DataOutput interface.

The class in this figure contains a main method that throws an IOException. Within the main method,
the first statement creates a File object that refers to a file named example.dat in the current directory.
Then, the second statement creates a binary output stream by layering the DataOutputStream class,
the BufferedOutputStream class, and the FileOutputStream class. After that, the next six statements
write a variety of data types to a binary file: an int value, a char value, a boolean value, and several
types of strings. The last statement closes the output stream, which flushes all data to the file and
releases the resources that were used by the stream object.

The screen in this figure shows what a binary file looks like when it’s opened in a text editor. Although it
isn’t as readable as a text file, it shows the number of bytes that were used for each data type. To start,
the file uses four bytes for the int value, two bytes for the char value, and one byte for the boolean
value. Then, the file uses six bytes to write the string that was written with the writeUTF method: two
bytes for the length of the string, and one byte for each character in the string. Next, the file uses two

Murach’s Beginning Java 2

 page 409

bytes to store the new line character. And finally, the file uses two bytes per character to store the string
that was written with the writeChars method.

Since the DataOutputStream class implements the DataOutput interface, you can use the methods
summarized in the previous figure. In addition, you can use the three DataOutputStream methods
shown in this figure. You can use these methods to retrieve the number of bytes currently written to the
binary output stream, to flush the output stream, and to close the output stream.

Figure 18-4: How to write to a binary file
A class that writes data to a binary file

import java.io.*;

public class BinaryWriterApp{

 public static void main(String[] args) throws IOException{

 File data = new File("example.dat");

 DataOutputStream out = new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream(data)));

 out.writeInt(5);

 out.writeChar(‘c’);

 out.writeBoolean(true);

 out.writeUTF("Java");

 out.writeChar(‘\n’);

 out.writeChars("End of file");

 out.close();

 }

}

The file opened in a text editor

Methods of the DataOutputStream class

Description

Murach’s Beginning Java 2

 page 410

 When you use the DataOutputStream class, you can use the methods above as well
as the methods of the DataOutput interface that this class implements.

Examples that write binary files
Figure 18-5 presents two more examples that show how to write data to a binary file. In addition, they
show what the file will look like when opened in a text editor.
The first example shows how you can write three records of data to a binary file. In this example, each
record contains two fields: one field for the student’s name and one for the student’s grade. To start, this
example writes an int value for the number of records in the file. Later in this chapter, an example will
use this number to read the records from the file. Then, a loop writes the three names and grades to a
binary file. Within this loop, the first statement uses the writeUTF method to write the names of the
students. Then, the second statement uses the writeInt method to write the grade for each student.

The second example shows how the writeUTF method differs from the writeChars method. To start, this
example uses the writeUTF method to write a string that contains 35 characters (34 regular characters
plus one end of line character). Then, it uses the size method to return the number of bytes that have
been written to the stream. After that, this example uses the writeChars method to write the same string.
Then, it uses the size method to return the number of bytes that this method writes. Last, this example
prints the number of bytes used by each method to the console. To write these 35 characters, the
writeUTF method used 37 bytes with two bytes for the length of the string and one byte for each of the
35 characters. In contrast, the writeChars method used two bytes per character, or 70 bytes.

Figure 18-5: Examples that write binary files
An example that writes strings and int values to a binary file

String[] names = {"Vicky Lewis", "Karen Doe", "Greg Smith"};

int[] grades = {94, 91, 86};

File data = new File("grades.dat");

DataOutputStream out = new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream(data)));

int numberOfRecords = names.length;

out.writeInt(numberOfRecords);

for (int i = 0; i < numberOfRecords; i++){

 out.writeUTF(names[i]);

 out.writeInt(grades[i]);

}

out.close();

The file opened in a text editor

Murach’s Beginning Java 2

 page 411

An example that shows how to write strings two different ways

File data = new File("strings.dat");

DataOutputStream out = new DataOutputStream(

 new BufferedOutputStream(

 new FileOutputStream(data)));

out.writeUTF("How many bytes are in this string?\n");

int size1 = out.size();

out.writeChars("How many bytes are in this string?\n");

int size2 = out.size() - size1;

out.close();

System.out.println("The writeUTF method writes " + size1 + " bytes.");

System.out.println("The writeChars method writes " + size2 + " bytes.");

The file opened in a text editor

The output to the console

How to read binary files
This topic shows how to read the binary files that you learned how to write in the last topic. Since
reading binary files uses many of the same concepts as writing binary files, some of this material should
feel like review.

Classes that read binary input streams
Figure 18-6 shows six classes and one interface that you can use to read binary input streams. These
classes work much like the classes that are used to write binary output streams. In short, you can use
the DataInputStream and FileInputStream classes to read data from a binary file. Since the
DataInputStream class implements the DataInput interface, you can use all of the standard methods of
this interface to retrieve data from the input stream.

Murach’s Beginning Java 2

 page 412

In the Java API, all classes that read data from binary input streams descend from the abstract
InputStream class. Most of these classes end with InputStream and are stored in the java.io and
java.util.zip packages. Most of the classes that are used to add functionality to an input stream class
inherit the FilterInputStream class. For instance, the BufferedInputStream class adds functionality to a
stream by adding a buffer that allows the stream to be processed more efficiently.

Note, however, that the Java API also contains many other InputStream classes that inherit the
FilterInputStream class. To learn more about these classes, you can browse through the java.io and
java.util.zip packages in the documentation for the Java API.

Figure 18-6: Classes that read binary input streams
A subset of the InputStream hierarchy

Summary of these classes

Description

 The InputStream hierarchy includes more classes than the ones in this figure. To
learn more about them, you can check the documentation for the Java API. All
classes in the java.io and java.util.zip packages that end with InputStream are
members of the InputStream hierarchy.

 Classes that inherit the FilterInputStream class typically add functionality to an
existing input stream.

 The DataInputStream class implements the DataInput interface. As a result, you can
use the methods of that interface to retrieve data from the input stream.

How to connect a binary input stream to a file
Before you can read data from a binary file, you need to create a binary input stream, and you need to
connect that stream to a file. To do this, you must layer two or more streams from the InputStream
hierarchy as shown in figure 18-7.

Murach’s Beginning Java 2

 page 413

The first example shows how to connect your program to a file without using a buffer or File object.
However, to improve program efficiency, you should include a buffer as shown in the second example.
It’s also a good coding practice to include a File object.

By looking at the constructors of these classes, you can see how they can be layered on top of each
other. For instance, the DataInputStream constructor accepts an InputStream object. This means you
can use an object created from any class in the InputStream hierarchy as an argument, including the
BufferedInputStream or FileInputStream class. Similarly, the BufferedInputStream constructor accepts
any object of the InputStream hierarchy.

For example, you can supply a BufferedInputStream object as an argument of the DataInputStream
constructor. In contrast, when you create a FileInputStream object, you can supply either a File object or
a String object that refers to a file.

Figure 18-7: How to connect a binary input stream to a file
Classes used to connect a binary input stream to a file

How to connect without a buffer or a File object (not recommended)

DataInputStream out = new DataInputStream(

 new FileInputStream("books.dat"));

How to connect with a buffer and a File object (preferred method)

File data = new File("books.dat");

DataInputStream out = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream(data)));

Constructors of these classes

Description

 Although a buffer isn’t required, it makes input operations more efficient.

How to work with the DataInput interface
Figure 18-8 shows nine methods of the DataInput interface that you can use to read binary data. In
general, these methods work like the methods of the DataOutput interface. Because the
DataInputStream class implements the DataInput interface, you can call all of its methods from a
DataInputStream object.

You can use the first seven methods in this figure to read primitive data types from a binary output
stream. For example, you can use the readInt method to read an int value from a binary output stream.

Murach’s Beginning Java 2

 page 414

To read these data types, you sometimes need to know how many bytes each data type uses. That’s
why this figure includes the number of bytes that each of these methods uses.

You can use the readUTF method to read binary data that’s stored in the Universal Text Format that
was described earlier in this chapter. Usually, that means that you’ll use the readUTF method to read
the data that was written with the writeUTF method.

You can use the skipBytes method to skip a specified number of bytes in an input stream. If for some
reason it can’t skip that number of bytes, though, the method skips as many bytes as it can and returns
an int value for the actual number that it skipped. This can happen, for example, if the method reaches
the end of the file before it skips the specified number of bytes.

Although the read methods in this figure correspond with the write methods shown earlier, there is no
corresponding read method for the writeChars method. As a result, to read strings written by the
writeChars method, you need to create a loop that reads in each character using the readChar method.
The next figure shows an example of how to do this.

Like the write methods shown earlier, all of these read methods throw an IOException that’s checked by
the compiler. As a result, you must either throw or catch this exception. Otherwise, you won’t be able to
compile your code.

Figure 18-8: How to work with the DataInput interface
Common methods of the DataInput interface

Description

 Since the DataInputStream class implements the DataInput interface, you can call the
methods shown above from an object of this class.

 The readUTF method reads characters that were written with the Universal Text
Format.

How to read a binary file
Figure 18-9 shows how to read data from a binary file. To start, it shows a class that uses the
DataInputStream class to read data from a binary file. Then, it summarizes two methods of the
DataInputStream class that go beyond the methods of the DataOutput interface.

The class in this figure begins by importing the java.io package. Then, it declares a main method that
throws an IOException. Within the main method, the first statement creates a File object that refers to
the example.dat file that you learned how to write earlier in this chapter. Then, the example uses an if
statement to check if this file exists. If it does, the first statement within the if clause creates a binary
input stream by layering the DataInputStream class, the BufferedInputStream class, and the
FileInputStream class. After that, the statements read the data, print that data to the console, and close
the input stream.

These statements read an int value, a char value, a boolean value, and a string written in the Universal
Text Format. Then, a statement reads the end of line character, but this character isn’t stored in a
variable or printed to the console. Last, a loop reads the characters stored at the end of this file and

Murach’s Beginning Java 2

 page 415

prints them to the console. To do that, this loop uses the available method to determine the number of
bytes left in the file. Then, it divides this number by two since each char value uses two bytes. This
prevents the loop from reading beyond the end of the file and throwing an EOFException.

Since the DataInputStream class implements the DataInput interface, you can use any methods in that
interface on DataInputStream objects. In addition to those methods, you can use the available method
to return the number of bytes left in the file and the close method to close the input stream and release
any resources used by it.

Figure 18-9: How to read a binary file
A class that reads data from a binary file

import java.io.*;

public class BinaryReaderApp{

 public static void main(String[] args) throws IOException{

 File data = new File("example.dat");

 if (data.exists()){

 DataInputStream in = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream(data)));

 int number = in.readInt();

 System.out.println(number);

 char letter = in.readChar();

 System.out.println(letter);

 boolean value = in.readBoolean();

 System.out.println(value);

 String string = in.readUTF();

 System.out.println(string);

 in.readChar();

 int numberOfChars = in.available()/2;

Murach’s Beginning Java 2

 page 416

 String characters = "";

 for (int i = 0; i < numberOfChars; i++){

 char c = in.readChar();

 characters += c;

 }

 System.out.println(characters);

 in.close();

 }

 }

}

The output to the console

Common methods of the DataInputStream class

Description

 When you read data, you don’t have to assign it to a variable. After the data is read,
the cursor moves to the next byte in the file.

Examples that read binary files
Figure 18-10 presents two examples that show how to read data from a binary file. Both of these
examples read from files that you learned how to write in figure 18-5. The first example shows how to
read records, while the second example shows how to read strings that were written using the writeUTF
and writeChars methods.

The first example reads a file that contains one record for each student. Each record contains one field
for the student’s name and another field for the student’s grade. Since this file begins with an int value
that indicates the number of records in the file, this example uses the readInt method to read that value.
Then, this code uses that value to loop through each record in the file. This prevents the code from
trying to read beyond the end of the file and throwing an EOFException. Within the loop, the first
statement uses the readUTF method to return the name of the student as a string, and the second
statement uses the readInt method to return the student’s grade as an int value. The last statement in
the loop prints this data to the console, separating the name and the grade with a tab character.

The second example reads two identical strings that were written by the writeUTF and writeChars
methods. First, the readUTF method reads the string that was written by the writeUTF method. Then,
this example uses the readChar method within a loop to read the string that was written by the
writeChars method. But first, this code uses the available method to make sure that the readChar
method in the loop doesn’t attempt to read past the end of the file and throw an EOFException. Within

Murach’s Beginning Java 2

 page 417

the loop, the first statement returns the char value, and the second statement adds that value to the end
of the string.

Although the binary file stores these two strings differently, the output for these methods shows that the
same strings are returned to the program. For many applications, you can use the writeUTF and
readUTF methods to write and read string data. But if you need to make sure that each string has the
same length, you have to use the writeChars method and the readChar method. Later in this chapter,
you’ll see why.

Figure 18-10: Examples that read binary files
An example that reads strings and int values from a binary file

File data = new File("grades.dat");

DataInputStream in = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream(data)));

int numberOfRecords = in.readInt();

for (int i = 0; i < numberOfRecords; i++){

 String name = in.readUTF();

 int grade = in.readInt();

 System.out.println(name + "\t" + grade);

}

in.close();

The output to the console

An example that reads strings two different ways from a binary file

File data = new File("strings.dat");

DataInputStream in = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream(data)));

String string1 = in.readUTF();

System.out.print(string1);

Murach’s Beginning Java 2

 page 418

String string2 = "";

int bytes = in.available();

int characters = bytes/2;

for (int i = 0; i < characters; i++){

 char c = in.readChar();

 string2 += c;

}

System.out.print(string2);

in.close();

The output to the console

How to combine two files into a single input stream
Figure 18-11 shows how to use the SequenceInputStream class to combine the data from two files into
a single input stream. Although you probably won’t need to do that much, it shows how classes can add
functionality to an input stream.

The diagram in this figure shows that the SequenceInputStream class doesn’t create a new file. Instead,
it lets you create one input stream from two files. Once you create the input stream, you can use the
DataInputStream class to read the data as shown earlier in this topic.

Figure 18-11: How to combine two files into a single input stream
An example that combines two files into a single input stream

Murach’s Beginning Java 2

 page 419

Classes used to concatenate streams

How to concatenate files

File data1 = new File("grades1.dat");

File data2 = new File("grades2.dat");

DataInputStream in = new DataInputStream(

 new SequenceInputStream(

 new FileInputStream(data1),

 new FileInputStream(data2)));

Constructor of the SequenceInputStream class
SequenceInputStream(InputStream, InputStream);
Description

 The SequenceInputStream class combines two files into a single input stream without
creating a new file.

 To combine more than two files into a single input stream, you can use a combined
input stream as one of the arguments of the SequenceInputStream constructor.

How to work with random-access files
So far, you’ve learned how to use streams to read and write files sequentially. That means that you read
or write one record after another, from the first record in a file to the last. As a result, you have to read
the first 49 records in a file before you can read the 50th record in a file. Files like that are known as
sequential-access files (or just sequential files).

Murach’s Beginning Java 2

 page 420

But now, you’ll learn how to work with a special type of binary file known as a random-access file. This
type of file lets you move a pointer (or cursor) to any location in the file. Then, you can read from or
write to the file starting at that point, which means you can read the 50th record in a file without reading
the first 49 records in the file. This type of access is far more efficient than sequential access for many
types of business applications.

Constructors and methods of the RandomAccessFile class
Figure 18-12 shows the constructors and methods of the RandomAccessFile class. To start, it shows
that this class implements both the DataOutput and DataInput interfaces. As a result, you can call the
methods of those classes (see figures 18-3 and 18-8) when you work with random-access files.

When you use a constructor of the RandomAccessFile class, the first argument specifies the file that
you want to use. As with sequential files, you can supply a File object or a String object for this
argument. However, the second argument accepts a string that specifies the mode for the file. Here,
you can specify “r” to open the file in read-only mode or “rw” to open the file in read-write mode.

Of the four methods summarized in this figure, it is the seek method that makes random access
possible. This method lets you move the pointer to any location in the file without reading the records
before that point. To use this method, you supply a long value that specifies the number of bytes from
the beginning of the file that you want to move the pointer to. This lets you move the pointer forward or
backward through the file. If you try to move the pointer beyond the end of the file, the pointer will be
moved just beyond the last byte in the file so you can write a record at the end of the file.

The other three methods let you work with the length of a file and close a file. For instance, you can use
the length method to return a long value that indicates the length of a file in bytes. You can also use the
setLength method to change the length of a random-access file. If you use this method to make a
random-access file shorter, it will truncate the file, thus deleting any data stored after the new length.
When you’re done working with a RandomAccessFile object, you can use the last method to close it
and free the resources that are used by this object.

Note that you can’t use buffered streams with random-access files. Because you normally read or write
just one random-access record at a time and because you usually don’t do those operations in
sequence, this lack of buffering has only a minimal effect on efficiency.

Figure 18-12: Constructors and methods of the RandomAccessFile class
The RandomAccessFile class

Constructors of the RandomAccessFile class

Methods of the RandomAccessFile class used for input and output

Murach’s Beginning Java 2

 page 421

Description

 You can use the classes in the OutputStream and InputStream hierarchies to read
and write sequential-access files. When you work with these files, you read from the
start of the file to the end of the file, and you can add data only at the end of the file.

 You can use the RandomAccessFile class to read and write random-access files.
When you work with a random-access file, you can move a pointer to any point in
the file. Then, you can read and write data starting at that point. This lets you modify
part of a file without affecting the rest of the file.

 Since the RandomAccessFile class implements the DataOutput and DataInput
interfaces, you can call the methods of those interfaces when working with a
random-access file.

 In the constructor for the RandomAccessFile class, the second argument uses a
string to specify a mode. For this argument, you can specify “r” for read-only mode
or “rw” for read-write mode. When you specify read-write mode, you can read from
and write to the same file.

 When you use a random-access file, you can’t use buffered streams. That has only a
minor effect on efficiency, though, because you normally read or write just one
record at a time when you work with a random-access file.

How to read and write random-access files
When you write data to a random-access file, each field should have the same length in bytes so each
record will have the same length. That way, you can easily calculate the number of bytes that marks the
beginning of the field or record that you want to access. Then, you can use the seek method to move
the pointer to that field or record. To illustrate, figure 18-13 presents one class that writes data to a
random-access file and one that reads data from a random-access file.

The first example shows a class that uses the RandomAccessFile class to write four records that
contain two fields of equal length to a binary file. Within the main method, the third statement opens a
random-access file in read-write mode. Then, a loop writes each record to the file using methods
provided in the DataOutput interface. Within this loop, the first statement uses the writeChars method to
write a string using two bytes per character.

The second example shows a class that reads the third record in the random-access file that was
written by the first example. Within the main method for this class, the first statement opens a random-
access file in read-only mode. Then, the second statement specifies the record to be read, which is the
third record. After that, the third statement calculates the length of each record. To do that, it determines
the number of bytes in the first field and adds the number of bytes used by the second field. In this case,
the first field contains 8 bytes (four characters of 2 bytes each) and the second field contains 8 bytes
(the number of bytes for a double value). Once the length of the record has been calculated, the fourth
statement uses the seek method to move the pointer to the beginning of the third record. The rest of the
statements read the data of the third record and print it to the console.

Figure 18-13: How to read and write random-access files
A class that writes to a random-access file

import java.io.*;

public class RandomAccessWriterApp{

Murach’s Beginning Java 2

 page 422

 public static void main(String[] args) throws IOException{

 String[] codes = {"WARP", "MBDK", "CITR", "WUTH"};

 double[] prices = {14.95, 12.95, 9.95, 12.95};

 RandomAccessFile out = new RandomAccessFile("books.dat", "rw");

 for (int i = 0; i < codes.length; i++){

 out.writeChars(codes[i]);

 out.writeDouble(prices[i]);

 }

 out.close();

 }

}

A class that reads a random-access file

import java.io.*;

public class RandomAccessReaderApp{

 public static void main(String[] args) throws IOException{

 RandomAccessFile in = new RandomAccessFile("books.dat", "r");

 int recordNumber = 3;

 int recordLength = 4*2 + 8;

 in.seek((recordNumber-1) * (recordLength));

 String code = "";

 for (int i = 0; i < 4; i++){

 char c = in.readChar();

 code += c;

 }

 double price = in.readDouble();

 in.close();

 System.out.println(code);

 System.out.println(price);

Murach’s Beginning Java 2

 page 423

 }

}

The output to the console

Description

 When writing random-access files, it’s a common coding practice to write each record
with the same number of bytes. This makes it possible to move the file pointer to the
start of each record in the file.

 To read or write a record or field, you use the seek method to move the file pointer to
the start of the record or field.

How to read and write fixed-length strings
When you write strings to a random-access file, you need to write each string with a fixed number of
characters. In other words, you need to write fixed-length strings. If, for example, you want to create a
field that stores last names, you might decide to use 20 characters for that field. Then, when you write a
last name that has only 6 characters, you can add 14 Unicode zeros to the end of that last name. As a
result, the field will contain 20 characters. When you read this field, you read the 6 characters and stop
reading when you encounter the Unicode zeros.
To illustrate, figure 18-14 shows how to code a class named StringHelper that contains two static
methods that you can use for writing and reading fixed-length strings. Then, the next figure shows some
examples that use these methods.

Within the StringHelper class, the writeString method contains code that writes a fixed-length string.
This method accepts three arguments and throws an IOException. The first argument is a DataOutput
object, which is usually a RandomAccessFile object. The second argument is a String object that
contains the string to be written. The third argument is an int value that specifies the length of the fixed-
length string. Within the method, a loop writes each character of the string to the file. If the string is
longer than the specified length, the method stops writing characters at that length. If the string is
shorter than the specified length, the method writes Unicode zeros until it reaches the specified length.

Conversely, the readString method reads the fixed-length strings that were written by the writeString
method, discarding any Unicode zeros. This method accepts two arguments and throws an
IOException. The first argument is a DataInput object, which can be either a RandomAccessFile object
or a DataInputStream object. The second argument is an int value that specifies the length of the fixed-
length string. Within the method, the code reads each character in the string and builds a string that
consists of all the characters up to the first Unicode zero. Then, it returns that string.

Figure 18-14: How to read and write fixed-length strings
A class that writes and reads fixed-length strings

import java.io.*;

public class StringHelper{

 public static void writeString(DataOutput out, String s,

 int length) throws IOException{

 for (int i = 0; i < length; i++){

 if (i < s.length())

 out.writeChar(s.charAt(i));

Murach’s Beginning Java 2

 page 424

 else

 out.writeChar(0);

 }

 }

 public static String readString(DataInput in, int length)

 throws IOException{

 String s = "";

 int i = 0;

 while (i < length){

 char c = in.readChar();

 if (c != 0)

 s += c;

 i++;

 }

 return s;

 }

}

Description
 When you write strings to a random-access file, you need to write fixed-length strings.

That way, the length of the strings won’t vary from one record to another, and all of
the record lengths in the file will be the same.

 The two static methods in the StringHelper class shown above can be used to write
and read fixed-length strings.

 The writeString method writes the characters of an input string to an output file
followed by Unicode zeros for any unused positions in the fixed-length output string.
The readString method reads a string written by the writeString method and builds a
string that consists of all the characters up to the first Unicode zero.

Examples that work with a random-access file
Figure 18-15 shows how to work with a random-access file. To start, it shows three statements that are
used throughout the examples. Here, the first statement opens a random-access file in read-write mode.
Then, the second statement defines a constant that specifies that the name field will contain 15
characters (30 bytes), and the third statement defines a constant for the length of the record. Since the
grade field is an int type, it will use four bytes per field. As a result, each record will use 34 bytes.

The first example shows how to use the writeString method of the StringHelper class that’s in the
previous figure to write fixed-length strings to a random-access file. This example writes three records
that contain two fields each to a file. Here, the first field contains a string for the student’s name and the
second field contains an int value for the student’s grade. When this example calls the writeString
method from the StringHelper class, it passes the random-access file as the first argument, the string as
the second argument, and a constant that specifies the length of the name field as the third argument.

Murach’s Beginning Java 2

 page 425

The second example shows how to use the readString method of the StringHelper class to read a fixed-
length string into your program. In this example, the second statement uses the seek method to move
the pointer to the beginning of the third record. Then, the third statement reads the fixed-length string.
To do that, it calls the readString method of the StringHelper class and passes the random-access file
as the first argument and a constant that specifies the length of the string as the second argument. Last,
this example reads the int value for the grade and prints all of the data for the record to the console.

The third example shows how to add a record at the end of a file. Here, the first statement uses the
seek method to move the pointer to the end of the file. To do that, it uses the length method to return
the number of bytes in the file. Then, the next two statements write the student’s name and grade.

The fourth example shows how to get the number of records in a file. To do that, you can divide the
length of the file by the length of each record. For example, a file that is 100 bytes in length with 10
bytes per record contains 10 records.

The fifth example shows how to delete a record by using the setLength method to set the file length so it
cuts off (truncates) the last record. To do that, you can subtract the length of one record from the current
length of the file. Although this type of code only works when you want to delete the last record in a file,
you’ll learn how to delete any record in a file later in this chapter.

The sixth example shows how to update a record. Here, the first statement specifies that the third
record should be updated. Then, the second statement uses the seek method to move the pointer to the
beginning of the third record. To do that, you can subtract 1 from the record number and multiply the
result by the number of bytes per record. Once the pointer is positioned, you can use the writeString
method of the StringHelper class to overwrite the old name with the new name.

Figure 18-15: Examples that work with a random-access file
Code that’s used by these examples

RandomAccessFile randomFile = new RandomAccessFile("grades.dat", "rw");

final int NAME_LENGTH = 15;

final int RECORD_LENGTH = NAME_LENGTH * 2 + 4;

Example 1: Writing fixed-length strings

String[] names = {"Vicky Lewis", "Karen Doe", "Greg Smith"};

int[] grades = {94, 91, 86};

for (int i = 0; i < names.length; i++){

 StringHelper.writeString(randomFile, names[i], NAME_LENGTH);

 randomFile.writeInt(grades[i]);

}

Example 2: Reading fixed-length strings

int recordNumber = 3;

randomFile.seek((recordNumber - 1) * RECORD_LENGTH);

String name = StringHelper.readString(randomFile, NAME_LENGTH);

int grade = randomFile.readInt();

System.out.println("Record " + recordNumber + "\n" +

 " Name: " + name + "\n" +

Murach’s Beginning Java 2

 page 426

 " Grade: " + grade);

The output to the console

Example 3: Adding a record to the end of a file

randomFile.seek(randomFile.length());

StringHelper.writeString(randomFile, "Bob Chambers", NAME_LENGTH);

randomFile.writeInt(85);

Example 4: Getting the number of records in a file

int numberOfRecords = (int) randomFile.length() / RECORD_LENGTH;

Example 5: Deleting the last record in a file

randomFile.setLength(randomFile.length() - RECORD_LENGTH);

Example 6: Updating the first field in the third record

int recordNumber = 3;

randomFile.seek((recordNumber - 1) * RECORD_LENGTH);

StringHelper.writeString(randomFile, "Karen Tanner", NAME_LENGTH);

The I/O code for the Book Maintenance application
In chapter 12, you learned how to code the user interface for the Book Maintenance application. Now,
you’ll learn how to code the I/O operations for this application so it saves each book as a record in a
random-access file. To do that, you’ll learn how to code a class named BookIO that handles all I/O
operations. Then, you’ll learn how to code the Book class so you can create a Book object from the
book data that’s stored in a random-access file.

The user interface for this application
To refresh your memory about how this application works, figure 18-16 shows the user interface for the
Book Maintenance application. To move from one record to another in the file, you click on the First,
Prev, Next, and Last buttons. To change the data in the database, you click on the Add, Update (when
it’s enabled), and Delete buttons.

BookIO calls in the BookFrame and BookPanel classes
Figure 18-16 also shows the code in the BookFrame and BookPanel classes that calls the methods of
the BookIO class. To review all the code for these classes, you can refer back to figure 12-20, but this
gives you the highlights.

If you look first at the constructor for the BookPanel class, you can see that it uses the open method of
the BookIO class to open the random-access file. Then, it uses the moveFirst method to return the
current Book object, which is stored as an instance variable of the BookPanel object. If the file can’t be
found, a FileNotFoundException will be caught, a message will be displayed, and the application will
end. If the file can’t be opened or read properly, an IOException will be caught and a message will be
displayed.

After the file is opened, the BookPanel class can use the other BookIO methods. These are called from
the actionPerformed method in the BookPanel class. For instance, when the user clicks on the Exit

Murach’s Beginning Java 2

 page 427

button, the close method is called. And when the user clicks on the firstButton, the moveFirst method is
called. Although the code for the other buttons isn’t shown, this continues for all of the buttons. Since
any of these methods can throw an IOException, the actionPerformed method is contained in a try/catch
statement, and the third catch block catches this exception.

To end the program, the user can click on the Exit button, which leads to a call of the close method. But
the user can also end the program by closing the window. That’s why the windowClosing method in the
BookFrame class must also call the close method. In the windowClosing method, though, the
IOException isn’t caught so it must be caught (not thrown) by the close method in the BookIO class.

Figure 18-16: BookIO calls in the BookFrame and BookPanel classes
The GUI for the Book Maintenance application

The code for the windowClosing method in the BookFrame class

public void windowClosing(WindowEvent e){

 BookIO.close();

 System.exit(0);

}

The code in the constructor for the BookPanel class

try{

 BookIO.open();

 currentBook = BookIO.moveFirst();

 }

 catch (FileNotFoundException e){

 JOptionPane.showMessageDialog(null, "FileNotFoundException");

 System.exit(1);

 }

 catch (IOException e){

 JOptionPane.showMessageDialog(null, "IOException");

 }

The code for the actionPerformed method of the BookPanel class

Murach’s Beginning Java 2

 page 428

public void actionPerformed(ActionEvent e){

 try{

 Object source = e.getSource();

 if (source == exitButton){

 BookIO.close();

 System.exit(0);

 }

 else if (source == firstButton){

 currentBook = BookIO.moveFirst();

 performBookDisplay();

 enableButtons(true);

 }

 //the code for the other buttons
 }
 catch (FileNotFoundException fnfe){
 JOptionPane.showMessageDialog(this, "FileNotFoundException");
 }
 catch (NumberFormatException nfe){
 JOptionPane.showMessageDialog(this, "NumberFormatException");
 }
 catch (IOException ioe){
 JOptionPane.showMessageDialog(this, "IOException");
 }
}

The code for the BookIO class
Figure 18-17 presents the complete code for the BookIO class. This class contains 18 static methods.
As you develop a class like this, you try to provide all the methods that other classes that use this file
will need. That means you need to code the methods that are needed by business classes like Book
and BookOrder, and also the methods that are needed by GUI classes like BookFrame, BookPanel,
BookOrderFrame, and BookOrderPanel.

To start, this class imports two packages. The java.io package lets this class work with the I/O classes,
and the java.util package lets this class use the Vector class. Then, this class declares three static
variables and four static constants. This class uses the first static variable to refer to the current book,
the second one to store an array of the book codes read in from the file, and the third one to refer to a
random access file. Next, this class uses the constants to set the file name, the size of the fields in
characters, and the size of the record in bytes.

The first static method is the open method. It opens the random-access file that’s going to be used.
Then, it calls the readCodes method on the next page of code to read all of the book codes into this
array. Since this method throws exceptions, they have to be handled by the classes that call it.

The next static method is the close method. It just closes the random-access file when the user closes
the window or clicks on the Exit button. Unlike the other methods in this class, though, this method
catches the IOException instead of throwing it. That’s why the windowClosing method of the
BookFrame class doesn’t have to catch an exception when it calls this method.

The getRecordCount method returns the number of records in the current file. To do that, this method
divides the number of bytes in the file by the number of bytes in each record. This method is used by
some of the other methods in this class.

Murach’s Beginning Java 2

 page 429

The next method is the readString method, which helps the other methods in this class read fixed-length
strings. The code for this method works the same as the code for the readString method that’s in figure
18-14.

The overloaded readRecord method provides two ways to read a record. First, you can supply an int
that specifies the record’s number. Second, you can supply a string that specifies the record’s book
code. Either way, the readRecord method returns a Book object that’s created from the data in the file.

The first readRecord method uses the seek method to position the pointer at the beginning of the
specified record. Once this method positions the pointer, it reads each field in the record, using the
readString method to read the strings. After that, this method creates a Book object from these fields
and returns it.

The second readRecord method begins by passing the book code parameter to the getRecordNumber
method that’s shown on the next page. This method returns an int value for the record number that
corresponds to the book code. Then, the second statement in this readRecord method passes that int
value to the first readRecord method.

Figure 18-17: The code for the BookIO class (part 1 of 3)
The BookIO class

import java.io.*;

import java.util.*;

public class BookIO{

 private static Book book = null;

 private static String[] codes = null;

 private static RandomAccessFile randomFile = null;

 private static final File BOOK_FILE = new File("books.dat");

 private static final int CODE_SIZE = 4;

 private static final int TITLE_SIZE = 20;

 private static final int RECORD_SIZE = CODE_SIZE*2 + TITLE_SIZE*2 + 8;

 public static void open() throws IOException{

 randomFile = new RandomAccessFile(BOOK_FILE, "rw");

 codes = readCodes();

 }

 public static void close(){

 try{

 randomFile.close();

 }

Murach’s Beginning Java 2

 page 430

 catch(IOException e){

 System.out.println("IOException thrown when closing file.");

 }

 }

 public static int getRecordCount() throws IOException{

 long length = BOOK_FILE.length();

 int recordCount = (int) (length / RECORD_SIZE);

 return recordCount;

 }

 public static String readString(DataInput in, int length)

 throws IOException{

 String s = "";

 int i = 0;

 while (i < length){

 char c = in.readChar();

 if (c!=0)

 s += c;

 i++;

 }

 return s;

 }

 public static Book readRecord(int recordNumber) throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 String code = readString(randomFile, CODE_SIZE);

 String title = readString(randomFile, TITLE_SIZE);

 double price = randomFile.readDouble();

 book = new Book(code, title, price);

 return book;

 }

 public static Book readRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

Murach’s Beginning Java 2

 page 431

 book = readRecord(recordNumber);

 return book;

 }

The getRecordNumber method accepts a string that contains a book code and returns the record
number for that book code. To do that, it compares each element in the codes array with the specified
book code. When it finds a match, it returns the current position in the array plus one. If this method
can’t find the book code in the file, it returns a -1.

The readCodes method returns an array that contains every book code that’s stored in the file. To start,
this method declares an array of strings that has a length equal to the number of records in the file.
Then, it uses a loop to read each code field from the file into the array. To do that, this method uses the
getRecordCount method to return the number of records in the file as an int value, and it uses the
readString method to read the string for the code field.

The readTitles method creates a string array of all of the book titles in the file. Here again, the
getRecordCount method is used to specify the number of elements in the array. Although this method
isn’t used by the Book Maintenance application, it may be used by other applications, including the
Book Order application in this book.
The writeString method helps other methods write fixed-length strings. The code for this method works
the same as the code for the writeString method in figure 18-14.

The writeRecord method accepts a Book object argument and a record number argument. Then, it uses
the record number argument to move the pointer to the beginning of that record, and it writes the data
from the Book object to the file. To do that, this method uses the writeString method to write the strings
for the book’s code and title.

Figure 18-17: The code for the BookIO class (part 2 of 3)
The BookIO class (continued)

 public static int getRecordNumber(String bookCode) throws IOException{

 int match = -1;

 int i = 0;

 boolean flag = true;

 while ((i < getRecordCount()) && (flag==true)){

 if (bookCode.equals(codes[i])){

 match = i+1;

 flag = false;

 }

 i++;

 }

 return match;

 }

 public static String[] readCodes() throws IOException{

Murach’s Beginning Java 2

 page 432

 codes = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE);

 codes[i] = readString(randomFile, CODE_SIZE);

 }

 return codes;

 }

 public static String[] readTitles() throws IOException{

 String[] titles = new String[getRecordCount()];

 for (int i = 0; i < getRecordCount(); i++){

 randomFile.seek(i * RECORD_SIZE + 8);

 titles[i] = readString(randomFile, TITLE_SIZE);

 }

 return titles;

 }

 public static void writeString(DataOutput out, String s, int length)

 throws IOException{

 for (int i = 0; i < length; i++){

 if (i < s.length())

 out.writeChar(s.charAt(i));

 else

 out.writeChar(0);

 }

 }

 public static void writeRecord(Book book, int recordNumber)

 throws IOException{

 randomFile.seek((recordNumber-1) * RECORD_SIZE);

 writeString(randomFile, book.getCode(), CODE_SIZE);

Murach’s Beginning Java 2

 page 433

 writeString(randomFile, book.getTitle(), TITLE_SIZE);

 randomFile.writeDouble(book.getPrice());

 }

You can use the next four methods in this class to scroll through the books in a file. For example, you
can use the moveFirst method to return a Book object for the first record in the file, and you can use the
moveNext method to return a Book object for the next record in the file. These four methods use the
Book variable of the BookIO class to keep track of the current record, and they use the readRecord
method that’s in this class to create Book objects from the data that’s stored in the file.

The movePrevious method moves back one record in the file. If, for example, the current record is the
third record, this method sets the Book variable to the second record. However, if the current record is
the first record in the file, this method doesn’t change the Book variable.

The moveNext method moves forward one record in the file. If, for example, the current record is the
third record, this method sets the Book variable to the fourth record. However, if the current record is the
last record in the file, this method doesn’t change the Book variable. To determine whether the current
record is the last record, this method compares the number of the current record with the total number
of records in the file.

The moveLast method moves the current record to the last record in the file. To do that, it determines
the current number of records in the file and sets the Book variable to the last record.

You can use the last three methods in this class to add, update, and delete the records in a file. These
methods are high-level methods that build upon the other methods in this class. As a result, these
methods don’t perform the actual I/O operations. Instead, they call other methods like the readRecord
and writeRecord methods to perform the I/O operations.

The addRecord method adds a record to the end of a file. To do that, it accepts a Book object as an
argument. Then, it writes the data for that Book object to the end of the file.

The updateRecord method updates, or modifies, the current record. To do that, it accepts a Book object
as an argument. Then, the first statement determines the record number of the current Book object, and
the second statement writes the data for specified Book object over the data for the current record.

The deleteRecord method deletes the current record from the file. To do that, a loop creates a Book
object for every record in the file and stores those Book objects in a vector. Then, the remove method of
the Vector object removes the book that’s specified by the book code parameter from the vector, and
the setLength method of the RandomAccessFile object truncates the file so it contains one less record.
Once these statements remove the specified book from the vector and shorten the file, the second loop
in this method writes each Book object stored in the vector to the file. After that, an if statement sets the
current record equal to the next record in the file. However, if the deleted record was the last record in
the file, the else clause sets the current record equal to the new last record in the file.

Please note that this delete method reads every record in the file, removes one record, and writes all
the records back to the file, which is extremely inefficient (imagine a file with 5,000 records). This points
out one serious limitation of random-access files. Although you can delete a record at the end of a file,
there’s no good way to delete a record in the middle of a file.

Figure 18-17: The code for the BookIO class (part 3 of 3)
The BookIO class (continued)

 public static Book moveFirst() throws IOException{

 book = readRecord(1);

 return book;

 }

Murach’s Beginning Java 2

 page 434

 public static Book movePrevious() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != 1)

 book = readRecord(recordNumber - 1);

 return book;

 }

 public static Book moveNext() throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 if (recordNumber != getRecordCount())

 book = readRecord(recordNumber + 1);

 return book;

 }

 public static Book moveLast() throws IOException{

 int lastRecordNumber = getRecordCount();

 book = readRecord(lastRecordNumber);

 return book;

 }

 public static void addRecord(Book addBook) throws IOException{

 writeRecord(addBook, getRecordCount() + 1);

 close();

 open();

 }

 public static void updateRecord(Book book) throws IOException{

 int recordNumber = getRecordNumber(book.getCode());

 writeRecord(book, recordNumber);

 }

Murach’s Beginning Java 2

 page 435

 public static void deleteRecord(String bookCode) throws IOException{

 int recordNumber = getRecordNumber(bookCode);

 Vector books = new Vector();

 for (int i = 0; i< getRecordCount(); i++){

 books.add(readRecord(i+1));

 }

 books.remove(recordNumber-1);

 randomFile.setLength(RECORD_SIZE *(getRecordCount() -1));

 for (int i = 0; i<books.size(); i++){

 writeRecord((Book)books.elementAt(i),i+1);

 }

 if (recordNumber < getRecordCount())

 book = readRecord(recordNumber);

 else

 book = readRecord(getRecordCount()-1);

 close();

 open();

 }

}

One traditional solution has been to mark the deleted records, instead of actually deleting them. For
instance, this method could just change the book code for a deleted record to ZZZZ. Since that requires
just one disk operation, that would be a major improvement in efficiency. But that would also require
changes to several of the other methods and complicate the code overall.

The code for the Book class
Figure 18-18 presents the code for the Book class. Here, the first constructor has three parameters:
book code, title, and price. It is used by the readRecord method of the BookIO class to create a Book
object from the data retrieved from the file.

The second constructor has just one parameter, the book code. It can be used to create a Book object
when only the book code is available to the calling class. To do that, this constructor creates a
temporary Book object with the data from the book file. Then, it sets the title and price for the Book
object that the constructor is creating equal to the temporary object’s title and price. This constructor is
written this way so it gets the data with just one read of the record.

Figure 18-18: The code for the Book class
The Book class

import java.io.*;

public class Book{

Murach’s Beginning Java 2

 page 436

 private String code;

 private String title;

 private double price;

 public Book(String bookCode, String bookTitle, double bookPrice){

 code = bookCode;

 title = bookTitle;

 price = bookPrice;

 }

 public Book(String bookCode) throws IOException{

 code = bookCode;

 Book tempBook = BookIO.readRecord(bookCode);

 title = tempBook.getTitle();

 price = tempBook.getPrice();

 }

 public String getCode(){ return code; }

 public String getTitle(){ return title; }

 public double getPrice(){ return price; }

}

Perspective
In this chapter, you learned how to read and write binary files, including random-access versions of
those files. If you’ve already read the chapters in section 3, this means that now at last you can see how
all of the classes and methods in a business application work together. That includes GUI classes like
Frame and Panel classes, business classes like Book and BookOrder classes, and data classes like the
BookIO class.

To make sure you understand these relationships, it’s worth taking the time to study all of the classes
for a complete application like the Book Maintenance application. In particular, you should study how
the GUI classes make use of the business classes and the BookIO class.
Keep in mind as you work with files, though, that they represent just one way to store the data for
business objects. The other way is to store the data in a database. Since a database provides
sophisticated features for organizing and managing data, this makes adding and deleting records much
easier to do. That’s one reason why databases are commonly used for business applications. In the
next chapter, you can learn how to use them.

Murach’s Beginning Java 2

 page 437

Summary
 You can use the classes that end with OutputStream to create a binary output stream

that can write data to a binary file, and you can use the methods of the DataOutput
interface to write data to the binary output stream.

 You can use the classes that end with InputStream to create a binary input stream that
can read data from a binary file, and you can use the methods of the DataInput interface
to read data from a binary input stream.

 You can use the RandomAccessFile class to create a random-access file, which is a
special type of binary file that lets you move a pointer to any location in the file. Then,
you can use the methods of this class to read and write data starting at that point.

 To work with random-access files, you use the writeChars and readChar methods to
write and read fixed-length strings. That way, the files have the same number of bytes
for each field within each record.

 Whenever you work with files, efficiency is an important consideration. In general, you
goal should be to reduce the number of disk operations that an application requires
because those operations are the most time-consuming.

Terms
Universal Text Format (UTF) sequential-access file pointer

record sequential file cursor

field random-access file fixed-length string

Objectives
 Write code that writes data from a program to a binary file.
 Write code that reads data from a binary file into a program.
 Write code that reads and writes random-access files.
 Explain the differences in the use of random-access and sequential-access files.

Exercise 18-1: Write and read binary files

This exercise guides you through the process of writing and reading a binary file, and it shows how to
open these files in a text editor.

1. Open the BinaryWriterApp class that’s in the c:\java\ch18 directory. Next, add the
code for the BinaryWriterApp class that’s in figure 18-4. Then, compile and run this
application. To make sure it works, open the example.dat file with a text editor. You
should see two lines of text.

2. Open the BinaryReaderApp class that’s in the c:\java\ch18 directory. Then, edit the
class so it reads both lines of text in the example.dat file as shown in figure 18-9.
When you compile and run this application, it should print five lines to the console.

Exercise 18-2: Write and read binary files and random-access files

This exercise guides you through the process of writing and reading a binary file, and it shows how to
convert this file to a random-access file.

1. Open the GradesWriterApp class that’s in the c:\java\ch18 directory. Then, edit the
code so it writes the grades to a binary file named grades.dat as in figure18-5.
Make sure to use the writeUTF method to write each student’s name. After you
compile and run this class, open the grades.dat file with a text editor to see that the
writeUTF method has used one byte per character.

2. Open the GradesReaderApp class that’s in the c:\java\ch18 directory. Then, edit the
code so it reads the grades from the file as in figure 18-10. When you compile and
run this application, it should print the names and grades of three students to the
console.

3. Open the StringHelper class that’s in the c:\java\ch18 directory. Then, compile this
class.

4. Modify the GradesWriterApp class so it uses the StringHelper class to write each
name with a fixed length of 15 characters as in figure 18-15. After you compile and
run this class, open the grades.dat file with a text editor to see that the writeString
method has used two bytes per character.

5. Modify the GradesReaderApp class so it uses the RandomAccessFile class and the
StringHelper class to read the third record from the grades.dat file as in figure 18-
15. When you compile and run this class, it should print the name and grade for the
third student.

Murach’s Beginning Java 2

 page 438

6. Code an application named ModifyRecord3App that modifies the third record in the
file as in figure 18-15. When you compile and run this class, it should modify the
name and grade for the third student. You can check to see the new record by
running the GradesReaderApp, which should display the modified record.

Exercise 18-3: Fix some bugs in the BookIO class

This exercise gives you a version of the BookIO class that has some bugs in it. Then, it guides you
through the process of fixing the bugs in this class.

1. Open the BookFrame class that’s in c:\java\ch18\book. Then, compile and run it to
see if it’s working properly. If you click repeatedly on the Next and Prev buttons,
you’ll find that they aren’t working properly. For instance, if you click on the Prev
button when the first record is displayed or the Next button when the last record is
displayed, an IOException will be thrown. In addition, if you attempt to update an
existing record, the change isn’t permanently written to the file.

2. Open the BookIO class that’s in the c:\java\ch18\book directory. Fix the bug in the
moveNext and movePrevious methods. Then, run the BookFrame class again to
make sure that these buttons work properly.

3. In the BookIO class, fix the bug in the updateRecord method. Then, run the
BookFrame class and check to make sure that this code works properly.

4. When you have the program working correctly, delete the readString and writeString
methods from the BookIO class and modify the code in the BookIO class so it uses
the readString and writeString methods from the StringHelper class.

Chapter 19: How to use JDBC to work with databases
If you’ve read section 4, you know how to work with data that’s stored in files. Now, in this chapter, you’ll
learn how to use JDBC to work with data that’s stored in a database. As you will see, databases are
easier to work with than files. They also provide data management features that aren’t offered with files.
That’s why you should use databases for all serious business applications.

How a relational database is organized
In 1970, Dr. E. F. Codd developed a model for a new type of database called a relational database. This
type of database eliminated some of the problems that were associated with earlier types of databases
like hierarchical databases. By using the relational model, you can reduce data redundancy, which
saves disk storage and leads to more efficient data retrieval. You can also view and manipulate data in
a way that is both intuitive and efficient. Today, relational databases are the de facto standard for
database applications.

How a table is organized
A relational database stores data in tables. Each table contains rows and columns as shown in figure
19-1. In practice, rows and columns are often referred to by the traditional terms, records and fields.
That’s why this book uses these terms interchangeably.
In a relational database, a table has one column that’s defined as the primary key. The primary key
uniquely identifies each row in a table. That way, the rows in one table can easily be related to the rows
in another table. In this table, the BookCode column is the primary key.
The software that manages a relational database is called the database management system (DBMS)
or relational database management system (RDBMS). The DBMS provides features that let you design
the database. After that, the DBMS manages all changes, additions, and deletions to the database.
Four of the most popular database management systems today are Oracle, Microsoft SQL Server,
IBM’s DB2, and Microsoft Access.

Figure 19-1: How a table is organized
The Books table in the MurachBooks database

Murach’s Beginning Java 2

 page 439

Description

 A relational database uses tables to store and manipulate data. Each table contains
one or more records, or rows, that contain the data for a single entry. Each row
contains one or more fields, or columns, with each column representing a single
item of data.

 Most tables contain a primary key that uniquely identifies each row in the table.
 The software that manages a relational database is called a database management

system (DBMS). Four of the most popular database management systems today
are Oracle, Microsoft SQL Server, IBM’s DB2, and Microsoft Access.

How the tables in a database are related
Figure 19-2 shows how a relational database uses the values in the primary key field to relate one table
to another. Here, each BookCode field in the BookOrders table contains a value that identifies one row
in the Books table. Since the BookCode field in the BookOrders table points to a primary key in another
table, it’s called a foreign key. Often, a table will have several foreign keys.
In this figure, each row in the Books table relates to one or more rows in the BookOrders table. As a
result, the Books table has a one-to-many relationship with the BookOrders table. Although a one-to-
many relationship is the most common type of relationship between tables, you can also have a one-to-
one relationship or a many-to-many relationship. However, a one-to-one relationship between two
tables is rare since the data can be stored in a single table. In contrast, a many-to-many relationship
between two tables is typically implemented by using a third table that has a one-to-many relationship
with both of the original tables.

Incidentally, the primary key in the BookOrders table is the BookOrderID field. It is automatically
generated by the DBMS when a new record is added to the database. This type of primary key is often
appropriate for tables like Invoice, Employee, and Customer tables.

Figure 19-2: How the tables in a database are related
The relationship between the Books and BookOrders tables

Murach’s Beginning Java 2

 page 440

Description

 The tables in a relational database are related to each other through their key fields.
For example, the BookCode field is used to relate the Books and BookOrders
tables. The BookCode field in the BookOrders table is called a foreign key because
it identifies a related row in the Books table.

 Three types of relationships can exist between tables. The most common type is a
one-to-many relationship as illustrated above. However, two tables can also have a
one-to-one relationship or a many-to-many relationship.

How the fields in a database are defined
Figure 19-3 shows how a DBMS defines a field in a database. In particular, it shows how the DBMS
defines a name and data type for each field. Although this figure shows an Access 2000 database, all
relational databases require a name and a data type for each field. In addition, any modern relational
database will let you set other properties for each field in the database such as a default value for new
rows, whether the field is required, and so on.

This figure shows the names and data types for the fields in the Books table. Here, the key symbol to
the left of the BookCode field indicates that it is the primary key for the table. This field and the
BookTitle field are defined with the Text data type, which maps to the String type in Java. In contrast,
the BookPrice field is defined with the Currency data type, which maps to the double type in Java.
When a DBMS defines a field as a required field, an application must provide a value for the field when
it tries to add a record to the database. For some applications, though, you can supply a default value

Murach’s Beginning Java 2

 page 441

for the field. That way, if the application tries to add a new record without specifying a value for the field,
the DBMS will use the default value.

Figure 19-3: How the fields in a table are defined
The design of the Books table in Access 2000

Description

 A database management system requires a name and data type for each field.
Depending on the data type, you may be able to specify other attributes for the field
such as field size, a value to be used as a label, whether the field is required by new
rows or not, and so on.

 If you specify a default value for a field, that value is used for the field in a new record
when no other value is supplied.

How to use SQL to work with the data in a database
Structured Query Language (SQL) is a standard language that you can use to communicate with any
modern DBMS. This language can be divided into two parts. The Data Definition Language (DDL) lets
you define the tables in a database. The Data Manipulation Language (DML) lets you manipulate the
data that’s stored in those tables.

Since you’ll normally use database software to define the tables in a database, this topic will focus on
the four SQL statements that you can use to manipulate the data in a database: the SELECT, INSERT,
UPDATE, and DELETE statements. These are the statements that you will use in your Java
applications.

How to query a single table
Figure 19-4 shows how to use a SELECT statement to query a single table in a database. The SELECT
statement is the most commonly used SQL statement. It returns a result set (or result table) that
contains the rows and columns that are specified by the SELECT statement.

In the syntax summary for this statement, the capitalized words are SQL keywords and the lowercase
words represent the items that you must supply. The brackets indicate an item that is optional; the bar (
|) indicates a choice between the options on either side; and the ellipsis (…) indicates that you can
code a series of like items. To separate the items in a statement, you can use one or more spaces, and
you can use indentation whenever it helps improve the readability of a statement.

The first example in this figure shows how to retrieve three columns from the Books table. Here, the
SELECT clause identifies the three columns and the FROM clause identifies the table. Then, the
WHERE clause limits the number of rows that are retrieved by specifying that the statement should only
retrieve rows where the value in the BookPrice field is greater than 35. Last, the ORDER BY clause

Murach’s Beginning Java 2

 page 442

indicates that the retrieved rows should be sorted in ascending order (from A to Z) by the BookCode
field.
The result set is a logical table that’s created temporarily within the database. Here, the current row
pointer, or cursor, keeps track of the current row. If you make a change to the data in a result set, the
change is also made to the table that the result set was created from.

As you might guess, queries can have a significant effect on the performance of a database application.
The more columns and rows that a query returns, the more traffic the network has to bear. As a result,
when you design queries, you should try to keep the number of columns and rows to a minimum.

Figure 19-4: How to query a single table
SELECT syntax for selecting from one table

SELECT field-1 [, field-2] ...

FROM table-1

[WHERE selection-criteria]

[ORDER BY field-1 [ASC|DESC] [, field-2 [ASC|DESC] ...]]

A SELECT statement that gets selected columns and rows

SELECT BookCode, BookTitle, BookPrice

FROM Books

WHERE BookPrice > 35

ORDER BY BookCode ASC

The result set defined by the SELECT statement

A SELECT statement that returns all columns and rows

SELECT * FROM Books

Description
 The SELECT statement is used to perform a query that retrieves rows and columns

from a database.
 The result set (or result table) is the set of records that are retrieved by a query.

Murach’s Beginning Java 2

 page 443

 The current row pointer, or cursor, identifies the current row in a result set. You can
use this pointer to identify the row you want to update or delete from a result set.
Any change to the result set is reflected in the table that the result set is based on.

 To select all of the columns in a table, you can code an asterisk (*) instead of coding
field names.

 For efficiency, you should code your queries so the result set has as few rows and as
few columns as possible.

How to join data from two or more tables
Figure 19-5 shows how to use the SELECT statement to retrieve data from two tables. Since the data
from the two tables is joined together into a single result set, this type of operation is known as a join. In
this figure, for example, the SELECT statement joins data from the Books and BookOrders tables into a
single result set.
An inner join is the most common type of join. When you use an inner join, which is sometimes called
an equi-join, the records from the two tables in the join are included in the result set only if their related
fields match. These matching fields are specified in the SELECT statement. In this figure, for example,
records from the Books and BookOrders tables are included only if the value of the BookCode field of
the Books table is equal to the BookCode field of the BookOrders table. In other words, if there isn’t any
data in the BookOrder table for a book, that Book won’t be added to the result set.
Please note in this SELECT statement that the last field in the query, the Total field, is calculated by
multiplying BookPrice and Quantity. In other words, a field by the name of Total doesn’t actually exist in
the database. This type of field is called a calculated field, and it exists only in the results of the query.
Another type of join is an outer join. With this type of join, all of the records in one of the tables are
included in the result set whether or not there are matching records in the other table. In a left outer join,
all of the records in the first table (the one on the left) are included in the result set. In a right outer join,
all of the records in the second table are included. To illustrate, assume that the SELECT statement in
this figure had used a left outer join. In that case, all of the records in the Book table whose price is
greater than 35 would have been included in the result set…even if no matching record was found in the
BookOrders table.

Although this figure only shows how to join data from two tables, you can extend this syntax to join data
from additional tables. If, for example, you want to create a result set that includes data from three
tables named Vendors, Invoices, and InvoiceLineItems, you could code the FROM clause of the
SELECT statement like this:

FROM Vendors
 INNER JOIN Invoices
 ON Vendors.VendorID = Invoices.VendorID
 INNER JOIN InvoiceLineItems
 ON Invoices.InvoiceID = InvoiceLineItems.InvoiceID

Then, you could include any of the fields from the three tables in the field list of the SELECT statement.

This figure also shows an alternate SQL syntax that lets you join two tables by using the WHERE clause
instead of the FROM clause. Using this syntax, the FROM clause lists all of the tables in the result set.
Then, the WHERE clause identifies the join by using the AND keyword to connect all of the selection
criteria that must be satisfied. This is an older syntax for joins that is still used by some older database
management systems.

Figure 19-5: How to join data from two or more tables
SELECT syntax for joining two tables

SELECT field-1 [, field-2] ...

FROM table-1

 {INNER | LEFT OUTER | RIGHT OUTER} JOIN table-2

 ON table-1.field-1 {=|<|>|<=|>=|<>} table-2.field-2

[WHERE selection-criteria]

Murach’s Beginning Java 2

 page 444

[ORDER BY field-1 [ASC|DESC] [, field-2 [ASC|DESC] ...]]

A SELECT statement that retrieves and sorts selected fields and records from the Books table

SELECT BookCode, BookTitle, BookPrice, Quantity,

 BookPrice * Quantity AS Total

FROM Books

 INNER JOIN BookOrders

 ON Books.BookCode = BookOrders.BookCode

WHERE BookPrice > 35

ORDER BY BookCode ASC

Another way to write the SELECT statement shown above

SELECT BookCode, BookTitle, BookPrice, Quantity,

 BookPrice * Quantity AS Total

FROM Books, BookOrders

WHERE Books.BookCode = BookOrders.BookCode AND BookPrice > 35

ORDER BY BookCode ASC

The result set defined by the SELECT statement

Description

 A join lets you combine data from two or more tables into a single result set.
 An inner join, or equi-join, returns records from both tables but only if their related

fields match. An outer join returns records from one table in the join (the LEFT or
RIGHT table) even if the records aren’t matched by records in the other table.

How to modify data in a result set
Figure 19-6 shows how to use the INSERT, UPDATE, and DELETE statements to add, update, or
delete one or more records in a database. The queries done by these SQL statements are sometimes
referred to as action queries because they actually change the data in a database.

The first syntax and example for the INSERT statement show how to use this statement to add one
record to a database. To do that, the statement supplies the names of the fields that are going to
receive values in the new record, followed by the values for those fields.

In contrast, the second syntax and example for the INSERT statement show how to add multiple
records to a table. To do that, you include a SELECT statement within the INSERT INTO statement.
Then, the SELECT statement selects the fields and records from one table, and the INSERT statement
adds those records to another table. In this example, the SELECT statement selects all of the fields
from the records in the Invoices table that have been paid in full (AmountDue = 0), and inserts them into
the InvoiceArchive table. In this case, you don’t have to specify the list of fields because both tables
have the same fields.

Murach’s Beginning Java 2

 page 445

Similarly, the syntax and examples for the UPDATE statement show how to update a single record and
a group of records. In the first example, the UPDATE statement updates the BookTitle and BookPrice
fields in the record where BookCode is equal to WARP. In the second example, the BookPrice field is
updated to 36.95 in all of the records where BookPrice is equal to 36.50.

Last, the syntax and examples for the DELETE statement show how to delete a single record or a group
of records. Here, the first example deletes the record from the Books table where the BookCode equals
WARP. Since each record contains a unique value in the BookCode field, this only deletes a single
record. However, in the second example, many records in the Invoices table may have an AmountDue
field that equals 0. As a result, this statement deletes all invoices whose balance has been paid in full.
That way, the Invoices table will only contain unpaid invoices.

When you issue an INSERT, UPDATE, or DELETE statement from a Java application, you usually work
with one record at a time. You’ll see this illustrated by the Book Maintenance application in this chapter.
Action queries that affect more than one record are more often issued by database administrators and
programmers by using query interfaces that are provided by the DBMS.

Figure 19-6: How to modify data in a result set
How to add records

INSERT INTO syntax for adding a single record

INSERT INTO table-name [(field-list)]

 VALUES (value-list)

A statement that adds a single record

INSERT INTO Books (BookCode, BookDescription, BookPrice)

 VALUES (‘WARP’, ‘War and Peace’, ’14.95')

INSERT INTO syntax for adding multiple records

INSERT INTO table-name [(field-list)]

 SELECT-statement

A statement that adds multiple records

INSERT INTO InvoiceArchive

 SELECT * FROM Invoices WHERE AmountDue = 0

How to update records
UPDATE syntax

UPDATE table-name

 SET expression-1 [, expression-2] ...

 WHERE selection-criteria

A statement that updates a single record

UPDATE Books

 SET BookTitle = ‘War and Peace’,

 BookPrice = ’14.95'

 WHERE BookCode = ‘WARP’

Murach’s Beginning Java 2

 page 446

A statement that updates multiple records

UPDATE Books

 SET BookPrice = ’36.95'

 WHERE BookPrice = ’36.50'

How to delete records
DELETE FROM syntax

DELETE FROM table-name

 WHERE selection-criteria

A statement that deletes a single record

DELETE FROM Books WHERE BookCode = ‘WARP’

A statement that deletes multiple records

DELETE FROM Invoices WHERE AmountDue = 0

How to access a database with Java
Before an application can use JDBC (Java Database Connectivity) to manipulate the data in a
database, you need to connect the application to the database. In this topic, you’ll learn four ways that
you can do that. Then, you’ll learn how to configure two of these ways and how to write the code that
creates the connection.

The four driver types
Figure 19-7 shows four ways a Java application can access a database. To start, the Java application
uses the JDBC driver manager to load a database driver. Then, the Java application can use one or
more of the driver types to connect to the database and manipulate the data.
You can use a type-1, JDBC-ODBC bridge driver to connect to a database through ODBC (Open
Database Connectivity), which is a standard way to access databases that were developed by
Microsoft. Since ODBC drivers exist for most modern databases, a type-1 driver provides a way to
connect Java with almost any database type. And since a type-1 driver is included as a part of the Java
2 Platform, it’s available to all Java programmers. However, in order for a type-1 driver to work, an
ODBC data source must be registered on the client machine as shown in the next figure. In addition, the
JDBC-ODBC bridge driver doesn’t support some of the newer JDBC features introduced since Java 2.
You can use a type-2, native protocol partly Java driver to connect to a database without using ODBC.
However, like ODBC, this driver requires that some binary code be installed on each client machine. As
a result, you’ll want to use a type-3 or type-4 driver if you plan to distribute the application on multiple
client machines.
You can use a type-3, net protocol all Java driver to connect to a database by converting JDBC calls to
an independent net protocol that’s used by a specific vendor. Then, the vendor’s middleware software,
which runs on a server, will convert the net protocol into calls in the native protocol that’s used by the
DBMS. Since the middleware software can typically convert the net protocol into the native DBMS
protocol for multiple databases, this solution is the most flexible.
You can also use a type-4, native protocol all Java driver to connect to a database. This type of driver,
which runs on a server, converts JDBC calls directly to the native DBMS protocol. Since most DBMS
protocols are proprietary, these types of drivers are typically available from the database vendors.
Although this chapter shows how to connect to a database using both a type-1 and type-3 driver, you’ll
want to use a type-3 or type-4 driver for any serious application. You can download type-3 and type-4
drivers for most databases from the Java web site (www.java.sun.com/products/jdbc/drivers). The
documentation for these drivers typically shows how to install and configure the driver so it runs on a
server.

Figure 19-7: The four driver types
Four ways to access a database

Murach’s Beginning Java 2

 page 447

The four types of Java drivers

Type 1 A JDBC-ODBC bridge driver converts JDBC calls into ODBC
calls that access the DBMS protocol. This data access method
requires that the ODBC drivers be installed on the client
machines.

Type 2 A native protocol partly Java driver converts JDBC calls into
calls in the native DBMS protocol. Since this conversion takes
place on the client, some binary code must be installed on the
client machine.

Type 3 A net protocol all Java driver converts JDBC calls into a net
protocol that’s independent of any native DBMS protocol.
Then, middleware software running on a server converts the
net protocol to the native DBMS protocol. Since this conversion
takes place on the server side, no installation is required on the
client machine.

Type 4 A native protocol all Java driver converts JDBC calls into a
native DBMS protocol. Since this conversion takes place on
the server side, no installation is required on the client
machine.

 Note
To get information about the drivers that are currently available,
check the Java web site at www.java.sun.com/products/jdbc
and click on the List of Drivers Available link.

Since type-1 and type-2 drivers require some client-side
installation, they’re not a good solution for Internet applications.

How to configure an ODBC data source

To use a JDBC-ODBC bridge driver, you need to configure the ODBC data source on each client
machine. In contrast, to use a type-3 or type-4 driver, you don’t need to do any configuration on the
client machines. However, you still need to install the driver on the server machine.

Murach’s Beginning Java 2

 page 448

Figure 19-8 shows how to register an ODBC data source for a machine running under Windows. During
this procedure, you must specify the type of ODBC driver, the location of the database, and the name of
the data source. In this example, the ODBC driver is the Microsoft Access Driver, and the name of the
data source is MurachBooks.

Figure 19-8: How to register an ODBC data source with Windows
How to register an ODBC data source

How to install the client driver for an ODBC data source

1. Go to the Control Panel and select the ODBC Data Sources (32 bit) icon.
2. From the ODBC Data Source Administrator dialog box, click on the System DSN

tab, and then click on the Add button to add a data source.
3. From the Create New Data Source dialog box, select the type of database and

click on the Finish button. Then, enter a name for the data source and select the
database. When you’re done, the ODBC Data Source Administrator should look
similar to the dialog box shown above.

Note
This procedure will vary slightly depending on the operating system and on the
type of database. However, the general idea is the same. You must select a type
of ODBC driver; you must provide a name for the data source; and you must
locate the data source. That way, the client machine or server has all the data it
needs to access the data source.

How to connect to a database
Figure 19-9 shows the syntax and code needed to use JDBC to connect to a database. First, this figure
shows the syntax that’s used to specify the URL (Uniform Resource Locator) for the database. Then,
this figure shows the code that illustrates two ways to connect to a database.

The first example shows how to use the JDBC-ODBC bridge driver that comes as a part of the Java 2
Platform to connect to the MurachBooks database. To start, you use the forName method of the Class
class to load the driver. Then, you use the getConnection method of the DriverManager class to return a
connection object. To do that, you must supply a URL for the database, a user name, and a password.

Murach’s Beginning Java 2

 page 449

The URL for these drivers starts with “jdbc”. Then, for JDBC-ODBC bridge drivers, the subprotocol is
“odbc” and the database URL is the name that you used when you configured the ODBC data source.
In this example, the default user name and password for an Access database are used. However, if the
security for the database was enabled, you would need to supply a valid user name and password for
the database.

The second example shows how to use a type-3 driver named JDataConnect to connect to the
MurachBooks database. A trial version of this driver can be downloaded from NetDirect’s website at
www.j-netdirect.com. Although this example uses a driver named JDataConnect that’s made by
NetDirect, it just shows that the syntax for connecting to a database is similar no matter what type of
driver you use. To load the driver, you specify the location of the driver class. But since this class isn’t
part of the Java API, you must download the class and set the Java classpath to the directory on the
server that contains JData2_0\sql\$Driver.class.

All of the connection code in this second example is similar to the code in the first example except for
the URL specification. Here, the subprotocol is the protocol that’s used by JDataConnect, and the URL
itself points to the server that the database is running on. This means you must configure the ODBC
data source on that server. To point to a specific server, you can supply a URL, name, or IP address for
that server. In this example, the database is running on a server named DBSERVER. However, you can
test this driver by placing it on your local system and using localhost rather than the server’s name.

Although this figure doesn’t show any exception handling code, the forName method of the Class class
throws a ClassNotFoundException, and the getConnection method of the DriverManager class throws
an SQLException. As a result, you must either throw or catch these exceptions when you write the code
that connects to your database, but it’s good programming practice to eventually catch both of these
exceptions. Then, if an error occurs, you can tell whether it’s due to the driver connection
(ClassNotFoundException) or the database connection (SQLException).

In practice, connecting to the database is often the most time-consuming and frustrating part of working
with a database. So if some of your colleagues have already made a connection to the database you
need to use, by all means get help from them. That can save you hours of frustration.

Figure 19-9: How to connect to a database
URL syntax

jdbc:subprotocolName:databaseURL

How to connect to the MurachBooks database with the JDBC-ODBC bridge driver

//load the JDBC-ODBC bridge driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

//use the DriverManager to create a Connection object

String url = "jdbc:odbc:MurachBooks";

String user = "Admin";

String password = "";

Connection connection = DriverManager.getConnection(url, user, password);

How to connect to the MurachBooks database with a type-3 driver
named JDataConnect

//load the type-3 driver

Class.forName("JData2_0.sql.$Driver"); //must set classpath to find driver

Murach’s Beginning Java 2

 page 450

//use the DriverManager to create a Connection object

String url = "jdbc:JDataConnect://DBSERVER/MurachBooks";

String user = "Admin";

String password = "";

Connection connection = DriverManager.getConnection(url, user, password);

Description
 The forName method of the Class class throws a ClassNotFoundException.
 The getConnection method of the DriverManager class throws a SQLException.
 Since the Connection object will often be used by more than one method in a class,

it’s often declared as static instance variable.
 To learn more about the JDataConnect driver, check the NetDirect website (www.j-

netdirect.com).

How to use Java to work with the data in a database
Once you connect to a database, you’re ready to retrieve data from the database and to manipulate that
data. So that’s what you’ll learn to do next.

How to return a result set
Figure 19-10 shows how to use Statement objects to return ResultSet objects. To start, this figure
shows two examples of how to create a result set. Then, it shows five constants of the ResultSet
interface that can be used to control the type of result set that’s created.

The first example shows how to create a forward-only, read-only result set. Here, the createStatement
method is called from a Connection object to return a Statement object. Then, the executeQuery
method is called from the Statement object to execute an SQL SELECT statement that’s coded as a
string. Since this SELECT statement only identifies a single record (the book with the book code equal
to WARP), this result set will be a table that contains only one row. This type of query lets a user search
for a book by its book code.

The second example shows how to create a scrollable, updateable result set. To do this, the code
supplies two arguments for the createStatement method of the Connection object. The first argument
specifies the type of the result set. Here, the result set has been set to a scrollable result set that will
display changes that have been made by other users to the data that’s in the result set. Although this is
the most flexible type of result set, it also requires the most system resources. In contrast, a scrollable
result set that isn’t sensitive to changes requires less resources.

The second argument in this second example specifies the concurrency of the result set. Here, the
concurrency has been set to updateable. That means that you can update the values in the result set
and those values will be stored in the database. Within this example, the SELECT statement returns
three columns and all of the rows in the Books table. As a result, this statement uses more resources
than the statement in the first example.

When you return a result set, you need to make sure that your driver supports the features of the result
set. For example, some older drivers only support version 1.0 of the JDBC API. Since scrollable and
updateable result sets were added in version 2.0 of the JDBC API, this means that those drivers don’t
support these types of result sets. In addition, not all drivers will support version 3.0 of the JDBC API.
This version is included with SDK1.4 and includes newer features such as allowing multiple result sets
to be open at the same time.

Figure 19-10: How to return a result set
How to create a forward-only, read-only result set

Statement statement = connection.createStatement();

ResultSet books = statement.executeQuery("SELECT * FROM Books " +

Murach’s Beginning Java 2

 page 451

 "WHERE BookCode = ‘WARP’");

How to create a scrollable, updateable result set

Statement statement = connection.createStatement(

 ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

String query = "SELECT BookCode, BookTitle, BookPrice "

 + "FROM Books ORDER BY BookCode ASC";

ResultSet books = statement.executeQuery(query);

Five ResultSet constants that set type and concurrency

Description

 The createStatement method of a Connection object creates a Statement object.
Then, the executeQuery method of the Statement object executes a SELECT
statement that returns a ResultSet object.

 By default, the createStatement method creates a forward-only, read-only result set.
However, you can set the type and concurrency of a Statement object by coding the
constants above for the two arguments of the createStatement method.

 Both the createStatement and executeQuery methods throw an exception of the
SQLException type. As a result, any code that returns a result set will need to catch
or throw this exception.

How to move the cursor through a result set
Figure 19-11 shows how to move the cursor through a result set. To start, this figure shows 14 methods
of the ResultSet object. Then, this figure shows examples that illustrate how to use some of these
methods. Since the ResultSet object is created from the ResultSet interface, it’s up to the driver
software to fully implement these methods. As a result, older drivers may not support some of the
methods that were added in versions 2.0 and 3.0 of the JDBC API. These methods include the methods
for working with scrollable result sets such as the previous method.

If the result set is a forward-only result set, you’ll only be able to use the next method to move through
the result set. But if the result set is scrollable, you can use any of the methods. When you use the first,
previous, next, last, absolute, and relative methods to move the cursor through the result set, they
return a boolean value that indicates whether the cursor has been moved to a valid row. For example,
the next method returns a true value until it reaches the end of the result set or until it hits a row that’s
invalid for other reasons. Since all of these methods throw an exception of the SQLException type, you
either need to throw or catch this exception when you’re working with these methods.

Murach’s Beginning Java 2

 page 452

The examples in this figure show how to use the first, previous, next, last, absolute, and relative
methods. Here, the first statement moves the cursor to the first row in the result set, and the second
statement moves the cursor to the last row. Then, the first if statement moves the cursor to the previous
row if the cursor isn’t on the first row, and the second if statement moves the cursor to the next row if
the cursor isn’t on the last row. Finally, the fifth statement moves the cursor to the fourth record in the
result set; the sixth statement moves the cursor back two rows; and the seventh statement moves the
cursor forward three rows.

Figure 19-11: How to move the cursor through a result set
Methods of a ResultSet object that move through a result set

Code examples

books.first();

books.last();

if (books.isFirst() == false)

 books.previous();

if (books.isLast() == false)

 books.next();

books.absolute(4);

books.relative(-2);

books.relative(3);

Description
 When you create a result set, the cursor is positioned before the first record. As a

result, the first time you call the next method, it will move to the first record in the
result set.

Murach’s Beginning Java 2

 page 453

 The first, previous, next, last, absolute, and relative methods all return a true value if
the new row exists and a false value if the new row doesn’t exist or the result isn’t
valid.

 All of the methods in this figure throw an exception of the SQLException type.

How to return data from a result set
Figure 19-12 shows how to return data from the current record in a result set. In particular, it shows how
to use the getString and getDouble methods of the ResultSet object to return String values and double
values. However, the same principles can be used for any of the getXXX methods.

The two methods in this figure show the two types of arguments accepted by the getXXX methods. The
first method accepts an int value that specifies the number of the column in the result set, where 1 is the
first column, 2 is the second column, and so on. The second getXXX method accepts a string that
specifies the name of the column in the result set. Although the getXXX methods that specify the
column index run slightly faster and require less typing, using the getXXX methods that specify the
column name can be more flexible. As a result, you can decide which method to use based on the
needs of your application.

The first example shows how to use column indexes to return data from a result set named books.
Here, the first two statements use the getString method to return the code and title for the current book
while the third statement uses the getDouble method to return the price of the book. Since these
methods use the column index, the first column in the result set must contain the book code, the second
column must contain the book title, and so on.

The second example shows how to use column names to return data from the books result set. Since
this code uses the column name, the order of the columns in the result set doesn’t matter. However, the
column names must exist in the result set or an SQLException object will be thrown that indicates that a
column wasn’t found.

The third example shows how you can use the getXXX methods to create a Book object. Here, the
constructor for the Book object uses three values that are returned by the getXXX methods to create a
new book. Since objects are often created from data that’s stored in a database, code like this is
commonly used.
If you look up the ResultSet interface in the documentation for the API, you’ll see that getXXX methods
exist for all of the primitive types and for other types of data too. For example, getXXX methods exist for
the Date, Time, and Timestamp classes that are a part of the java.sql package. In addition, they exist for
BLOB objects (Binary Large Objects) and CLOB objects (Character Large Objects). These types of
objects are used for storing large objects such as multimedia files in databases.

Figure 19-12: How to return data from a result set
Methods of a ResultSet object that return data from a result set

Code that uses column indexes to return fields from the books result set

String code = books.getString(1);

String title = books.getString(2);

double price = books.getDouble(3);

Code that uses column names to return the same fields

String code = books.getString("BookCode");

String title = books.getString("BookTitle");

double price = books.getDouble("BookPrice");

Murach’s Beginning Java 2

 page 454

Code that creates a Book object from the books result set

Book firstBook = new Book(books.getString(1),

 books.getString(2),

 books.getDouble(3));

Description
 The getXXX methods can be used to return all eight primitive types. For example, the

getInt method returns the int type and the getLong method returns the long type.
 The getXXX methods can also be used to return strings, dates, and times. For

example, the getString method returns any object of the String class while the
getDate, getTime, and getTimestamp methods return objects of the Date, Time, and
Timestamp classes of the java.sql package.

 Although they aren’t widely used, the getBlob and getClob methods can be used to
return BLOB objects (Binary Large Objects) and CLOB objects (Character Large
Objects).

How to modify data in a result set
Figure 19-13 shows how to use Java to modify the data in a database. First, it shows how to use the
executeUpdate method of a Statement object to execute SQL statements that add, update, and delete
data. Then, this figure shows how to use newer methods from the JDBC 2.0 API to add, update, and
delete data. Since the executeUpdate method has been a part of Java since version 1.0 of JDBC, this
method should work for all JDBC drivers. In contrast, the newer methods of JDBC 2.0 and 3.0 may not
work with older JDBC drivers. In particular, these methods don’t work with the JDBC-ODBC bridge
driver included with the SDK1.3.1. However, later SDK versions may eventually contain an updated
bridge driver that can use these methods.

When you work with the executeUpdate method, you just pass an SQL statement to the database. In
these examples, the code adds, updates, and deletes a book in the Book table. To do that, the code
combines data from a Book object with the appropriate SQL statement. For the UPDATE and DELETE
statements, the SQL statement uses the book’s code in the WHERE clause to select a single book.

When you work with the newer methods of the JDBC, you don’t have to use any SQL statements.
Instead, you just call methods from the ResultSet object to add, update, and delete records from the
current result set. In these examples, you can assume that the ResultSet object named books contains
three columns and many rows.

To add a record, you call the moveToInsertRow method to move the cursor to a special buffer area
that’s used to construct a new row. Then, you call the updateXXX method for each column in the row.
Here, the first argument specifies the name of the column and the second argument specifies the value
of the column. When you’re done providing values for all of the columns in the row, you call the
insertRow method to commit the changes to the database. Then, you can call the moveToCurrentRow
method to move back to the row that you were on before you called the moveToInsertRow method.

To update or delete a row, you start by moving to that row using the methods that were described
earlier in this chapter. Then, you can update a record by calling the updateXXX method for any of the
columns that you wish to update and by calling the updateRow method after that. Or, you can delete a
record by calling the deleteRow method.

Depending on the driver that you’re using, the modifications that you make to a result set may cause
some problems. For example, when you add a row, you may not be able to move to that row. Worse,
when you delete a row, an invalid row may remain in the result set where the deleted row used to be.
Then, if you try to move to that row, your application will throw an SQLException. The best way to solve
these problems is to get a better driver or change the way your program retrieves data. However, you
can also solve these problems by closing the result set and opening it again. Although that isn’t efficient,
it will refresh all rows in the result set.

Figure 19-13: How to modify data in a result set
How to use the executeUpdate method to modify data

How to add a record

Murach’s Beginning Java 2

 page 455

String query =

 "INSERT INTO Books (BookCode, BookTitle, BookPrice) " +

 "VALUES (‘" + book.getCode() + "‘, " +

 "‘" + book.getTitle() + "‘, " +

 "‘" + book.getPrice() + "‘)";

Statement statement = connection.createStatement();

statement.executeUpdate(query);

How to update a record

String query = "UPDATE Books SET " +

 "BookCode = ‘" + book.getCode() + "‘, " +

 "BookTitle = ‘" + book.getTitle() + "‘, " +

 "BookPrice = ‘" + book.getPrice() + "‘ " +

 "WHERE BookCode = ‘" + book.getCode() + "‘";

Statement statement = connection.createStatement();

statement.executeUpdate(query);

How to delete a record

String query = "DELETE FROM Books " +

 "WHERE BookCode = ‘" + bookCode + "‘";

Statement statement = connection.createStatement();

statement.executeUpdate(query);

How to use methods from JDBC 2.0 and later to modify data
How to add a record

books.moveToInsertRow();

books.updateString("BookCode", book.getCode());

books.updateString("BookTitle", book.getTitle());

books.updateDouble("BookPrice", book.getPrice());

books.insertRow();

books.moveToCurrentRow();

How to update a record

books.updateString("BookCode", book.getCode());

books.updateString("BookTitle", book.getTitle());

books.updateDouble("BookPrice", book.getPrice());

Murach’s Beginning Java 2

 page 456

books.updateRow();

How to delete a record

books.deleteRow();

Description
 The executeUpdate method is an older method that works with most JDBC drivers.

The newer methods may not work properly with older JDBC drivers.
 The executeUpdate method returns an int value that identifies the number of records

that were affected by the update.
 When you delete a record, the result set may contain an invalid row where the

deleted row used to be. To solve this problem, you can close the result set and
reopen it.

How to work with prepared statements
Figure 19-14 shows how to use a prepared SQL statement to return a result set or to modify data. Since
prepared statements let Java compile the SQL statement with parameters that can be supplied later,
they execute faster than regular statements. As a result, you should use prepared statements whenever
you’re coding a statement that will be executed more than once.

The first example shows how to use a prepared statement to create a result set that contains a single
book. Here, the first statement uses a question mark (?) to identify the parameter for the SELECT
statement, which is the book code for the book. The second statement uses the prepareStatement
method of the Connection object to return a PreparedStatement object. The third statement uses a
setXXX method (the setString method) of the PreparedStatement object to set a value for the first
parameter in the SELECT statement. And the fourth statement uses the executeQuery method of the
PreparedStatement object to return a ResultSet object.

The second example shows how to use a prepared statement to execute an UPDATE query that
requires four parameters. Here, the first statement uses four question marks (?) to identify the four
parameters of the UPDATE statement, and the second statement creates the PreparedStatement
object. Then, the next four statements use the setXXX methods to set the four parameters in the order
that they appear in the UPDATE statement. The last statement uses the executeUpdate method of the
PreparedStatement object to execute the UPDATE statement.

The third and fourth examples show how to insert and delete records with prepared statements. Here,
you can see that the type of SQL statement that you’re using determines whether you use the
executeQuery method or the executeUpdate method. If you’re using a SELECT statement to return a
result set, you use the executeQuery method. But if you’re using an INSERT INTO, UPDATE, or
DELETE statement, you use the executeUpdate method. This holds true whether you’re using a
Statement object or a PreparedStatement object.
By default, the prepareStatement method of the Connection object creates a forward-only, read-only
result set. However, you can set the type and concurrency of a PreparedStatement object just as you
can for Statement objects as shown in figure 19-10. That way, you can create a scrollable, updateable
result set.

Figure 19-14: How to work with prepared statements
How to use a prepared statement

To return a read-only result set

String preparedSQL = "SELECT BookCode, BookTitle, BookPrice " +

 "FROM Books WHERE BookCode = ?";

PreparedStatement ps = connection.prepareStatement(preparedSQL);

ps.setString(1, bookCode);

ResultSet book = ps.executeQuery();

To modify data

Murach’s Beginning Java 2

 page 457

String preparedSQL = "UPDATE Books SET " +

 "BookCode = ?, BookTitle = ?, BookPrice = ?" +

 "WHERE BookCode = ?";

PreparedStatement ps = connection.prepareStatement(preparedSQL);

ps.setString(1, book.getCode());

ps.setString(2, book.getTitle());

ps.setDouble(3, book.getPrice());

ps.setString(4, book.getCode());

ps.executeUpdate();

To insert a record

String preparedQuery = "INSERT INTO Books (BookCode, BookTitle, "

 + "BookPrice) VALUES (?, ?, ?)";

PreparedStatement ps = connection.prepareStatement(preparedQuery);

ps.setString(1, book.getCode());

ps.setString(2, book.getTitle());

ps.setDouble(3, book.getPrice());

ps.executeUpdate();

To delete a record

String preparedQuery = "DELETE FROM Books "

 + "WHERE BookCode = ?";

PreparedStatement ps = connection.prepareStatement(preparedQuery);

ps.setString(1, bookCode);

ps.executeUpdate();

Description
 To specify a parameter, type a question mark (?) in the SQL statement.
 To supply values for the parameters in a prepared statement, use the setXXX

methods of the PreparedStatement interface. For a complete list of setXXX
methods, look up the PreparedStatement interface of the java.sql package in the
documentation for the Java API.

 To execute a SELECT statement, use the executeQuery method. To execute an
INSERT INTO, UPDATE, or DELETE statement, use the executeUpdate method.

The Book Maintenance application
In chapter 12, you learned how to code the user interface for the Book Maintenance application. If
you’ve read chapter 18, you’ve also learned how to code the BookIO class that provides the methods
that the user interface needs for maintaining the book data in a random-access file.

Murach’s Beginning Java 2

 page 458

Now, in this chapter, you’ll learn how to code a BookDB class that provides the methods that the user
interface needs for maintaining the book data in a database. This will illustrate how using a database is
superior to using a random-access file. It will also show how separating the GUI, business, and data
access code makes it easy to change the way an application is implemented.

The user interface for this application
To refresh your memory about how this application works, figure 19-15 shows the user interface for the
Book Maintenance application. In chapters 12 and 18, you’ve seen this interface used with other data.
Now, this version shows this interface with different data because the application connects to the
MurachBooks database. Otherwise, the interface looks and works the same.

BookDB calls in the BookFrame and BookPanel classes
Figure 19-15 also shows the code in the BookFrame and BookPanel classes that calls the methods of
the BookDB class. To review all the code for these classes, you can refer back to figure 12-20, but this
gives you the highlights. The primary difference between the code in this figure and the code in figure
12-20 is the use of the connect method and the change of the class name from BookIO to BookDB.

If you look first at the constructor for the BookPanel class, you can see that it uses the connect method
of the BookDB class to connect to a database, and it uses the open method to open a record set. Then,
it uses the moveFirst method to return the current Book object, which is stored as an instance variable
of the BookPanel object. If the driver can’t be loaded or the database connection can’t be made, this
class catches any ClassNotFoundException or SQLException and displays the related error message.

After the database is opened, the BookPanel class can use the other BookDB methods. These are all
issued from the actionPerformed method in the BookPanel class. For instance, when the user clicks on
the Exit button, this method calls the close method. When the user clicks on the First button, this
method calls the moveFirst method. Although the code for the other buttons isn’t shown, this continues
for all of the buttons. Since any of these methods can throw an SQLException, the actionPerformed
method is contained in a try/catch statement, and the second catch block catches the SQLException.

Figure 19-15: BookDB calls in the BookFrame and BookPanel classes
The GUI for the Book Maintenance application

The code for the windowClosing method in the BookFrame class

public void windowClosing(WindowEvent e){

 BookDB.close();

 System.exit(0);

}

The code in the constructor for the BookPanel class

try{

Murach’s Beginning Java 2

 page 459

 BookDB.connect();

 BookDB.open();

 currentBook = BookDB.moveFirst();

}

catch(ClassNotFoundException e){

 JOptionPane.showMessageDialog(null, e.getMessage());

 System.exit(1);

}

catch(SQLException e){

 JOptionPane.showMessageDialog(null, e.getMessage());

}

The code for the actionPerformed method

public void actionPerformed(ActionEvent e){

 try{

 Object source = e.getSource();

 if (source == exitButton){

 BookDB.close();

 System.exit(0);

 }

 else if (source == firstButton){

 currentBook = BookDB.moveFirst();

 performBookDisplay();

 enableButtons(true);

 }

 //else if blocks for the other buttons
 }
 catch(NumberFormatException nfe){
 JOptionPane.showMessageDialog(this, nfe.getMessage());
 }
 catch(SQLException sqle){
 JOptionPane.showMessageDialog(this, sqle.getMessage());
 }
}

To end the program, the user can click on the Exit button, which as you’ve already seen leads to a call
of the close method from the actionPerformed method. But the user can also end the program by
closing the window. That’s why the windowClosing method in the BookFrame class must also call the

Murach’s Beginning Java 2

 page 460

BookDB.close method. This time, though, the SQLException isn’t caught so it must be caught (not
thrown) by the close method in the BookDB class.

The code for the BookDB class
Figure 19-16 shows the code for the BookDB class. This class provides the static variables and
methods that are used to connect to a database, open a result set, scroll through the result set, modify
the data in the result set, and close the result set. Although this class mixes some JDBC 1.0 methods
with JDBC 2.0 methods, the JDBC-ODBC bridge driver supports all of these methods.

To start, the BookDB class declares static variables for the Connection, Statement, and ResultSet
objects. Then, it uses the connect method to provide all the code needed to connect to the
MurachBooks database with the JDBC-ODBC bridge driver that comes with the SDK. For this code to
work, the ODBC driver must be configured for a data source named MurachBooks. In addition, the user
name and password that are supplied must be valid for the database.

The open method opens a scrollable and updateable result set that contains the BookCode, BookTitle,
and BookPrice columns for all of the books in the Books table of the MurachBooks database. In
addition, this method sorts the result set in ascending order by the BookCode column. If an error occurs
in the createStatement or executeQuery methods, an SQLException may be thrown that will be caught
in the BookPanel class.

The close method closes the ResultSet object. Then, it closes the Statement object. In this case, you
must close the ResultSet before you close the Statement object. Otherwise, calling the close method of
the ResultSet object will throw an SQLException. Please note that unlike the other methods in this
class, this method catches the SQLException instead of throwing it. That’s why the call of the close
method in the windowClosing method of the BookPanel class doesn’t need to catch this exception.

The next four methods use the JDBC 2.0 methods to move the cursor through the result set that’s
created by the open method. All of these methods return a Book object that corresponds to the row that
the cursor is on in the table. In addition, all of these methods throw an SQLException. That’s why the
code in the BookPanel class must catch these exceptions.

If you study the code for these methods, you shouldn’t have any trouble understanding them. They just
use the methods of the ResultSet object to move the cursor. The moveFirst method returns a Book
object that corresponds to the first row in the result set. The movePrevious method usually returns a
Book object that corresponds to the previous row in the result set. However, if the cursor is positioned
on the first row of the result set, the movePrevious method returns a Book object that corresponds to
the first row in the result set.

Figure 19-16: The code for the BookDB class (part 1 of 2)
The code for the BookDB class

import java.sql.*;

import javax.swing.*;

public class BookDB{

 private static Connection connection;

 private static Statement scrollStatement;

 private static ResultSet books;

 public static void connect() throws ClassNotFoundException, SQLException{

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 String url = "jdbc:odbc:MurachBooks";

Murach’s Beginning Java 2

 page 461

 String user = "Admin";

 String password = "";

 connection = DriverManager.getConnection(url, user, password)

 }

 public static void open() throws SQLException{

 scrollStatement = connection.createStatement(

 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

 String query = "SELECT BookCode, BookTitle, BookPrice "

 + "FROM Books ORDER BY BookCode ASC";

 books = scrollStatement.executeQuery(query);

 }

 public static void close(){

 try{

 books.close();

 scrollStatement.close();

 }

 catch(SQLException sqle){

 JOptionPane.showMessageDialog(null, sql.getMessage());

 }

 }

 public static Book moveFirst() throws SQLException{

 books.first();

 Book firstBook = new Book(books.getString("BookCode"),

 books.getString("BookTitle"),

 books.getDouble("BookPrice"));

 return firstBook;

 }

Murach’s Beginning Java 2

 page 462

 public static Book movePrevious() throws SQLException{

 if (books.isFirst() == false)

 books.previous();

 else

 books.first();

 Book previousBook = new Book(books.getString(1),

 books.getString(2),

 books.getDouble(3));

 return previousBook;

 }

Another way to write the code for the movePrevious method is to use the previous method to move the
cursor and return a false value if the move doesn’t work:

if (books.previous() == false)
 books.first();

Although this code is shorter than the code used in this figure, it’s more difficult to understand. Yet
another way to write this code is to use the not operator (!) to reverse the boolean value like this:

if (!books.previous())
 books.first();

Although this code is even shorter, it’s even more difficult to understand. Because your applications will
be easier to maintain when they’re easier to read, it’s a good coding practice to write code like this in the
way that’s easiest to read.

After the moveNext and moveLast methods, which work like the movePrevious and moveFirst methods,
the BookDB class continues with the addRecord, updateRecord, and deleteRecord methods. These
methods use JDBC 1.0 methods to modify the data that’s stored in the database. The first two methods
accept a Book object as a parameter while the last one accepts a String that represents a book code.

The addRecord method adds a new row to the Books table. To do that, the first statement creates a
string that contains an INSERT statement that includes the data from the Book object that was passed
to the method. Then, the second statement creates a forward-only, read-only Statement object. The
third statement uses the executeUpdate method to execute the query. The fourth statement closes the
Statement object. And the last two statements call the close and open methods of the BookDB class to
refresh the result set. This ensures that the newly added row will be displayed properly. With the right
driver, though, these last two statements shouldn’t be necessary.

The updateRecord method works like the addRecord method. However, the updateRecord method uses
an UPDATE statement instead of an INSERT statement. And since no records have been added or
removed from the result set, this method doesn’t need to close and open the result set to refresh it.

The deleteRecord method also works like the addRecord method. However, the deleteRecord method
uses the DELETE statement instead of the INSERT statement. In addition, the deleteRecord method
only accepts a book code as a parameter. That’s because this method only needs to identify the book
that should be deleted. Here again, the method ends by closing and opening the result set to refresh it,
but this shouldn’t be necessary with the right driver.

If you compare the methods in this class with those that work with the random-access file in figure 18-
17, you’ll see that the code for working with databases is much easier to read and understand. It should
also run more efficiently. That’s why databases are commonly used for serious business applications.

Figure 19-16: The code for the BookDB class (part 2 of 2)

Murach’s Beginning Java 2

 page 463

The code for the BookDB class (continued)

 public static Book moveNext() throws SQLException{

 if (books.isLast() == false)

 books.next();

 else

 books.last();

 Book nextBook = new Book(books.getString(1),

 books.getString(2),

 books.getDouble(3));

 return nextBook;

 }

 public static Book moveLast() throws SQLException{

 books.last();

 Book lastBook = new Book(books.getString(1),

 books.getString(2),

 books.getDouble(3));

 return lastBook;

 }

 public static void addRecord(Book book) throws SQLException{

 String query = "INSERT INTO Books (BookCode, BookTitle, BookPrice) " +

 "VALUES (‘" + book.getCode() + "‘, " +

 "‘" + book.getTitle() + "‘, " +

 "‘" + book.getPrice() + "‘)";

 Statement statement = connection.createStatement();

 statement.executeUpdate(query);

 statement.close();

 close();

 open();

 }

Murach’s Beginning Java 2

 page 464

 public static void updateRecord(Book book) throws SQLException{

 String query = "UPDATE Books SET " +

 "BookCode = ‘" + book.getCode() + "‘, " +

 "BookTitle = ‘" + book.getTitle() + "‘, " +

 "BookPrice = ‘" + book.getPrice() + "‘ " +

 "WHERE BookCode = ‘" + book.getCode() + "‘";

 Statement statement = connection.createStatement();

 statement.executeUpdate(query);

 statement.close();

 }

 public static void deleteRecord(String bookCode) throws SQLException{

 String query = "DELETE FROM Books " +

 "WHERE BookCode = ‘" + bookCode + "‘";

 Statement statement = connection.createStatement();

 statement.executeUpdate(query);

 statement.close();

 close();

 open();

 }

}

An introduction to working with meta data
When you work with a result set, you can get data about the definition of the result set. This type of
information is known as meta data. For example, the meta data of a result set includes the number of
columns, names of the columns, and the data type that’s stored in each column. Although working with
meta data is an advanced skill that you don’t need for normal business applications, this topic gives you
a taste of what you can do with it.

How to work with meta data
Figure 19-17 shows the basic skills for working with meta data. First, this figure shows how to return a
ResultSetMetaData object from a ResultSet object. Then, it shows five methods that are commonly
used to work with meta data, plus two typical programmer-defined methods that work with meta data.
When you use the last four methods in this figure, you use an integer value to specify the column,
where 1 is the first column. The difference between the second and third methods is that the second
method returns the name that the DBMS uses to identify the column while the third method returns the
label that’s used as a heading for GUIs and reports. If a label hasn’t been defined for a column, the
DBMS often uses the column name as a default. The difference between the fourth and fifth methods is

Murach’s Beginning Java 2

 page 465

that the fourth method returns an int type that represents an SQL data type while the fifth method
returns the name of the SQL data type.

The first example shows a static method that returns the column names for a result set. This method
accepts a ResultSet object as a parameter and returns a Vector object that contains all of the column
names. To do that, the first statement defines a blank vector. Then, the second statement gets the
ResultSetMetaData object from the result set that has been passed to the method, and the third
statement uses the getColumnCount method to get the column count. After that, a for loop cycles
through all of the columns in the result set and uses the getColumnName method to add each column
name to the vector. The last statement in this method returns the vector.

The second example shows a static method that returns the data for each row in a result set. This
method also accepts a ResultSet object as a parameter and returns a Vector object. However, the
vector that’s returned in this example is a two-dimensional vector. That way, the outer vector can store
one inner vector for each row in the result set. To do that, this method uses a while loop to cycle
through all of the records in the result set. Inside the while loop, the for loop cycles through each column
in the result set using the getColumnType method to check the data type for the column. Depending on
the data type, the appropriate getXXX method is used to add the data to the inner vector. In this
example, the code uses the constants of the Types class to check for the VARCHAR and INTEGER
types. In addition, this code checks for the SQL data type with an int value of 2 (which corresponds with
the CURRENCY type that’s used by Microsoft Access).

Figure 19-17: How to work with meta data
How to use the getMetaData method to create a ResultSetMetaData object

ResultSetMetaData metaData = resultSet.getMetaData();

Methods for working with meta data

A method that returns the column names of a result set

public static Vector getColumnNames(ResultSet results) throws SQLException{

 Vector columnNames = new Vector();

 ResultSetMetaData metaData = results.getMetaData();

 int columnCount = metaData.getColumnCount();

 for (int i = 1; i <= columnCount; i++)

 columnNames.add(metaData.getColumnName(i));

 return columnNames;

}

A method that returns the rows of a result set

Murach’s Beginning Java 2

 page 466

public static Vector getRows(ResultSet results) throws SQLException{

 Vector rows = new Vector();

 ResultSetMetaData metaData = results.getMetaData();

 int columnCount = metaData.getColumnCount();

 while (results.next()){

 Vector row = new Vector();

 for (int i = 1; i <= columnCount; i++){

 if (metaData.getColumnType(i) == Types.VARCHAR)

 row.add(results.getString(i));

 else if (metaData.getColumnType(i) == Types.INTEGER)

 row.add(new Integer(results.getInt(i)));

 else if (metaData.getColumnType(i) == 2)

 row.add(new Double(results.getDouble(i)));

 }

 rows.add(row);

 }

 return rows;

}

Description
 When you specify an index value for one of the methods shown in this figure, use 1

for the first column, 2 for the second column, and so on.
 You can use the constants of the Types class of the java.sql package to specify an int

value for a SQL data type.

How SQL data types map to Java data types
Figure 19-18 shows how some of the most common SQL data types map to the Java data types. Some
of these conversions are intuitive. For example, the SQL INTEGER type corresponds to the Java int
type. However, some of these conversions aren’t as intuitive. For example, the SQL REAL type maps to
the Java float type.

When you write code that converts SQL types to Java types, you can use the constants in the Types
class of the java.sql package to refer to the SQL types as shown in the previous figure. And if a constant
doesn’t exist for the data type, you can use an int value to refer to the data type. To get the int value for
a data type in your record set, you can use the getColumnType method described in the previous figure.
Or, to get the string that describes the data type, you can use the getColumnTypeName. For example,
the Access field that defines the BookPrice column uses a non-standard Currency data type. In an SQL
result set, the int value for this data type is 2 and the name for this data type is CURRENCY.

Figure 19-18: How SQL data types map to Java data types
How SQL data types map to Java data types

Murach’s Beginning Java 2

 page 467

Description

 To get the SQL data type that’s used in the column of a result set, you can use the
getColumnType and getColumnTypeName methods of the ResultSetMetaData
object.

Perspective
Now that you’ve finished this chapter, you should understand how to use JDBC to store data in a
database and to retrieve data from a database. Although there’s much more to learn about working with
databases, those are the essential skills. To enhance your database skills, you can learn more about
SQL, you can learn more about database management systems like Oracle or SQL Server, and you can
learn more about the other JDBC features that are provided by Java.

Summary
 A relational database uses tables to store and manipulate data. Each table contains one

or more rows, or records, while each row contains one or more columns, or fields.
 A primary key is used to identify each row in a table. A foreign key is a key in one table

that is used to relate rows to another table.
 Each database is managed by a database management system (DBMS) that supports

the use of the Standard Query Language (SQL). To manipulate the data in a database,
you use the SQL SELECT, INSERT, UPDATE, and DELETE statements.

 The SELECT statement is used to return data from one or more tables in a result set.
To return data from two or more tables, you join the data based on the data in related
fields.

 An inner join returns a result set that includes data only if the related fields match. An
outer join returns a result set that includes data from all of the rows in one table plus the
data from the rows in the other table that match the related fields.

 Before you use JDBC to access data in a database, you have to connect the application
to a database through a database driver.

Murach’s Beginning Java 2

 page 468

 A Java program can use one of four driver types to access a database. Type-1 and
type-2 drivers run on the client’s machine, while type-3 and type-4 drivers can run on a
server machine.

 When working with databases, you often need to handle the SQLException and the
ClassNotFoundExeption.

 You can use JDBC to execute SQL statements that select, add, update, or delete one or
more records in a database. You can also control the location of the cursor in the result
set.

 You can use prepared statements to compile SQL statements with parameters that can
be supplied later.

 You can return a list of the column names and types in a result set by using meta data.

Terms
database cursor

relational database join

table inner join

row equi-join

column calculated field

record outer join

field left outer join

primary key right outer join

database management system (DBMS) action query

relational database management system
(RDBMS)

Java Database Connectivity (JDBC)

foreign key database driver

one-to-many relationship JDBC-ODBC bridge driver

one-to-one relationship Open Database Connectivity(ODBC)

many-to-many relationship native protocol partly Java driver

default value net protocol all Java driver

Structured Query Language (SQL) native protocol all Java driver

Data Definition Language (DDL) BLOB object

Data Manipulation Language (DML) Binary Large Object

query CLOB object

result set Character Large Object

result table prepared statement

current row pointer meta data

Objectives
 Write simple SELECT statements that select, add, update, or delete records in a

database.
 Given a database, configure an ODBC data source for it.
 Write code that loads the JDBC-ODBC bridge driver.
 Write code that connects an application to a database.
 Write code that returns a result set from a database.
 Write code that adds, updates, and deletes records in a database.
 Write code that uses prepared statements to add, update, and delete records in a

database.
 Use meta data to return the name and data type of each column.
 Identify these terms: database, row, column, DBMS, and SQL.
 Distinguish between a primary key and a foreign key.
 Distinguish between an inner join and an outer join.

Murach’s Beginning Java 2

 page 469

Exercise 19-1: Create the Book Maintenance application

This exercise guides you through the process of creating a version of the Book Maintenance application
that uses the MurachBooks database. This database has been supplied in the Microsoft Access 2000
and 97 formats.

1. Install an ODBC data source named MurachBooks for the MurachBooks database
that’s in the c:\java\ch19\database directory as shown in figure 19-8. If the ODBC
driver for Access on your system doesn’t support the Access 2000 format, use the
database named MurachBooks97 instead, but still use MurachBooks as the name
for the data source.

2. Open and compile the BookDB class in the c:\java\ch19\scroll directory. Then, test
this class by coding a main method that prints the first record in the database to the
console. To do that, you can use the connect, open, and moveFirst methods. When
you compile and run the BookDB class, it should print the first record in the
database to the console.

3. Modify the code for the BookFrame class that’s in the c:\java\ch19\scroll directory so
it uses the BookDB class as in figure 19-15. Then, test this class to make sure it
works properly. To do that, experiment with the First, Prev, Next, and Last buttons.
In addition, try to add a record and then delete it, and try to modify a record. Due to
errors and incomplete code in the BookDB class, the Next and Prev buttons won’t
work properly. In addition, the Update and Delete buttons won’t work properly when
updating and deleting records.

4. Go to the BookDB class, and fix the moveNext and movePrevious methods. Then,
run the BookFrame class again to make sure that these buttons work properly.

5. In the BookDB class, fill in the code for the updateRecord method. Then, run the
BookFrame class and check to make sure that this code works properly.

6. In the BookDB class, fill in the code for the deleteRecord method. Then, run the
BookFrame class to make sure that this code works properly.

7. Modify the addRecord, updateRecord, and deleteRecord methods so they use
prepared statements. Then, run the BookFrame class to make sure that the
application works properly.

Exercise 19-2: Modify the Book Maintenance application

This exercise guides you through the process of modifying the Book Maintenance application so it
doesn’t return the entire Books table as a result set.

1. Open the code for the BookFrame class that’s stored in the c:\java\ch19\find directory
and run it. It should display a dialog box like this one:

2. Open the BookDB class that’s stored in the c:\java\ch19\find directory. Then, add a

method named findOnCode that accepts a book code as a parameter and returns
the matching Book object.

3. Modify the code for the actionPerformed method in the BookFrame class so this user
interface works properly. When you click on the Find button, you can use the
JOptionPane class to display a dialog box like this one:

Murach’s Beginning Java 2

 page 470

4. If you enter a valid book code, the user interface should display the record. Then, you

should be able to update or delete that record. If you don’t enter a valid book code,
the user interface should display a dialog box like this one:

5. Test the application by displaying the records for these book codes:

CC2R
DB21
SCMD

Next, modify the prices for these records, and add a couple test records of your own to the
database. Then, use the Find button to find them and use the Delete button to delete them.

Chapter 20: How to work with threads
When you run a program in Java, the program runs in one or more threads. In previous chapters, you
learned how to run each program within a single thread. In this chapter, you’ll learn how to use multiple
threads to allow a program to alternate between tasks. For example, you can use one thread to display
animation while another thread makes a calculation.

An introduction to threads
This topic begins by presenting a brief overview of how threads work. Then, it summarizes two classes
and an interface as well as some of the constructors and methods that are commonly used to work with
threads.

How threads work
Figure 20-1 shows how threads, or threads of execution, work. To start, it shows a diagram that
compares a program that contains a single thread with a program that contains two threads. Then, it
shows a diagram that describes the life cycle of a thread.
The first diagram shows how the central processing unit, or CPU, of your computer runs a program. If
the program contains only a single thread, the CPU executes each action sequentially. When the
program contains multiple threads, though, the CPU can switch between the threads. This is known as
multithreading, and it can allow your program to be more responsive to the user. Although the CPU
can’t run each thread at the same time, it can quickly switch between the two threads. This gives the
appearance that both threads are executing at the same time.

When would you want to use threads? Threads are often used to allow a time-consuming task to occur
in the background. To illustrate, let’s say a program needs to display an image that’s very large. Without
multiple threads, the user would have to wait until the program displayed the image before the user
could continue with any other parts of the program. To solve this problem, you can run the code that
displays the image in its own thread. Then, the CPU can continue to work on displaying the image while
the user can continue using other parts of the program.

Murach’s Beginning Java 2

 page 471

The second diagram shows the life cycle of a thread. To start, the programmer writes code that defines
and starts the thread. Once the thread is started, it’s registered with the thread scheduler. Since the
thread scheduler isn’t completely platform independent, it may schedule threads differently depending
on the operating system. Once the thread is scheduled, the scheduler places the thread in the ready
state. Then, the scheduler runs the thread whenever it can.

When you write code that works with threads, you can move a thread into the waiting state. Usually, this
causes the thread to wait for a specified period of time or until it receives a message. This lets you use
threads to run a task at specified intervals, and it lets you synchronize multiple tasks. Once the thread is
done waiting, the scheduler moves it back to the ready state where it can compete with other threads for
CPU time. Once a thread finishes running, the thread is dead.

Figure 20-1: How threads work
How using threads can improve performance

The life cycle of a thread

Description

Murach’s Beginning Java 2

 page 472

 A thread, or thread of execution, is a single sequential flow of control within a
program. A thread often completes a specific task.

 A typical computer only has one central processing unit, or CPU. As a result, two
tasks can’t physically run at the same time. However, a program that uses
multithreading allows two or more tasks to share a computer’s processor. This gives
the appearance that all of the tasks are running at the same time, and this can make
an application work more efficiently.

 Since a processor can only execute one thread at a time, the thread scheduler
determines which thread runs at a given time.

Classes and interfaces for working with threads
Figure 20-2 presents two classes and an interface that you can use to create and work with threads.
This shows that the Thread class inherits the Object class and implements the Runnable interface. This
also shows that the Runnable interface declares a single method, the run method. The thread scheduler
calls this method to run the thread.

Later in this chapter, you’ll learn how to create a thread by inheriting the Thread class or by
implementing the Runnable interface. Either way, you need to override the run method.

Figure 20-2: Classes and interfaces for working with threads
Classes and interfaces used to create threads

Summary of these classes and interfaces

The Runnable interface

Constructors and methods for working with threads
Figure 20-3 summarizes some of the constructors and methods that you can use to work with threads.
To start, it summarizes one constructor and ten methods of the Thread class. You can use the
constructor of the Thread class to create a thread from any object that implements the Runnable
interface. You can use the methods of the Thread class to get information about a thread and to control
when a thread runs, when it waits, and when it ends.
Although most of these methods are self-explanatory, two require further explanation. First, you can use
the setDaemon method to create a subordinate thread known as a daemon thread. When you create a
daemon thread, that thread will end when the thread that started it ends. If you don’t use this method to

Murach’s Beginning Java 2

 page 473

explicitly create a daemon thread, the thread is considered a user thread. User threads continue running
even if the thread that created them ends.

Second, you use the setPriority thread to set the priority of a thread. This method accepts an integer
from 1 to 10 where 1 is the lowest priority and 10 is the highest priority, and you can use the three fields
summarized in this figure to set the priority of the thread.

The rest of this figure shows three methods of the Object class. You can use these methods when you
need to synchronize the actions of several threads. If, for example, two threads use the same resource,
you can use the wait method to tell one thread to wait until another thread is done using a resource.
Then, when one thread is done using the resource, you can use the notify or notifyAll method to let the
other threads know.

Figure 20-3: Constructors and methods for working with threads
A common constructor of the Thread class

Methods of the Thread class

Fields of the Thread class used to set thread priorities

Methods of the Object class

Murach’s Beginning Java 2

 page 474

Description

 The sleep and wait methods throw a checked exception of the InterruptedException
type. As a result, you must throw or catch this exception when you use these
methods.

How to create and start threads
This topic shows two ways to create a thread. First, you’ll learn how to create a thread by inheriting the
Thread class. Then, you’ll learn how to create a thread by implementing the Runnable interface. In
addition, you’ll learn how to create an applet that runs in its own thread.

How to extend the Thread class
Figure 20-4 shows how to create two threads by inheriting the Thread class. Although these threads
don’t illustrate a practical use of multithreading, they do illustrate some of the concepts for defining and
working with threads.

The first code example defines a class that creates a thread that counts down from 6 using only even
numbers. To start, the CountDownEven class inherits the Thread class. Then, this class overrides the
run method of the Thread class. This method contains a loop that prints three numbers to the console:
6, 4, and 2. Within this loop, the first statement uses the getName method to display the name of the
thread followed by an even number. Then, the second statement calls the static yield method of the
Thread class. This allows the thread scheduler to run any other threads that are ready to be run.

The second code example shows a class that defines a thread that counts down from 5 using only odd
numbers. It works like the previous class except that it prints three odd numbers to the console: 5, 3,
and 1.

The third code example shows a class that contains a main method that creates and starts the threads
defined by the first two examples. Within the main method, the first two statements create the two
threads. Then, the last two statements start the threads. In other words, the second two statements
register the threads with the thread scheduler. Then, the thread scheduler calls the run methods of
these threads.

The screen at the bottom of the figure shows the output that’s generated by the three classes shown in
this figure. Each line begins by printing the name of the thread. Here, the name that’s assigned to the
CountDownEven thread is thread-0 while the name that’s assigned to the CountDownOdd class is
thread-1. Then, each line prints the number that’s generated by the for loop. Since both of these classes
use the yield method, the scheduler switches between these two classes. However, in this example, the
order that the scheduler uses varies due to factors that are beyond your control. Later in this chapter,
you’ll learn more techniques for controlling the order of execution among threads.
In this example, the main method runs in its own thread, the main thread. As a result, this program
actually uses three threads: one for the main thread, one for the CountDownEven class, and one for the
CountDownOdd class.

Figure 20-4: How to extend the Thread class
How to create a thread by extending the Thread class

 Create a class that inherits the Thread class.
 Override the run method to perform the desired task.
 Create the thread by creating an object from the class.

A class that defines a thread that counts down even values

public class CountDownEven extends Thread{

Murach’s Beginning Java 2

 page 475

 public void run(){

 for (int i = 6; i > 0; i-=2){

 System.out.println(this.getName() + " Count " + i);

 Thread.yield();

 }

 }

}

A class that defines a thread that counts down odd values

public class CountDownOdd extends Thread{

 public void run(){

 for (int i = 5; i > 0; i -= 2){

 System.out.println(this.getName() + " Count " + i);

 Thread.yield();

 }

 }

}

A class that starts two threads

public class CountDownApp{

 public static void main(String[] args){

 Thread count1 = new CountDownEven();

 Thread count2 = new CountDownOdd();

 count1.start();

 count2.start();

 }

}

Output of the code shown above

Murach’s Beginning Java 2

 page 476

How to implement the Runnable interface
Figure 20-5 shows how to create threads by implementing the Runnable interface. Although this method
of creating threads requires a little more code than the previous figure, it’s also more flexible. As a
result, it’s used more often than the technique in the previous figure.

The first two examples in this figure define the CountDownEven and CountDownOdd classes that you
were introduced to in the last figure. However, these classes implement the Runnable interface instead
of inheriting the Thread class. To create a reference to the current thread, they use the static
currentThread method of the Thread class.

The third example also works much like its counterpart in the previous figure. However, the first two
statements of the main method use a constructor of the Thread class to create a Thread object. Since
this constructor accepts any object that implements the Runnable interface, you can supply objects
created from the CountDownEven and CountDownOdd classes to create these two threads.

Figure 20-5: How to implement the Runnable interface
How to create a thread by implementing the Runnable interface

 Create a class that implements the Runnable interface.
 Code the run method to perform the desired task.
 Create the thread by supplying a Runnable object to the Thread constructor.

A class that defines a thread that counts down even values

public class CountDownEven implements Runnable{

 public void run(){

 Thread currentThread = Thread.currentThread();

 for (int i = 6; i > 0; i-=2){

 System.out.println(currentThread.getName() + " Count " + i);

 Thread.yield();

 }

 }

}

A class that defines a thread that counts down odd values

public class CountDownOdd implements Runnable{

 public void run(){

 Thread currentThread = Thread.currentThread();

Murach’s Beginning Java 2

 page 477

 for (int i = 5; i > 0; i -= 2){

 System.out.println(currentThread.getName() + " Count " + i);

 Thread.yield();

 }

 }

}

A class that starts two threads

public class CountDownApp{

 public static void main(String[] args){

 Thread count1 = new Thread(new CountDownEven());

 Thread count2 = new Thread(new CountDownOdd());

 count1.start();

 count2.start();

 }

}

Output of the code shown above

How to run an applet in its own thread
Figure 20-6 provides a framework that you can use to code applets that run in their own threads. This
framework runs the applet when the user moves to the web page and stops running the applet when the
user moves away from the web page. This allows resource-intensive applets to share the processor
with other applets on the same web page. For example, it’s a common practice to run an applet that
displays graphics in its own thread.

The example in this figure begins by declaring that the class that defines the applet implements the
Runnable interface. Then, this applet declares an instance variable that refers to the thread for the
applet and initializes the instance variable to a null value. After that, the start method checks if the
instance variable equals a null value. If so, it creates the thread for the applet and calls the start method
for the applet, which calls the run method. Within the run method, the first statement returns the current
thread. Then, a loop checks if the current thread is equal to the thread for the applet. If so, this method
executes the code for the applet, which may call other methods. Finally, the stop method sets the thread
for the applet equal to null, which will cause the while loop in the run method to exit.

Murach’s Beginning Java 2

 page 478

This figure also summarizes two methods of the Applet class that are typically used to work with
threads. Since the start method is called every time the user displays the web page for the applet, this
method is used to create and start the thread for the applet. Since the stop method is called every time
the user moves from the web page, this method is used to stop the thread for the applet.

Figure 20-6: How to run an applet in its own thread
How to run an applet in a thread

 Declare that the class implements the Runnable interface.
 Declare a thread as an instance variable and initialize it to null.
 Override the applet’s start method. If the thread is equal to null, this method should

create and start the thread.
 Code a run method for the thread.
 Override the applet’s stop method. This method should set the thread equal to null.

The code for an applet that runs in a thread

public class MyApplet extends Applet implements Runnable{

 private Thread myThread = null;

 public void start() {

 if (myThread == null) {

 myThread = new Thread(this);

 myThread.start();

 }

 }

 public void run() {

 Thread currentThread = Thread.currentThread();

 while (myThread == currentThread) {

 //code for the applet goes here
 }
 }

 public void stop() {
 myThread = null;
 }
}

Two methods of the Applet class that are used to work with threads

Murach’s Beginning Java 2

 page 479

How to schedule threads
In the last topic, you learned how to create and start threads. In addition, you were introduced to the
yield method that allows multiple threads to share the processor. Now, you’ll learn some other ways to
control threads. In particular, you’ll learn how to run a thread at a specified time interval, how to interrupt
a thread, how to prioritize threads, and how to synchronize threads.

How to put a thread to sleep
Figure 20-7 shows how to use the sleep method of a thread to execute a task at specific time intervals.
In particular, it shows how to use the sleep method to create a banner that moves across an applet.
Although simple, this concept is the basis for creating more complex animations.

The first screen in this figure shows the text that’s initially displayed by the applet when it runs within the
Applet Viewer. Then, the second screen shows how this text moves from left to right.

The code in this figure defines an applet that runs in its own thread. As a result, the start, stop, and run
methods work like they did in the last figure. However, within the run method’s loop, this applet uses the
sleep method to repaint the applet every 100 milliseconds (10 times per second). Since the sleep
method throws an InterruptException, you must code a try/catch statement around the sleep method,
but you don’t need to do anything if this exception is thrown.

This applet adjusts the x value for the position of the text to make the text move from left to right. To
start, this applet declares an instance variable for the x value. Next, the init method sets the initial x
value to 10. Then, the paint method resets the x value every 100 milliseconds, moving the text 5 pixels
to the right. To make sure the banner is displayed within the area defined by the applet, the second
statement in the paint method uses the getSize method of the Applet class to return a Dimension object
that defines the applet’s area. Then, the next statement uses the width field of that object.

Figure 20-7: How to put a thread to sleep
An applet with a moving banner

 http://www.books24x7.com/viewer.asp?bkid=3233&chnkid=675123047#IMG_405
The code for this applet

import java.awt.*;

import java.applet.*;

public class MovingBannerApplet extends Applet implements Runnable {

 private Thread bannerThread = null;

 private int x;

 public void init(){

 setBackground(Color.white);

 x = 10;

 }

 public void start() {

 if (bannerThread == null) {

Murach’s Beginning Java 2

 page 480

 bannerThread = new Thread(this);

 bannerThread.start();

 }

 }

 public void run() {

 Thread myThread = Thread.currentThread();

 while (bannerThread == myThread) {

 try{

 Thread.sleep(100);

 }

 catch (InterruptedException e){}

 repaint();

 }

 }

 public void paint(Graphics g) {

 x += 5;

 Dimension d = getSize();

 if (x > (d.width - 10))

 x = 10;

 g.setFont(new Font("SansSerif", Font.BOLD, 24));

 g.setColor(Color.red);

 g.drawString("New Low Rates!", x, 50);

 }

 public void stop() {

 bannerThread = null;

 }

}

Murach’s Beginning Java 2

 page 481

How to interrupt a thread
Figure 20-8 shows how to interrupt a thread. In particular, this figure shows the user interface and the
code for an applet that draws a graphic. However, most systems can’t draw a graphic like this one
quickly. In addition, drawing a graphic like this slows the rest of the applications running on the system.
As a result, this applet includes an Interrupt button that allows the user to stop the image from being
drawn.

In many ways, the code in this figure works like the code for the Moving Banner applet in the previous
figure. It defines an applet that runs in a thread that displays a graphic. However, it also provides an
Interrupt button that lets the user stop the image from being drawn. When the user clicks on this button,
the event handler for the button calls the interrupt method from the thread for the applet. Note, however,
that calling this method doesn’t immediately end the thread. Instead, it marks the thread as interrupted.
Then, within the run method of the thread, the if statement uses the isInterrupted method to exit the
loops that draw the image.

The two loops in the run method draw an image that’s 255 pixels tall by 255 pixels wide, and they
change the color for every pixel. That’s why it takes so long to draw the image on most systems.

Figure 20-8: How to interrupt a thread
An applet that interrupts a time-consuming task

The code for this applet

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class DrawImageApplet extends Applet

 implements ActionListener, Runnable {

 private Thread drawImageThread = null;

 private Button interruptButton;

 public void init(){

 setLayout(new BorderLayout());

 interruptButton = new Button("Interrupt");

Murach’s Beginning Java 2

 page 482

 interruptButton.addActionListener(this);

 add(interruptButton, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e){

 drawImageThread.interrupt();

 }

 public void run() {

 Thread currentThread = Thread.currentThread();

 while(currentThread == drawImageThread){

 for (int i = 0; i < 255; i++){

 for (int j = 0; j < 255; j++){

 if (drawImageThread.isInterrupted() == false){

 Graphics g = getGraphics();

 g.setColor(new Color(i, j, (i+j)/2));

 g.drawLine(i, j, 1, 1);

 Thread.yield();

 }

 }

 }

 }

 }

}

Note
The start and stop methods work as they did for the previous two figures.

How to prioritize threads
Figure 20-9 shows how to prioritize threads. When a thread is created, it is given a priority value
between 1 and 10, where 10 is the highest priority and 1 is the lowest priority. Then, when multiple
threads become ready to run at the same time, the thread scheduler executes the thread with the
highest priority first. If multiple threads have the same priority setting, the thread scheduler will run these
threads until they’re finished running. Either way, a thread can yield to a thread of equal or higher
priority, but can’t yield to a thread of lower priority.

This lets you create low-priority threads that will run when none of the other threads are running. For
example, you could give a thread that loads an image a low priority so the image will load when all other

Murach’s Beginning Java 2

 page 483

threads have finished running. When you create a thread like this, though, it’s still a good idea to include
a yield method so the thread will yield to threads that have higher priorities if those threads become
ready to run.

The first two examples shows how to set priorities for the threads for the CountDownEven and
CountDownOdd classes. Here, the first example uses the setPriority method to set the priority for the
CountDownEven thread to minimum. Conversely, the second example uses the setPriority method to
set the priority for the CountDownOdd thread to maximum. The output of this code shows that the
CountDownOdd thread finishes running before it yields to the CountDownEven thread.

The third example shows how to set priorities for the thread for the DrawImageApplet class. Since this
thread takes a long time to run, and since it’s not critical to any other applets on the page, this thread is
set to a minimum priority. To do that, the first statement creates the thread, and the second statement
sets the priority of the thread.

Figure 20-9: How to prioritize threads
How to set the even count down thread to low priority

Thread currentThread = Thread.currentThread();

currentThread.setPriority(Thread.MIN_PRIORITY);

How to set the odd count down thread to high priority

Thread currentThread = Thread.currentThread();

currentThread.setPriority(Thread.MAX_PRIORITY);

Output of the code shown above

How to set the draw image thread to low priority

drawImageThread = new Thread(this);

drawImageThread.setPriority(Thread.MIN_PRIORITY);

drawImageThread.start();

Description
 If two or more ready-to-run threads have different priority settings, the scheduler

executes the threads with the highest priority setting first.
 If two or more ready-to-run threads have the same priority, the scheduler executes

the threads in a round-robin order.
 A thread can’t yield to a thread of lower priority.
 By default, every thread is given the priority of the thread that created it.
 Since thread scheduling relies on the underlying system, the final result may vary

depending on the platform.

Murach’s Beginning Java 2

 page 484

How to synchronize threads
So far, you’ve been working with threads that execute independently of each other. These types of
threads are known as asynchronous threads. Now, you’ll learn how to work with threads that share
resources and must be synchronized. These types of threads are known as synchronous threads.
The diagram in figure 20-10 shows how two threads can share a resource. In this diagram, a thread on
the server machine retrieves an order and processes it. Since this thread uses the data, it’s known as
the consumer thread. Meanwhile, threads on client machines can send data. Since these threads
produce the data, they’re known as producer threads.
With asynchronous threads, two problems can occur. First, the consumer thread can run faster than the
producer thread. This can cause the consumer thread to attempt to retrieve an order when no order
exists, or it can cause the consumer thread to retrieve the same order twice. On the other hand, the
producer thread can run faster than the consumer thread. Then, the producer can send two orders while
the consumer only retrieves one. To prevent these conditions, you can use a monitor class.

The monitor class in this figure uses the synchronized keyword to prevent the sendOrder method and
the retrieveOrder method from being executed at the same time. In other words, this code locks the
monitor class so that only one of the synchronized methods can be executed at a time. Although this
example synchronizes methods, you can also use the synchronized keyword to work with blocks of
code.

The monitor class in this figure also uses the methods of the Object class to prevent the retrieveOrder
method from being executed before the sendOrder method. To start, it declares a boolean instance
variable and sets that instance variable to false. This variable is used to alternate between sending and
retrieving orders, and it starts by sending an order. Inside the retrieveOrder method, the boolean
instance variable is checked to determine if an order has been sent. If not, this code calls the wait
method from the current OrderMonitor object. This unlocks the OrderMonitor object and allows other
threads to call synchronized methods. In this example, the retrieveOrder method waits until the
sendOrder method calls the notifyAll method. This notifies all threads waiting on the monitor that an
order has been sent.

If you use the notify method instead of the notifyAll method, Java will notify one arbitrary thread. Since
that’s not what you usually want, it’s more common to use the notifyAll method. Then, all threads waiting
for the monitor object can compete to execute.

Figure 20-10: How to synchronize threads (part 1 of 2)
An example that requires synchronized threads

Murach’s Beginning Java 2

 page 485

The monitor class

public class OrderMonitor{

 private boolean request = false;

 private String orderString;

 public synchronized String retrieveOrder(){

 while (request == false){

 try{

 wait();

 }

 catch(InterruptedException e){}

 }

 request = false;

 notifyAll();

 return orderString;

 }

Murach’s Beginning Java 2

 page 486

 public synchronized void sendOrder(String s){

 while(request == true){

 try{

 wait();

 }

 catch(InterruptedException e){}

 }

 request = true;

 notifyAll();

 orderString = s;

 }

}

The Buyer class defines the producer thread that sends an order. To start, this class extends the
Thread class. Next, its constructor requires two arguments, the monitor object and a string for the order.
Then, it calls the sendOrder method from the monitor object to send the string. In this example, the
String object represents the order. However, any other object that defines an order, such as the
BookOrder object, could also be sent.

The Seller class defines the consumer thread that retrieves the order. This class works similarly to the
Buyer class. However, since the Seller object should continue retrieving orders indefinitely, the two
statements in the run method are coded within a while loop. This while loop will continue to run until the
user exits the program.

The OrderMonitorTest class contains some code that simulates the sending and retrieval of an order.
Within the main method, the first statement creates the OrderMonitor object. Then, the second
statement creates the Seller object, supplying the OrderMonitor object as an argument, and the third
statement starts the Seller object. The next two statements create and start the first Buyer object, and
the last two statements create and start the second Buyer object.

When the thread for the Seller object starts, it calls the retrieveOrder method. Since no order has been
sent, this thread calls the wait method and waits for an order. When the first Buyer thread starts, it calls
the sendOrder method. This method sends an order and calls the notifyAll method to let the Seller
thread know it’s finished. Then, the Seller thread can retrieve the order. The output for this code shows
that the monitor class causes one order to be retrieved for every order that’s sent.

Since the Seller class uses an indefinite while loop, it will continue to run until the program ends. In this
example, you’ll need to press Ctrl+C at the console to end the program. Otherwise, the Seller object will
continue to wait for more orders to be sent in by a Buyer object. However, in a real-world application,
the program would include a more elegant way to end the Seller class.

Figure 20-10: How to synchronize threads (part 2 of 2)
A thread that sends orders

public class Buyer extends Thread{

 private OrderMonitor monitor;

Murach’s Beginning Java 2

 page 487

 private String orderString;

 public Buyer(OrderMonitor m, String s){

 monitor = m;

 orderString = s;

 }

 public void run(){

 monitor.sendOrder(orderString);

 System.out.println("Buyer sent: " + orderString);

 }

}

A thread that retrieves orders

public class Seller extends Thread{

 private OrderMonitor monitor;

 public Seller(OrderMonitor m){

 monitor = m;

 }

 public void run(){

 while (true){

 String orderString = monitor.retrieveOrder();

 System.out.println("Seller retrieved: " + orderString);

 //code that processes the order

 }

 }

}

Code that simulates how synchronized methods work

public class OrderMonitorTest{

Murach’s Beginning Java 2

 page 488

 public static void main(String[] args){

 OrderMonitor monitor = new OrderMonitor();

 Seller s = new Seller(monitor);

 s.start();

 Buyer b1 = new Buyer(monitor, "Order one");

 b1.start();

 Buyer b2 = new Buyer(monitor, "Order two");

 b2.start();

 }

}

Output of the above code

How to work with timers
In the last topic, you learned how to use threads to execute a task at a specified number of milliseconds.
Since it can be difficult to use threads to schedule and repeatedly execute tasks, version 1.3 of Java
added some timer classes to the API that make it easier do that. In particular, version 1.3 added a Timer
class to both the java.util and javax.swing packages.

In this topic, you’ll learn how to use the utility timer to work with applications that don’t have graphical
user interfaces. Then, you’ll learn how to use the Swing timer to work with applications that use Swing
components.

How to use the utility timer
Figure 20-11 shows how to use the Timer class and TimerTask classes that are stored in the java.util
package. To start, you define a class that inherits the TimerTask class and you override the run method
for that class so it performs the task. Then, you can create Timer objects in another class that run the
specified task at the specified times. Part 1 of this figure shows an example of this, and part 2
summarizes the constructors and methods of these classes.

In the example in part 1, the AlarmTask class inherits the TimerTask class and overrides its run method.
In this case, the run method displays a dialog box that tells the user that it’s time for a meeting.
However, this method could perform any type of task. In addition, the AlarmTask class could include a
constructor that accepts one or more parameters.

The Alarm class in this example begins by declaring an instance of the Timer class that’s stored in the
java.util directory. Since all classes in the java.util and javax.swing packages are available to the
application, the code uses the full name of the Timer class. Otherwise, the Java compiler won’t know
which Timer class to use and will display a compile-time error when you try to compile the code.

Murach’s Beginning Java 2

 page 489

Within the constructor, the first two statements define a Date object that specifies the date and time that
the AlarmTask object will be run. Then, the third statement defines a Timer class using the full name of
the Timer class. Finally, the fourth statement uses the schedule method of the Timer class to set the
task and the date and time that the task will be run. As a result, the dialog box will be displayed at 2 PM
on May 21, 2001.

Figure 20-11: How to use the java.util.Timer class (part 1 of 2)
How to use the java.util.Timer class

 Create a class that inherits the TimerTask class and override its run method.
 Create an object from the java.util.Timer class. Then, use the schedule method to call

the specified TimerTask object at the specified time.
An example that uses a timer to schedule an alarm

import javax.swing.*;

import java.util.*;

import java.text.*;

public class Alarm{

 private java.util.Timer timer;

 public Alarm(){

 GregorianCalendar alarmGregDateTime =

 new GregorianCalendar(2001, Calendar.MAY, 21, 14, 00);

 Date alarmDateTime = alarmGregDateTime.getTime();

 timer = new java.util.Timer();

 timer.schedule(new AlarmTask(), alarmDateTime);

 }

 public static void main(String[] args){

 Alarm alarm = new Alarm();

 }

}

class AlarmTask extends TimerTask{

 public void run(){

 JOptionPane.showMessageDialog(null, "Time for your meeting!");

 System.exit(0);

 }

Murach’s Beginning Java 2

 page 490

}

Part 2 of figure 20-11 summarizes the constructors and methods that you can use when working with
the TimerTask and Timer classes of the java.util package. To start, this figure reviews the constructor
and method of the TimerTask class that were shown in part 1 of the figure. Then, this figure shows two
constructors and five methods of the Timer class. These constructors and methods allow you to specify
a timer that executes a task at fixed intervals, and they allow you to control when a timer starts and
when it ends.

To create a Timer object, you can use either of the constructors in this figure. Then, you use one of the
methods to specify a TimerTask object and to set the initial delay time for the task and the time interval
for subsequent tasks. When you use the schedule method, you can run the task once. The second
argument in this method allows you to schedule the initial delay for the task by specifying a Date object
as shown in part 1 of this figure or by specifying the delay in milliseconds. When you use the
scheduleAtFixedRate method, you can run the task at a specified time interval. The first two arguments
for this method work the same as the schedule method. However, the third argument allows you to
repeatedly execute a task by specifying a time interval in milliseconds.

There are three ways to end a Timer object. First, you can invoke the exit method of the System class to
terminate all threads. Second, you can use the second constructor shown in this figure to create a Timer
object that runs in a daemon thread. Then, the Timer object will automatically end when the object that
created it ends. And finally, you can call the cancel method directly from the Timer object.

Figure 20-11: How to use the java.util.Timer class (part 2 of 2)
Constructor and methods of the TimerTask class

Constructors and methods of the java.util.Timer class

Murach’s Beginning Java 2

 page 491

Description

 The Timer and TimerTask classes were included as part of the API with version 1.3
of Java in the java.util package. These classes make it easy to perform tasks that
could only be accomplished with threads in early versions of Java.

 The TimerTask class implements the Runnable interface and can be used to define a
task that’s started by the java.util.Timer class.

 Since a Timer class also exists in the javax.swing package, it’s common to refer to
these timers by using their full path names: java.util.Timer and javax.swing.Timer.

How to use the Swing timer
When you work with Swing components, you shouldn’t normally use threads. Instead, you should use
the Timer class in the javax.swing package to schedule tasks as shown in figure 20-12. That’s because
most Swing components aren’t thread safe. As a result, for most Swing components, the thread that
created the component is the only thread that can modify the component once the component is painted
or about to be painted.

The example in this two-part figure shows how to use the Timer class to display the current time on the
Loan Calculator application. Here, the import statements for the application only import the Date class
from the java.util package. That way, you can use the shorthand notation to refer to the Timer class and
the compiler will only have access to the Timer class in the javax.swing package, not the Timer class in
the java.util package. Within the class for the frame, one instance variable refers to the Timer object
while another instance variable refers to the JLabel object that displays the time.
Within the constructor, the code that sets up the frame and adds the other panels to the frame runs as it
did in chapter 11. Then, the eight statements in this figure add a label that displays the current time to
the frame. To do that, the first five statements create a panel for the label and add the label to the
frame. Then, the sixth statement creates a Timer object that notifies its action listeners every second
(1000 milliseconds), and the seventh statement sets the initial delay to zero. As a result, the timer will
send the first action performed event immediately. Finally, the eighth statement starts the timer.

Within the actionPerformed method, an if statement is used to check whether the Timer is the source of
the ActionEvent object. If so, this example executes four statements. The first statement returns the
current date and time, the second statement returns a medium time format, and the third statement
returns a string that contains the time. Then, the fourth statement uses that string to set the text for the
label that’s used to display the current time.

Figure 20-12: How to use the javax.swing.Timer class (part 1 of 2)
How to use the javax.swing.Timer class

 In the constructor or init method, create and start the timer.
 Code the actionPerformed method in the listener’s class to handle the timer’s task.

The Loan Calculator user interface with a clock

Murach’s Beginning Java 2

 page 492

Code that adds a clock to the Loan Calculator application

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.text.*;

import java.util.Date;

public class LoanCalculatorFrame extends JFrame implements ActionListener{

 // code for other instance variables

 private Timer timer;

 private JLabel clockLabel;

 public LoanCalculatorFrame() {

 //code that sets up the frame and its other panels
 JPanel clockPanel = new JPanel();
 clockPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
 clockLabel = new JLabel("Starting...");
 clockPanel.add(clockLabel);
 loanCalculatorPanel.add(clockPanel, BorderLayout.NORTH);

 timer = new Timer(1000, this);
 timer.setInitialDelay(0);
 timer.start();
 }

 public void actionPerformed(ActionEvent e){
 Object source = e.getSource();
 if (source == timer){
 Date t = new Date();
 DateFormat df = DateFormat.getTimeInstance(DateFormat.MEDIUM);

Murach’s Beginning Java 2

 page 493

 String time = df.format(t);
 clockLabel.setText(time);
 }
 //code that handles the other events for the frame
 }

}

Part 2 of figure 20-12 summarizes some constructors and methods that you can use to work with the
Swing timer. To start, you can create a Timer object by using the constructor to specify a delay interval
in milliseconds and to specify an action listener. Once the Timer is created, you can start it with the start
method, and you can stop it with the stop method. In addition, you can use the setDelay and
setInitialDelay methods to control when the timer notifies its action listeners. Last, if you don’t want the
action to repeat, you can supply a false value to the setRepeats method. Then, the timer will only notify
its action listener once.

Figure 20-12: How to use the javax.swing.Timer class (part 2 of 2)
Constructor of the javax.swing.Timer class

Methods of the javax.swing.Timer class

Description

 Most Swing components are not thread safe. As a result, you shouldn’t use threads
to modify them. Instead, you should use the Timer class of the javax.swing package
to modify them.

Perspective
In this chapter, you learned the essential skills for working with threads. In addition, you learned how to
work with two types of timers that can accomplish many of the tasks that were previously accomplished
with threads. You can use these skills with both applications and applets.

Summary
 You can use multiple threads to allow a computer’s central processing unit (CPU) to

quickly switch between two or more tasks. When an application or applet does
operations like I/O operations that are time-consuming but don’t require much
processing, multithreading can often improve performance.

 Since a processor can only run one task at a time, the thread scheduler determines
which task to run. Once a thread has been started, it can be in three states: running,
waiting, or ready. In the ready state, it competes with other threads for the processor.

 You can use the Thread class or the Runnable interface to create a thread. You can use
the methods of the Thread class to start and end a thread and to control when a thread
runs.

Murach’s Beginning Java 2

 page 494

 You can run an applet in a thread by implementing the Runnable interface for the class
that defines the applet by using the start and stop methods of the Applet class to start
and stop the thread.

 By default, the constructor of the Thread class creates a user thread that ends when it
has finished executing. However, you can also create a daemon thread that ends when
the thread that started it ends.

 All programs contain a main thread that the program runs in.
 When multiple threads run independently of each other, they’re known as asynchronous

threads. When threads need to communicate with each other, they’re known as
synchronous threads.

 When a thread produces data that needs to be processed by another thread it’s known
as a producer thread. When a thread consumes data that’s produced by a producer
thread, it’s known as a consumer thread. To synchronize producer and consumer
threads, you can code a monitor class.

 Version 1.3 of Java added two Timer classes that you can use to perform tasks that
were accomplished with threads in previous versions of Java.

 You can use the Timer and TimerTask classes of the java.util package to work with
applications that don’t use Swing components.

 You can use the Timer class of the javax.swing package to work with Swing
components. Since most Swing components are not thread safe, you shouldn’t use
threads to work with them.

Terms
thread

thread of execution

central processing unit (CPU)

multithreading

thread scheduler

daemon thread

user thread

asynchronous threads

synchronous threads

consumer thread

producer thread

monitor class

thread safe

Objectives
 Describe when and how threads can improve the performance of a program.
 Use the Thread class or the Runnable interface to create a thread.
 Run an applet in its own thread.
 Use the methods of the Thread class to control when the processor executes a thread.
 Use the methods of the Object class to control when the processor executes a thread.
 Describe when to use the timer classes there were included with version 1.3 of Java.
 Use the Timer and TimerTask classes of the java.util class to schedule tasks.
 Use the Timer class of the javax.swing package to schedule tasks.

Exercise 20-1: Create the Count Down application
1. Open the CountDownEven, CountDownOdd, and CountDownApp classes in the

c:\java\ch20\count directory. Then, read through the code for these classes to
make sure you understand them. When you’re done, compile and run the
application. Since these classes don’t contain a yield method, the even thread
won’t let the odd thread run until it’s done executing. However, some operating
systems automatically yield threads. This means that the processor may switch
between the two threads even though you haven’t coded the yield method.

Murach’s Beginning Java 2

 page 495

2. Code the yield method for the CountDownEven and CountDownOdd classes as
shown in figure 20-4. Then, run the application several times. When you do, the
processor should randomly switch between the two threads.

3. Convert the three classes so they use the Runnable interface as shown in figure 20-
5. Then, compile these classes and run the application to make sure it works the
same as it did in the previous step.

4. Use the setPriority method to assign a low priority to the even numbers and a high
priority to odd numbers as shown in figure 20-9. Then, compile these classes and
run the application. It should print the odd numbers first and then even numbers.
Then, remove the code that uses the setPriority method.

5. Create a CountDownMonitor class that insures that the count down will always go
from the highest number to the lowest number. To do this, you can code two
synchronized methods named printOdd and printEven. Then, you’ll need to add a
constructor to both the CountDownEven and CountDownOdd classes that accept a
CountDownMonitor object. After that, you can call the printEven and printOdd
methods within the run methods. To test this application, you can code a main
method similar to the one in figure 20-10.

Exercise 20-2: Create the Moving Banner applet

1. Open the MovingBannerApplet class that’s stored in the c:\java\ch20\banner
directory. Add code to this applet so it works as shown in figure 20-7. When you’re
done, compile the code and use the Applet Viewer to view this applet.

2. Use a web browser to view the LoanCalculator HTML page that’s stored in the
c:\java\ch20\banner directory. This web page displays both the Moving Banner
applet and the Loan Calculator applet. Since the Moving Banner applet runs in its
own thread, you should be able to use the Loan Calculator application to make a
calculation while the Moving Banner applet is running.

3. Add a Stop button to the Moving Banner applet that allows you to stop the banner
from moving. To stop this banner, set the thread for the applet equal to null.

Exercise 20-3: Create the Alarm application

1. Open the Alarm class that’s in the c:\java\ch20\alarm directory. Then, run this class.
Since the code sets the date and time of the meeting to a time that has already
passed, this application should immediately display a dialog box that says, “It’s time
for your meeting.”

2. Modify the statement that sets the alarm date and time of the meeting so that the
dialog box will be displayed two minutes from the current time that’s displayed by
your computer. Then, compile and run the application. When the application
displays a blank console, switch to another application and work on something else
for a couple minutes. In two minutes, the application should display the dialog box.

3. Comment out the first two statements that create the Date object. Next, use the
second schedule method shown in part 2 of figure 20-11 to use a long value to
specify a delay of 2 minutes (120000 ms). Then, compile and run the application. In
two minutes, the application should display the dialog box.

Exercise 20-4: Enhance the Loan Calculator application

1. Open the LoanCalculatorFrame class that’s stored in the c:\java\ch20\clock directory.
Then, run this class. It should display label that says, “Starting…”, but the label
won’t display the current time.

2. Add code to the LoanCalculatorFrame so the label displays the current time every
second as shown in figure 20-12. When you compile and run this class, it should
display the current time once every second.

3. Modify the code for the LoanCalculatorFrame so the time that’s displayed by the label
doesn’t include seconds. To do that, you can use the SHORT field of the
DateFormat class. In addition, modify the code so it creates a Timer object that
only causes the time to be updated once every 10 seconds. That way, the time
that’s displayed by the label will never be more than 10 seconds off from your
computer’s clock. Then, compile and run this class to make sure the application is
working correctly.

Murach’s Beginning Java 2

 page 496

Back Cover
Although Java is a difficult subject, it’s not as difficult as other books make it
seem. So the goal of our book is to cut through the confusion to teach you
how to code object-oriented business programs in Java as quickly and easily
as possible.

Obvious as this sounds, most beginning Java books don’t get you started off

Murach’s Beginning Java 2

 page 497

right...or fast. But author Andrea Steelman has psyched out what you need to
know first, and how to build on that knowledge in manageable steps, without
wasting your time. So by the end of chapter 2 in this book, you’ll have installed
Java on your system and you’ll have coded and compiled your first program.
And by the end of chapter 6, you’ll be starting to design, code, test, and debug
the kind of object-oriented Java applications that businesses rely on.

In our 25 years of experience, we’ve learned that it’s the coding examples that
determine the effectiveness of any programming course. Without them, you
can’t see the relationships between the objects, methods, events, classes,
and Java code that a program requires. Yet most beginning Java books
present "toy" applications that trivialize the complexities a professional
developer has to deal with. In contrast, all the examples in our book are from
real-world business applications that follow the principles of object-oriented
programming.

Figuring out how to create a GUI with other books can take you weeks, even
though that’s such a common programming requirement. But our book has
you creating your first GUI from start to finish in a single chapter (chapter 11).
Then, 4 more chapters show you how to enhance it and how to convert it to
an applet.

If you’re doing Java programming for a living, you’ll need to work with
databases and threads. This book gets you started by teaching you how to
use JDBC for databases and how to use threads to optimize your applications’
performance.

The exercises at the end of each chapter let you solidify your skills, so you’ll
feel confident about working on your own programs. All the information is
presented in user-friendly "paired pages," with the essential details and coding
examples on the right and the perspective on the left. You read less and learn
more!

	Table of Contents
	Introduction
	----The essence of Java programming
	How to get started with Java
	Introduction to Java
	How to get Java on your system
	How to use Windows tools to work with Java
	How to use TextPad to work with Java
	Introduction to Java IDEs
	Perspective

	Java language essentials (part 1)
	Basic coding skills
	How to work with the primitive data types
	Four classes for working with data
	How to use the JOptionPane class for input and output
	How to code control statements
	The Invoice application
	Perspective

	Java language essentials (part 2)
	Two more classes for working with numbers
	How to use try/ catch statements
	How to create and use static methods
	Two more applications
	How to use the documentation for the Java API
	Perspective

	How to write object- oriented programs
	An introduction to object- oriented programming
	How to code a class that defines an object
	How to create an object from a class
	The object- oriented code of the Book Order application
	How to create and use static fields and methods
	How to work with packages
	How to use javadoc to document a class
	Perspective

	How to work with inheritance and interfaces
	How to work with inheritance
	How to work with the Object class
	More skills for coding classes and methods
	How to work with interfaces
	How to code classes that are closely related
	Perspective

	How to design and test object- oriented programs
	An introduction to object- oriented design
	How to test an object- oriented program
	The User Email application
	The User Email application
	An introduction to the Book Maintenance application
	Perspective

	----More Java essentials
	How to work with operators and dates
	Operators, order of precedence, and associativity
	How to work with dates and times
	Perspective

	How to code control statements
	How to code if/ else and switch statements
	How to code loops
	How to code break and continue statements
	Perspective

	How to work with arrays, strings, and vectors
	How to work with arrays
	How to work with two- dimensional arrays
	More skills for working with arrays
	How to work with the String class
	How to work with the StringBuffer class
	How to work with the Vector class
	The Invoice application
	Perspective

	How to handle exceptions and debug code
	An introduction to exceptions
	How to handle exceptions
	How to throw and define your own exceptions
	How to debug your classes without an IDE
	Perspective

	----Java for graphical user interfaces
	How to code a graphical user interface (part 1)
	An introduction to the Swing classes
	How to work with frames
	How to work with panels, buttons, and events
	An introduction to layout managers
	How to work with labels and text fields
	The Loan Calculator application
	Perspective

	How to code a graphical user interface (part 2)
	How to handle events
	How to work with controls
	How to work with layout managers
	How to code low- level events
	The Book Maintenance application
	Perspective

	How to work with menus
	Essential skills for working with menus
	Advanced skills for working with menus
	Perspective

	How to work with fonts, colors, images, and shapes
	How to work with fonts and colors
	The Fonts and Colors application
	How to work with images and icons
	How to draw and fill shapes with the Graphics class
	How to draw and fill shapes with the Java2D API
	The Shapes application
	Perspective

	How to develop applets
	An introduction to applets
	How to develop Swing applets
	How to develop AWT applets
	More skills for working with applets
	Perspective

	----Java for file input and output
	An introduction to file input and output
	An introduction to file input and output
	How to work with the File class
	Perspective

	How to work with text files
	How to write text files
	How to read text files
	Perspective

	How to work with binary files
	How to write binary files
	How to read binary files
	How to work with random- access files
	The I/ O code for the Book Maintenance application
	Perspective

	How to use JDBC to work with databases
	How a relational database is organized
	How to use SQL to work with the data in a database
	How to access a database with Java
	How to use Java to work with the data in a database
	The Book Maintenance application
	An introduction to working with meta data
	Perspective

	How to work with threads
	An introduction to threads
	How to create and start threads
	How to schedule threads
	How to work with timers
	Perspective

